banner banner banner
Население Земли как растущая иерархическая сеть
Население Земли как растущая иерархическая сеть
Оценить:
Рейтинг: 0

Полная версия:

Население Земли как растущая иерархическая сеть

скачать книгу бесплатно


Такое определение созвучно понятию фундаментального отрезка исторического времени как характерного масштаба длительности исторических изменений. Еще один довод, возможно, не слишком серьезный, свидетельствующий в пользу существования главного исторического цикла, связан с циклической активностью Солнца.

Волны Кондратьева на Солнце?

В середине позапрошлого века было установлено, что количество пятен на Солнце меняется с периодом в 11 лет. В дальнейшем выяснилось, что такие же изменения претерпевают все характеристики хромосферных образований и все виды активного излучения: радиоизлучения, корпускулярного и ультрафиолетового.

Т. е. в одиннадцатилетнем цикле изменяется состояние всех доступных наблюдению слоев Солнца. В 1913 году американским астрономом Джорджем Хэйлом было доказано, что при переходе от каждого одиннадцатилетнего цикла к следующему полярность ведущих групп пятен в обоих полушариях Солнца меняет свой знак.

Так что для замыкания по этой характеристике солнечный цикл должен включать два одиннадцатилетних, т. е. его продолжительность должна составлять 22 года. Этот цикл называют Хэйловским или магнитным.

В начале XXI века американскими учеными был обнаружен так называемый «Большой солнечный конвейер», который представляет собой два потока раскаленной плазмы: южную и северную ветви конвейера. В каждой ветви меридиональный поток у поверхности идет от экватора к полюсу, а встречный противоток – от полюса к экватору. Полный оборот в каждом из них совершается в среднем за 40 лет. Исследователи NASA полагают, что движение этого потока и определяет циклы солнечных пятен.

Возможно, что существует солнечный цикл аналогичный Кондратьевскому, причем как одиннадцатилетний цикл, так и Хейловский являются лишь его производными. По одиннадцатилетним циклам имеются данные за последние 300 лет. Если сгруппировать эти циклы по четыре, то всего имеется четыре варианта выбора фазы цикла с учетверенной длительностью.

Оказывается, что наиболее стабильной или наименее вариативной (минимум дисперсии) является объединенная четверка синфазная Кондратьевскому циклу. Но статистической значимостью по причине небольшого объема выборки этот вывод не обладает.

Следует также отметить один поразительный факт, еще более углубляющий аналогию между земными и солнечными процессами. Оказывается, солнечная активность обладает не только свойством цикличности, синхронной с глобальным историческим процессом.

Как показали исследования последних лет, связанные с изучением причин глобального потепления, сама эта активность непрерывно возрастала последние несколько сотен, а то и тысяч лет. Возрастала так же, как росла численность населения Земли с момента начала неолита.

Ученые из института астрономии в Цюрихе во главе с доктором Сами Соланки проверили содержание в гренландском льду особого изотопа бериллия, который образуется под воздействием космических лучей. Исследовались пробы льда из Гренландии, так называемые керны, добываемые путем глубокого бурения. Исследования показали, что активность Солнца постоянно росла последние тысячи лет.

Чтобы объяснить это явление было выдвинуто предположение о существовании некоего суперцикла солнечной активности, на период увеличения размаха которого и приходится наше время. На втором этапе этой работы, результаты которого были опубликованы в журнале «Nature», ученые работали уже не с пробами льда, а с остатками древних деревьев и со следами изотопа углерода, который образуется в атмосфере под влиянием космических лучей.

Данные «по углероду» продолжили данные «по бериллию», и ученым удалось построить график солнечной активности за последние одиннадцать тысяч лет, т. е. до конца последнего оледенения. В конечном итоге существование «суперциклов» солнечной активности с длительностью в несколько десятилетий или столетий было поставлено под сомнение. Скорее всего, существует нечто более длительное протяженностью в тысячелетия. Вопрос о механизме этого явления авторы оставляют открытым.

