скачать книгу бесплатно
• Производство: на этапе создается собственно система. Проводятся различные испытания, чтобы убедиться, что система построена правильно.
• Эксплуатация (использование): на этапе система используется конечными пользователями или операторами. Сюда включают обучение соответствующих сторон эффективному использованию системы.
• Поддержка (послепродажное обслуживание): предоставление услуг, необходимых для эффективной эксплуатации системы, таких как ремонты, отчеты о неисправностях, обслуживание, и т. д.
• Вывод из эксплуатации: реализация плана, как и когда система должна быть выведена из эксплуатации, и утилизирована безопасным и надежным образом.
Этапы жизненного цикла используют, чтобы упростить планирование и управление всеми основными событиями создания высокотехнологичной авиационной, космической, инфраструктурной или другой сложной системы или продукта. Разделение (декомпозиция) проекта на этапы жизненного цикла делит процесс разработки на более мелкие и управляемые части. Переход фазовых границ между этапами определяется в пунктах КР путем оценки прогресса проекта и принятия решений по реализации следующей фазы. Так как решения на ранних этапах влияют на последующие активности, и более продвинутую систему труднее изменить по ходу проекта, в системном подходе сделанное на ранних стадиях ЖЦ имеет наибольшее влияние на успех проекта в целом.
Пример ЖЦ системы, включающего девять контрольных рубежей, показан на рис.1.
Рис. 1. Этапы жизненного цикла системы (пример)
Согласно стандарту ГОСТ Р 57193—2016 на очередном контрольном рубеже ЖЦ должны быть выполнены главные задачи проекта на предыдущей стадии:
• обоснованы гарантии, что процесс разработки приведет к удовлетворительной верификации и валидации продукта;
• обеспечена приемлемость риска перехода на следующую стадию.
Успешная разработка системы будет зависеть от технологий, которые используются на протяжении жизненного цикла системы. В случаях, когда система имеет длительные стадии эксплуатации и обслуживания, важно учитывать жизненный цикл примененных технологий. Требуется, чтобы используемая технология оставалась доступной в течение всего жизненного цикла продукта, даже если она устареет. Это важно, например, для информационных технологий, где версии программных продуктов обновляются каждые 5—10 лет. Другим примером являются музыкальные носители. В 1960-х годах это были грампластинки, в 1980-х на смену пришли кассеты. В 1990-х годах их вытеснили компакт-диски, в 2000-х появились телефоны и карманные плееры с внутренней твердотельной памятью, и т. д.
Системная инженерия используется человечеством с давних времен. Например, пирамиды в Древнем Египте, римские дороги и акведуки, каналы орошения азиатских полей являются примерами сооружения сложных систем, имеющих длинный жизненный цикл. Сегодня, когда постоянно растет сложность окружающей инфраструктуры и разрабатываемых систем, необходимо развивать строгие и надежные подходы, которые помогают справиться с заданными уровнями сложности решаемых задач.
Базовый для нашей книги термин некоммерческая международная организация сиcтемных инженеров INCOSE формулирует следующим образом (2018).
Системная инженерия – это междисциплинарный и интеграционный подход для обеспечения успешной реализации, использования и вывода из эксплуатации инженерной системы, используя системные принципы и концепции, а также научные, технологические и управленческие методы.
Система – это расположение частей или элементов, которые вместе демонстрируют поведение или значение, которого нет у отдельных компонентов. Системы могут быть физическими, концептуальными (абстрактными информационными), биологическими или их комбинацией.
Инженерная система – это система, разработанная или адаптированная для взаимодействия с ожидаемой эксплуатационной средой для достижения одной или нескольких предполагаемых целей при соблюдении применимых ограничений. Инженерные системы могут включать людей, продукты, услуги, информацию, процессы и природные элементы.
Системная инженерия (СИ) охватывает все стадии и детали жизненного цикла разработки продукта от замысла до внедрения, руководствуясь интересами конечного пользователя. Она отличается от предметной инженерии, ориентированной на конкретные дисциплины. Различные ответвления включают механическую, электронную, химическую, оптическую, ядерную, программную, социальную инженерию, и т. д. Хотя системная инженерия может определять требования, относящиеся к этим инженерным дисциплинам, она не диктует конкретные проекты или технологии, используемые в них.
