banner banner banner
Метод конечных элементов
Метод конечных элементов
Оценить:
Рейтинг: 0

Полная версия:

Метод конечных элементов

скачать книгу бесплатно

Метод конечных элементов
Дмитрий Альбертович Оголихин

Многие инженеры, несмотря на высшее образование, не знают, что такое метод конечных элементов (МКЭ) и оставляют задачи расчёта конструкций дорогостоящим программным продуктам типа Ansys или Nastran.Назначение этой книги – показать, что МКЭ является таким же несложным методом, как и весь сопромат.

Дмитрий Оголихин

Метод конечных элементов в MathCad

Введение

Метод конечных элементов – один из т. н. сеточных методов. Такие методы предполагают рассмотрение цельной конструкции как совокупности отдельных конечных элементов, как показано на рисунке 1.

Рисунок 1. Разбиение конструкции на конечные элементы. а – нумерация конечных элементов; б – нумерация узлов.

В качестве конечных элементов выступают знакомые нам из сопротивления материалов и строительной механики стержни, балки, плиты, оболочки и т. п. По сути своей решение методом конечных элементов сводится к решению уравнения задачи в динамической постановке:

M?d

u/dt

+C? du/dt+K?u = P

где M – матрица масс конструкции;

C – матрица демпфирования конструкции;

K – матрица жёсткости конструкции;

d

u/dt

– вектор ускорений узлов конструкции;

du/dt – вектор скоростей узлов конструкции;

u – вектор перемещений узлов конструкции;

P – вектор узловых нагрузок.

Если вектор узловых сил P не меняется во времени, то задача сводится к статической, описываемой уравнением:

K?u = P

Так как многие задачи в машиностроении сводятся к статическим, то упор в книге будет делаться на них. Для рассмотрения задач будет использоваться среда MathCad 15.

Алгоритм МКЭ

Для того, чтобы решить уравнение необходимо провести предварительную подготовку. В общем и целом, алгоритм решения выглядит следующим образом:

1) Разбиение конструкции на конечные элементы;

2) Составление матрицы жёсткости каждого конечного элемента;

3) Перевод матрицы жёсткости из локальной системы координат в глобальную;

4) Составление глобальной матрицы жёсткости всей конструкции;

5) Приведение нагрузок к узловым;

6) Учёт закреплений;

7) Решение уравнения:

u = K

?P

Операция 1, на взгляд автора, интуитивно понятная и не требует пояснений.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)