Самое же удивительное заключается в том, что за весь изученный период Солнце никогда не было таким активным, как за последние 60 лет. Медленное нарастание количества солнечных пятен на протяжении последних веков перешло в стремительный скачок, совпавший по времени с демографическим взрывом двадцатого столетия!

Практически одновременно с этими событиями метеорологи зафиксировали признаки глобального потепления. Правда, последние 20 лет, с 1985 года, когда был отмечен максимальный всплеск солнечной активности, она постепенно снижается, а потепление продолжается.

Таким образом, получается, что рост солнечной активности, длившийся столетиями, а, возможно, и тысячелетиями заканчивается в тот же момент времени, когда завершается последний исторический период и начинается демографический переход.

* * *

Но загадки цикличности Солнца на этом не заканчиваются. Примерно тогда же (1974–1983 гг.) были зафиксированы колебания яркости солнечной поверхности с периодом в 160 минут[53 - http://avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf (http://avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf)]. Как выяснилось впоследствии, эти слабые пульсации продолжались как минимум с 1947-го по 1983 гг., т. е. более тридцати лет. (Это время соответствует последнему историческому периоду 1942–1982 гг.)

После 1983 года они, по-видимому, пропали. В ходе дальнейших исследований пульсации яркости с таким же периодом были обнаружены не только у Солнца, но и у других звезд, а также у внегалактических источников (активных ядер галактик – АЯГ), что привело исследователей к идее «когерентной космологической осцилляции». Из этой когерентности вытекает парадоксальный синхронизм процессов, протекающих в звездах и АЯГ, природа которого пока не ясна.

Здесь мы не будем анализировать причины синхронности галактических, солнечных и земных ритмов. Влияние Солнца на Землю несомненно (работы Чижевского), но, возможно, существует и некий единый космологический ритм, задающий частоту и фазу всех эволюционных процессов во Вселенной. [18]

Если это так, то с завершением сокращающихся по закону прогрессии исторических циклов, которые, очевидно, не могут продолжаться за сингулярностью Дьяконова – Капицы, могут закончиться определяющие их инновационные волны Кондратьева, а также и синхронные с ними солнечные циклы.

Какова точность границ исторических периодов?

Она зависит от точности определения двух дат: момента начала неолита и даты исторической сингулярности (точки сингулярности гиперболы Фёрстера). Дата исторической сингулярности известна с точностью до нескольких лет. В работе Фёрстера и его коллег – это 2027 ± 5 лет. Здесь возьмем нашу оценку: 2022 ± 2 года. На чем она основана? На том, что точность даты исторической сингулярности должна быть такой же, как точность даты окончания последнего, восьмого исторического периода, поскольку время цикла сети определено нами (с учетом неоднозначности в определении полного числа циклов роста сети 65536) с очень хорошей точностью: 39,75 ± 0,25 лет.

Если считать, что сеть достигает совершенной стадии своего роста в 1982 году (зомби-коэффициент k полагаем равным 1,1 и погрешностью в его определении пренебрегаем) и принять, что эта дата может быть определена со стандартной для мировой демографии точностью в два года, получим: (1982 ± 2) + (39,75 ± 0,25) ? 2022 ± 2. Таким же образом определяем точность даты начала неолита и всех остальных исторических периодов:

Начало 1-го исторического периода (начало неолита): -255?(39,75 ± 0,25) + (1982 ± 2) = -8154 ± 66 год до н. э.