Основной особенностью мультидисциплинарного подхода СИ является участие в проектах профессионалов из разных областей, которые работают вместе, постоянно общаются и помогают друг другу по всем аспектам продукта. В СИ рассматривают весь жизненный цикл проектируемого продукта. Уделяется постоянное внимание потребителям системы. СИ сочетает технический, управленческий и организационный сегменты. Рассматривается принятие технических решений, связанных с жизненным циклом продукта, а также управление полным кругом задач, которые должны быть своевременно выполнены для реализации процесса. В СИ применяется подход декомпозиции «сверху вниз». Сначала рассматривают систему в целом, а затем последовательно разбивают ее на более низкие уровни, такие как подсистемы, модули и элементы.
Системная инженерия помогает ликвидировать пробелы, имеющиеся в традиционных подходах к разработке систем, по трем указанным составляющим: технической, управленческой, организационной. Практические вопросы применения системного подхода для успешного выполнения высокотехнологичных проектов и программ, к сожалению, недооценены или отсутствуют в отечественной литературе. Во-первых, потому что среднее поколение успело забыть дисциплину, массово преподававшуюся много лет в ВУЗах СССР под названием «Системотехника». Во время реформы ВУЗов в РФ данная тема выпала, тогда как за рубежом системотехника стала активно развиваться в различных отраслях. Во-вторых, сказалось, что многим людям некомфортно изучать многочисленные новые дисциплины и подходы. В-третьих, потому что различные теоретики, системологи и онтологи, в том числе в INCOSE, сумели надежно отпугнуть отряды любознательных практиков накрученной сложностью и «избранностью» знаний по системной инженерии. Сегодня обучение системной инженерии проводят только в десяти ВУЗах РФ.
Важнейшей основой системной инженерии являются официальные международные стандарты, излагающие правила работы. Сегодня применение стандартов системной инженерии обязательно для контрактов военных ведомств развитых стран и государственных заказчиков сложных систем, таких как Министерство обороны США (DoD), Национальная аэрокосмическая ассоциация (NASA), компаний Boeing, Airbus, гигантов в сфере телекоммуникаций и информационных технологий (Siemens, IBM), и др. Основные стандарты системной инженерии РФ перечислены в разделе 1.10.
Системная инженерия приносит выгоду в проекте, при этом она относится к статье накладных расходов. В современных проектах на системно-инженерные процессы выделяется статья в бюджете, чтобы предотвратить возможные убытки и исключить последующую переделку готового изделия. То есть результат системной инженерии – не увеличение прибыли, а снижение вероятных убытков проекта. Эффект достигается за счет выполнения программы в заданные сроки, в рамках бюджета, согласно требованиям контракта, с высоким качеством. С 2016 г. отчетность по данной статье включена в обязательный перечень для подрядчиков государственных контрактов Министерства обороны США.
Активный интерес в мире к преподаванию системной инженерии подтверждается тем, что предмет системной инженерии входит в учебные планы всех ведущих зарубежных университетов и нескольких российских вузов. Также компании активно содействуют повышению квалификации в этой области своих сотрудников.
Сегодня в реальной отечественной практике ряда организаций получены следующие результаты.
• Обучение системно-инженерному подходу приносит заметный эффект для специалистов различных категорий.
• Освоение происходит в оперативном режиме, через 3…6 месяцев сотрудники выходят на удовлетворительные темпы и качество работ, скачкообразно растет понимание системного подхода применительно к практическим задачам.
• Заметно снижаются потери рабочего времени в проекте.
• Возрастает качество работ и получаемых результатов.
• Рост производительности труда после периода обучения составляет от 20 до 100%, далее обеспечивается стабильный прирост не менее 15—25% в год.
Примененные в практической работе технологии системной инженерии ускорили и облегчили получение конкурентоспособных разработок. Переход на командные методы работы по ролям упростил создание результативных коллективов. Подготовку персонала также удалось ускорить при использовании принципов системной инженерии.