Начало 2-го исторического периода: -127?(39,75 ± 0,25) + (1982 ± 2) = -3066 ± 34

Начало 3-го исторического периода: -63?(39,75 ±0,25) + (1982 ± 2) = -522 ± 18

Начало 4-го исторического периода: -31?(39,75 ± 0,25) + (1982 ± 2) = 750 ± 10

Начало 5-го исторического периода: -15?(39,75 ± 0,25) + (1982 ± 2) = 1386 ± 6

Начало 6-го исторического периода: -7?(39,75 ± 0,25) + (1982 ± 2) = 1704 ± 4

Начало 7-го исторического периода: -3?(39,75 ± 0,25) + (1982 ± 2) = 1863 ± 3

Начало 8-го исторического периода: -1?(39,75 ±0,25) + (1982 ± 2) = 1942 ± 2,25

Начало глобального демографического перехода: 1982 ± 2

Дата исторической сингулярности (сингулярности Дьяконова – Капицы): 2022 ± 2 год. Столь высокая точность для важных дат мировой истории и демографии получена благодаря большой точности, с которой была определена постоянная времени Капицы.

Какое событие произошло в 1982 году?

Точнее, эта дата лежит в интервале 1982 ± 2 года. Но имеет ли она какое-то историческое значение? Перечислим аргументы, говорящие о том, что это так:

1. 1982 год отстоит от сингулярности Дьяконова – Капицы ровно на один цикл исторического времени 2022 ? 40 = 1982. В соответствии с предложенным здесь простым правилом определения границ главных исторических периодов, именно в этот момент времени завершился последний, восьмой период. После чего исторический процесс перестает быть циклическим и наступает новая историческая эпоха.

2. Именно в это время завершается четвертый экономический цикл Кондратьева 1929–33 гг. – 1973–81 гг. Циклы Кондратьева являются, видимо, главными историческими циклами, задающими основной ритм мировому экономическому и историческому процессу.

3. Демографический переход, как считается, начался в шестидесятых годах двадцатого столетия. В это время относительная скорость роста численности населения мира достигла максимума и начался ее спад. Такое задание времени начала перехода соответствует определению мультипликатора Шене и является достаточно условным. Построим в одних координатных осях гиперболу (4) и интерполяцию демографических данных за 1960–1990 гг:

Рис 1. Закон гиперболического роста населения мира.

Гипербола (4) – лучше всего соответствует работе Фёрстера и его коллег, исследованиям С.П. Капицы, работе Мак-Эведи, Джоунса и Кремера, данным Остина и Брауэра, а также и нашей теории (см. главу «Константы Капицы»).

Рис 2. Гипербола (4) и интерполяция демографических данных за 1960–1990 гг.

В ~1965 году относительный мировой прирост населения мира достиг своего абсолютного максимума за всю историю роста и начался его спад. После прохождения этой точки перегиба реальная кривая роста оказалась выше эмпирической гиперболы Фёрстера. Что выглядит довольно странно (на что обращают внимание критики работы Фёрстера и его коллег) поскольку с окончанием эры гиперболического роста она должна была отклониться от гиперболы вниз. [39] Такой подъем на завершающей стадии последнего исторического цикла подтверждает нашу теорию, согласно которой численность носителей должна соответствовать теоретической гиперболе лишь в приоритетных точках своего роста.

Так как надолго «обогнать» гиперболу невозможно, эти кривые должны были в обязательном порядке еще раз пересечься, что и произошло в 1982 году. Поскольку точка пересечения эмпирической гиперболы (4) с графиком интерполяции демографических данных (t = 1982, N = k·4,3 млрд) – последняя точка, которая принадлежит гиперболе и соответствует демографическим данным, то именно 1982 год можно с достаточным основанием считать моментом окончания гиперболического роста и началом глобального демографического перехода.

Согласно теории Капицы, дата начала перехода – 1965 год, при этом он занимает два цикла характерного времени; момент завершения первого цикла – 2007 год, конец второго – 2049-й. Если же за момент начала перехода взять 1982 год (а именно на этот момент времени приходится завершение последнего, восьмого исторического периода), то, во-первых, подтверждается связь мирового исторического и демографического процесса и, во-вторых, конец первого цикла перехода совпадает с сингулярностью Дьяконова – Капицы, приходящейся на 2022 год.

Такие «совпадения» явно выигрывают в сравнении с безликими 1965-м и 2007 годами у С.П. Капицы, ведь все эти даты: начало перехода, а также конец первого и второго его цикла имеют, по-видимому, важное историческое значение, хотя смысл его пока и неясен.

4. В начале восьмидесятых годов прошлого века завершился гиперболический рост потребления энергоресурсов, продолжавшийся последние 140 лет.

5. В семидесятых годах прошлого столетия остановилась в своем развитии самая фундаментальная из наук ? теоретическая физика, бурно развивавшаяся до этого времени в течение более чем двух столетий. Если говорить о фундаментальных законах природы, в начале XXI столетия, несмотря на все усилия, все что мы знаем об этих законах не превышает того, что мы знали о них в семидесятых года XX-го. Об этом пишет в своей книге «Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует» американский физик Ли Смолин.

6. Примерно в это же время, т. е. в 1976.5 году, заканчивается солнечный цикл, аналог Кондратьевского, представляющий объединение четырех (с 17-го по 20-й) одиннадцатилетних циклов. При этом имеется совпадение с главным историческим циклом не только по фазе, но и по длительности. Такое совпадение может быть простой игрой случая, но не стоит отбрасывать также и возможность того, что оно обусловлено синхронизмом солнечных и земных процессов, природа которого пока неясна.

7. В 1985 году, т. е. в это же время, достиг своего максимума и перестал расти уровень солнечной активности, рост которого продолжался последнюю тысячу лет (или даже 11 тысяч лет). Тогда же, 1974–1983 гг., были вновь обнаружены пульсации Солнца (глобальные колебания фотосферы) с периодом, равным 160.0101 ± 0.0016 минут, которые наблюдались в его спектре и ранее, как минимум тридцать лет. Причем пропали эти колебания одновременно с завершением роста солнечной активности, продолжавшемся последние несколько столетий. Открытые в КРАО колебания представляют, по-видимому, новый космологический феномен: «когерентную космологическую осцилляцию», а их период 160 минут – некую универсальную космологическую постоянную.

8. В 1982 году численность носителей сети, согласно нашей теории, достигла круглого значения 2

человек. Из этого следует, что эпохи перемен наступали не просто тогда, когда эта численность удваивалась по сравнению с предыдущим периодом, а когда становилась равной 2

– двойке в некоторой целой степени. И здесь нет никакой нумерологии – это просто факт, который нужно как-то объяснять.

9. Для полноты картины можно добавить также и «ненаучный» аргумент в подтверждение уникальности, неповторимости и значимости того краткого момента истории конца семидесятых начала восьмидесятых годов прошлого столетия, о котором идет речь. Ведь именно на это время приходится пик активности НЛО, активности невиданной за всю историю наблюдений этого явления. Нечто подобное было зафиксировано еще только один раз спустя десятилетие в 1990 году.

Ответа на вопрос, что же в действительности произошло в конце семидесятых, начале восьмидесятых годов двадцатого века, в чем причина цикличности развития и гиперболического роста населения Земли применяемая здесь феноменологическая схема не дает. Но можно считать, как было показано нами ранее, что именно в это время (в 1982-м, а не в 1965 году) закончился рост человечества по закону гиперболы и начался глобальный демографический переход. И тогда же завершился последний, восьмой исторический период, а вместе с ним и циклический ход мирового исторического процесса.

Существует ли теоретическая формула зависимости численности населения Земли от времени?

Казалось бы, не может быть никакой теоретической формулы, описывающей гиперболический рост численности населения мира. А постоянная Фёрстера и точка сингулярности гиперболы демографического роста – чисто эмпирические константы.

Тем не менее, если квант исторического времени существует, алгоритм восьми шагов отвечает действительности, а в момент окончания гиперболического роста численность носителей сети достигает значения 2

– такую формулу легко сконструировать:

Рис. 1. Теоретическая зависимость численности населения Земли от времени N(t). Отсчет времени ведется от начала неолита; K

? K; K, ? – постоянные Капицы; k – зомби-коэффициент, учитывающий долю народонаселения, находящуюся вне Сети.