1.3 Основные этапы системно-инженерного подхода
При создании новых высокотехнологичных систем набор требований стал существенно сложнее, чем три десятилетия назад. Прошлые достижения инженеров и менеджеров не обеспечивают успех в условиях вызовов будущего. Инновационные разработки компаний направлены на решение следующих задач.
– Удовлетворить желания клиентов в отношении новых продуктов и услуг.
– Улучшить экономику компании в долгосрочной перспективе.
– Научиться быстро реагировать на изменения на рынке.
– Стремиться стать признанным лидером в своей отрасли.
– Улучшить бизнес-модель, стратегию и процессы организации.
– Воспитывать творческих сотрудников путем организации эффективной работы.
Ниже перечислены пункты блока «Технологический рывок» из решения правительства РФ по реализации федеральных проектов от 2021 г. Перечень инициатив включает разработку технологий, позволяющих производить соответствующее оборудование.
• Чистая энергетика (водород и возобновляемые виды энергетики).
• Новая атомная энергетика, в том числе малые атомные реакторы для удаленных территорий.
• Развитие производств новых материалов.
• Круглогодичный Северный морской путь.
• Беспилотные логистические коридоры для транспорта.
• Автономное судовождение.
• Беспилотная аэродоставка грузов.
• Персональные медицинские помощники.
• Электроавтомобиль и водородный автомобиль.
• Цифровая экосистема «Одно окно» экспортера.
• Платформа университетского технологического предпринимательства.
• Взлет – от стартапа до размещения акций на бирже.
• Передовые инженерные школы.
Успех будущих поколений специалистов, инженеров и менеджеров будет напрямую зависеть от их способности эффективно работать в этом новом мире.
Уточним основные понятия системы и их роли.
• Цели: формулируют потребности заинтересованных сторон и определяют общую задачу создания системы. Каждая цель формулируется в виде набора требований.
• Жизненный цикл: определяет, как система будет построена или произведена, ее испытания, продажи, финансирование, эксплуатацию, обслуживание и утилизацию по завершению эксплуатации.
• Режимы работы: предусматривают функционирование системы в различных средах и условиях (сценариях). Самолет, например, используется для перевозки пассажиров и грузов, и для обучения экипажа. Его также нужно обслуживать, ремонтировать и испытывать.
• Ограничения: каждая конкретная система ограничена законодательством, процедурами и стандартами, имеющимися материалами, знаниями и технологиями, заданным временем проекта, финансированием, людскими и материальными ресурсами.
Управление жизненным циклом системы включает все действия для выполнения программы или проекта в различных фазах, разделенных точками принятия ключевых решений или контрольными рубежами (КР). В стандарте «Процессы жизненного цикла систем» ISO 15288:2015 (ГОСТ Р 57193—2016) перечислены 30 базовых процессов жизненного цикла систем, рис. 2.
Рис. 2. Базовые процессы жизненного цикла систем
Указанные процессы разделены на четыре основные группы.
• Группа технических процессов, объединяет процессы, которые связаны с повседневной деятельностью по проектированию систем.
• Группа процессов технического управления, объединяет процессы, которые отражают специфику управления инженерными проектами.
• Группа организационных процессов, объединяет бизнес-процессы в целом, управление предприятием, инвестициями и процессы управления жизненным циклом системы.
• Группа процессов соглашения, объединяет вопросы отношений между заказчиками и поставщиками, заказа, поставки и приобретения систем.
Для описания инструментов системной инженерии в последующем тексте будут использоваться еще несколько терминов.
• Требование: определяет, что должна делать система. Например, «портативная система очистки воды должна очищать не менее двух литров воды в минуту». Требования верхнего уровня должны включать цели системы, жизненный цикл, режимы работы, ограничения, интерфейсы с другими системами.
• Функция: конкретное действие, которое система выполняет, или значимая цель, для которой система разработана или спроектирована. Функции не надо путать с задачами. Например, в системе кофейного автомата «подача кофейной капсулы» и «дозировка горячей воды» являются функциями автомата. Однако действия «вставить чашку» и «выбрать напиток нажатием кнопки» являются задачами пользователя, а не функциями.