Длительность исторического цикла ? положим равной сорока годам, отсчет времени ведем от начала неолита. Гиперболический рост занимает 255 циклов; в момент его окончания в 1982 году численность носителей сети достигает значения 2

, а численность населения Земли, соответственно, k·2

= 4.7 млрд и данная формула перестает правильно описывать рост.

Сингулярность теоретической гиперболы, сингулярность Дьяконова – Капицы, наступает в момент времени t = 256?. Постоянная K

, определяющая рост, связана с безразмерной константой Капицы К и с постоянной Фёрстера С следующим образом: K = ?k· K

= 1.05·65536 = 68700, С = k·K

? = 1.1·65536

·40 = 1.89·10

лет.

* * *

Здесь нужно отметить следующее: если алгоритм восьми шагов отвечает действительности, то постоянная K

в формуле на рис. 1 (приблизительно равная постоянной Капицы К) должна быть в точности равна 65536. Действительно, в соответствии с теорией Капицы, а также согласно нашей теории, произведение корня квадратного из K

(K) на ? равно продолжительности всего исторического периода развития человека, как его обычно принято определять: от неолита до наших дней. Следовательно, корень из K

(K) равен числу циклов до сингулярности Дьяконова – Капицы, т. е. 256, а K ? K

= 256

= 65536. Показатель сжатия исторических периодов в таком случае должен быть равен двум, а не 2.7, как в работах С.П. Капицы.

С.П. Капица в последней своей работе «Парадоксы роста…» 2010 года «пришел все таки к выводу», что показатель сжатия исторических периодов должен быть равен двум (стр. 182). Т. к. за момент начала неолита у него взята дата 9000 лет до н. э., т. е. мало отличается от той, что принята в нашей модели, то не только количество циклов, которых должно быть 15, а не 11, но и разметка исторического времени на эти циклы у него должна быть примерно такой же, как у нас[55 - На самом деле для коэффициента сжатия исторических периодов он получил величину e/(e – 1) = 0.583, которую странным образом округлил до 0.5, что соответствует показателю сжатия, равному двум (1/0.583 ? 1.7 ? 2). При этом автор «Парадоксов роста» не счел нужным упомянуть ни работу Ю.В. Яковца 1997 года, в которой этот показатель равен 1.8, что ближе к двойке, чем у него, ни нашу работу 2006 года, в которой он в точности равен двум.].

Постоянная ?, единственная размерная постоянная, определяющая гиперболический рост, есть не что иное как: постоянная времени Капицы, время цикла растущей сети в нашей модели, длительность Кондратьевского цикла, продолжительность последнего, восьмого исторического периода 1942–1982 гг., половина длительности глобального демографического перехода 1982–2062 гг. Это фундаментальная постоянная времени, задающая масштаб, в котором должно измеряться историческое время от неолита до наших дней.

Зависимость численности населения Земли от времени в соответствии с предложенной формулой на рис. 1, так же как показатели продвижения цивилизации по пути исторического развития от начала неолита до 1982 года, зависели только от отношения времени t к постоянной ?, т. е. от количества циклов, пройденных Мир-системой к моменту времени t.

* * *

Если отсчет времени вести в циклах от сингулярности Дьяконова – Капицы в прошлое, теоретическая гипербола приобретает наиболее простой вид:

Рис. 2. Зависимость численности населения Земли от числа циклов до исторической сингулярности N(T).

Например, чтобы подсчитать сколько людей проживало в 1700 году сначала находим число циклов до сингулярности Дьяконова – Капицы: (2022–1700)/40 = 8,05 цикла. Затем 1,14·4,3 миллиарда делим на 8,05 и получаем 610 миллионов человек.

* * *

Средняя длительность инновационных циклов, так же как продолжительность глобальных исторических периодов Мир-системы, выражается через фундаментальную константу исторического времени ? по одной и той же формуле (обобщение гипотезы Й. Шумпетера):

Рис. 3. Длительность экономических и глобальных исторических циклов, выраженная через квант исторического времени ?.

При этом продолжительность сокращающихся по закону прогрессии исторических циклов Дьяконова – Капицы может быть получена, если брать целые неотрицательные значения n в пределах от нуля до семи. Если же брать значения n > 7, то получаются периоды эволюции Homo sapiens, но расположение этих периодов на оси времени не отвечает данным палеоантропологии, т. е. применяемая феноменологическая схема перестает соответствовать действительности.

Отрицательные значения параметра n = -1, -2, -4 в формуле (7) задают среднюю длительность экономических циклов Кузнеца, Жугляра и Китчена. Любопытно, что при n = -9, -11, -14 получаем, причем с приличной точностью, для продолжительности коротких инновационных циклов: месяц, неделю и сутки соответственно. Все это говорит о финальности, предопределенной цикличности мирового исторического процесса.

В заключительной главе книги Виктора Феллера «Предположение о структуре истории» рассмотрена схема построения исторических циклов, «атомом» в которой являются» одни сутки исторического времени. Возможно, это случайное совпадение, но нельзя не отметить, что продолжительность инновационных циклов и циклов Дьяконова – Капицы может быть получена простым умножением времени обращения Земли вокруг своей оси в наше время (с момента своего возникновения 4.5 млрд лет назад из-за приливных сил Земля постепенно замедляла свое вращение) на двойку в некоторой целой степени.

* * *

Теоретическая гипербола на рис. 1 наилучшим образом описывает рост численности населения мира от неолита до 1982 года, т. к. лучше всего соответствует работе Фёрстера, исследованиям С.П. Капицы, работе Мак-Эведи, Джоунса и Кремера, данным Остина и Брауэра. Это действительно так, поскольку, во-первых, постоянная Фёрстера, вычисленная по формуле С = k·K

? = 1.89·10

(k = 1.1) равна усредненному ее значению по всем этим работам (см. главу «Константы Капицы»). И, во-вторых, точки сингулярности (256·39.75 = 8154 +2022 = 10176) – также совпадают.

Почему формула на рис. 1 столь хорошо описывает рост населения Земли, какой циклический процесс с периодом ? = 40 лет задает главный исторический цикл и что определяет константа K – все это на данном уровне феноменологии так и остается неизвестным.

Что же такое сингулярность Дьяконова – Капицы?

В своей книге «Пути истории» И.М. Дьяконов рассматривает восемь фаз или ступеней исторического процесса: первобытную, первобытнообщинную, раннюю древность, имперскую древность, средневековье, абсолютистскую средневековую, капиталистическую и посткапиталистическую.

Фазы исторического развития периодизации Дьяконова хорошо соответствуют периодизации по алгоритму восьми шагов (таб. 2). Причем первобытную фазу, относящуюся к позднепалеолитическому периоду, можно считать фазой за номером нуль в теоретической периодизации; далее идут восемь исторических периодов по алгоритму и семь фаз Дьяконова.

Различие в том, что в теории имеется период 1386–1704 гг., отсутствующий в периодизации Дьяконова. И, кроме того, капиталистическая и посткапиталистическая фаза у И.М. Дьяконова ограничены 1840–1950, 1952–?? гг., тогда как по алгоритму – это 1863–1942, 1942–1982 и 1982–?? гг. Что выглядит привлекательнее, т. к. эти периоды неплохо соответствуют Кондратьевским циклам.

Важно отметить, что И.М. Дьяконов никогда не относился к результатам своих исследований как к догме. Это характерно для всех его работ. Можно ли в таком случае периодизацию по правилу восьми шагов считать совпадающей в пределах небольшой погрешности с периодизацией Дьяконова?