• Компонент: элемент построения системы. Физические компоненты представляют оборудование для построения системы. Электрические и компьютерные компоненты программного обеспечения контролируют и регулируют ее работу. Человеческие компоненты взаимодействия людей с аппаратным и программным обеспечением необходимы для выполнения системных функций.
• Входы и выходы. Динамические объекты системы и ее компоненты нуждаются во входных сигналах для выполнения своих функций. Внутри системы некоторые компоненты могут генерировать выходы для других компонентов. Эти входы и выходы могут быть материалами, энергией, информацией или действиями.
• Базовая версия системы. Это задокументированная точка отсчета для оценки результатов системного проектирования. На определенных этапах проектирования системы предыдущая базовая версия сменяется на более проработанную или зрелую.
Типовое описание процессов жизненного цикла включает стандартные блоки компонентов. Каждый процесс состоит из входа, действия и выхода, дополненных функциями управления и обеспечения, рис. 3.
Рис. 3. Блок-схема типового процесса
Процессы имеют важные полезные свойства. Они должны быть повторяемыми. Если процессы могут выполняться по-разному, то их результаты нельзя сравнивать. Процессы должны быть измеримыми, чтобы можно было контролировать их эффективность. Процессы могут быть сложными для понимания, в них используют язык конкретной предметной области.
Основными задачами управления жизненным циклом являются:
1. Управление процессом проектирования и разработки системы.
2. Управление процессом технологической подготовки производства.
3. Управление процессом производства продукции.
4. Управление процессами закупки комплектующих изделий, материалов, заготовок, запчастей.
5. Управление процессом испытаний системы, ресурсных, приемо-сдаточных, сертификационных, и др.
6. Управление процессом послепродажного обслуживания.
7. Управление процессами обучения пользователей и обслуживающего персонала.
8. Обеспечение качества на всех этапах ЖЦ.
9. Достижение заданной трудоемкости разработки и изготовления системы.
10. Управление информационной поддержкой всех процессов.
Процесс проектирования системной инженерии переводит системные потребности в структурированные системные требования. Далее посредством моделирования, анализа и синтеза общие требования преобразуют в количественные системные спецификации и параметры. Система развивается от общих концепций к конкретной проектной конфигурации, может быть легко сконструирована и изготовлена.
Для реализации проектов и программ в системной инженерии широко используется принцип декомпозиции:
• Декомпозиция проблемы – разделение сложной проблемы на более простые, позволяет легче найти решение и четко сформулировать задачи для каждого сотрудника.
• Декомпозиция времени – прием разбиения проекта на фазы с указанием конкретных результатов, чтобы эффективно контролировать процесс разработки, измерять эффективность и вовремя применять корректирующие меры.
• Декомпозиция продукта – разделение сложных продуктов на подсистемы, сборки и элементы, позволяет эффективно управлять конфигурацией и поставщиками.
• Декомпозиция действий проекта с последующей интеграцией – определяет четкую последовательность необходимых действий, требования, спецификацию, разбиение работ, проект, интеграцию, верификацию, эксплуатацию, вывод из эксплуатации.
Можно выделить 12 последовательных этапов системно-инженерного процесса создания системы или продукта:
1. Маркетинговая оптимизация – информация по принятию решений на основе анализа и отбора наиболее сбалансированных решений по требованиям рынка.
2. Комплексное техническое планирование – формирование планов процессов и продуктов.
3. Управление требованиями – определение и управление требованиями, которые описывают желаемые характеристики системы.
4. Функциональный анализ – описание функциональных характеристик (что система должна делать), которые используются для получения требований.
5. Синтез – этап преобразования требований в физические решения верхнего уровня системы.
6. Управление интерфейсами – определение и управление взаимодействиями между компонентами в рамках системы или с другими системами.
7. Специализированная (тематическая) инженерия – анализ системы, требования, функции, решения с использованием специальных навыков и инструментов. Помощь в получении требований, синтезе решений, выборе альтернатив.
8. Верификация интеграции – проверка, что интеграция системы обеспечила требуемый уровень точности и идентичности.
9. Управление рисками и возможностями – определение, анализ и управление неопределенностями достижения требований программы.