banner banner banner
Механизм взрыва Тунгусского и Челябинского «метеоритов». Природа аномалий при землетрясениях и цунами
Механизм взрыва Тунгусского и Челябинского «метеоритов». Природа аномалий при землетрясениях и цунами
Оценить:
Рейтинг: 0

Полная версия:

Механизм взрыва Тунгусского и Челябинского «метеоритов». Природа аномалий при землетрясениях и цунами

скачать книгу бесплатно


Начиная с высоты около 25 км, температура с высотой растет, достигая на высоте ~ 50 км (у границ слоя) максимальных положительных значений (+30 °С). Повышение температуры в этой сфере вызвано наличием озона. Под действием ультрафиолетовой радиации Солнца, молекулы кислорода расщепляются на атомы, появляется атомарный кислород. В процессе диссоциации молекулярного кислорода, ультрафиолетовое излучение поглощается. В слое возникают реакции, приводящие к образованию молекул озона (О

) О

+ О ? О

. Слой озона занимает часть стратосферы на высоте от 20 до 25 км (в тропических и умеренных широтах), в полярных – 15—20 км. Наличие в атмосфере озона меняет ее свойства. Он защищает живую природу от действия ультрафиолетовых и других коротковолновых излучений. Играет большую роль в создании режима температуры и воздушных течений в стратосфере. Излучения с длиной волны короче 290 полностью поглощаются слоем озона, находящимся на высотах от 18 до 50 км (максимум плотности на высоте около 25 км). Общая толщина слоя озона, приведенного к нормальным условиям, т. е. к давлению 760 мм ртутного столба и температуре 0 °С, составляет около 3 мм. Температура воздуха в слое 10—40 км в высоких широтах зимой и летом резко различается. Зимой она опускается до —75 °С. Летом, вблизи тропопаузы, температура увеличивается до —45 °С. Выше тропопаузы температура растет и на высоте 30—35 км достигает —20 °С, что обусловлено прогреванием воздуха от слоя озона. В стратосфере очень мало водяного пара. Здесь не происходит процессов образования облаков и выпадения осадков. Ранее считали: газы в стратосфере разделены по слоям, в соответствии со своими удельными весами. Предполагалось, что при равенстве поглощенной и отраженной солнечной радиации, образуется равновесие температур в стратосфере и перемешивания воздуха не происходит. Данные, полученные с помощью радиозондов и метеорологических ракет, показали: происходит интенсивная циркуляция воздуха ветром, температура изменяется в больших пределах.

Над различными частями Земли количество озона неодинаково. Спектроскопическими методами в 1984 г. в слое над Антарктидой была обнаружена «озоновая дыра» [89]. Спутниковые измерения позволили "оконтурить" озоновую дыру и следить за ее изменениями. Депрессия озона, или озоновая «дыра», развивается в Антарктике ежегодно в весенний период. Разрушение озона в  области, ограниченной стратосферным полярным вихрем, демонстрирует значительные межгодовые флуктуации, интенсивность которых сравнима с величиной многолетнего отрицательного тренда содержания озона, наблюдающегося с начала 80-х годов прошлого века [90]. Озоновая?«дыра»?над?Антарктикой с 2014 по 2019 гг. уменьшилась с 20,9 до 9,3 млн. км

. По мнению ученых, межгодовые флуктуации, являясь следствием причин динамического характера, не позволяют однозначно определить многолетний тренд общего содержания озона.

Над стратосферой, примерно до высоты 80 км, лежит слой мезосферы. Наблюдениями с помощью метеорологических ракет установлено, что общее повышение температуры, наблюдающееся в стратосфере, заканчивается на высотах 50-55 км. Выше этого слоя температура понижается и у верхней границы мезосферы достигает —90 °С. Понижение температуры в мезосфере с высотой на различных широтах и в течение года происходит неодинаково. В низких широтах снижение температуры происходит более медленно, чем в высоких широтах. Средний для мезосферы вертикальный градиент температуры равен 0,23—0,31 °С на 100 м. Температура в мезосфере опускается до —138 °С. В верхней мезосфере (в слое мезопаузы) понижение температуры с высотой прекращается. Как показали новейшие исследования в высоких широтах, температура на верхней границе мезосферы летом на несколько десятков градусов ниже, чем зимой [91].

Атмосфера, лежащая выше 80 км, состоит главным образом из азота и кислорода. Выше мезосферы, на высоте от 80 до 800 км над поверхностью Земли, расположена термосфера, для которой характерно повышение температуры с высотой. По данным, полученным с помощью ракет, установлено, что в термосфере уже на высоте 150 км температура воздуха достигает 220—240 °С, а с высоты 200 км – более 500 °С. С ростом высоты продолжает повышаться температура. На отметке 500—600 км она превышает 1500 °С. С помощью искусственных спутников, было установлено, что температура в верхней термосфере, достигая 2000 °С, в течение суток значительно колеблется. Температура газа – это мера средней скорости движения молекул. В высоких слоях, где плотность воздуха очень мала, столкновения между молекулами, находящимися на больших расстояниях, очень редки. Чем вызван подъем температуры в высоких слоях атмосферы, ученые не знают. На высотах выше 110—120 км кислород почти весь становится атомарным. В сумерки, или перед восходом солнца, при ясной погоде, здесь наблюдаются тонкие облака серебристо-синего цвета, уходящие за горизонт. Природа серебристых облаков изучена слабо.

Давление и плотность воздуха с высотой быстро уменьшаются. Воздух разрежен на высоте 300—400 км и выше. В течение суток его плотность сильно изменяется. Исследования показывают, что изменение плотности согласуется с положением Солнца. Наибольшая плотность воздуха – около полудня, наименьшая – ночью. Объясняют тем, что верхние слои атмосферы реагируют на изменение электромагнитного излучения Солнца. Предполагается, что газы, составляющие атмосферу выше 400—500 км, находятся в атомарном состоянии. Поверхность, разделяющая термосферу от экзосферы, испытывает колебания в зависимости от изменения солнечной активности и других факторов. Экзосфера (сфера рассеяния) – самая верхняя часть атмосферы, расположена выше 800 км. Она мало изучена. По данным наблюдений температура в экзосфере с высотой возрастает предположительно до 2000°. Частицы в экзосфере, двигаясь с огромными скоростями, почти не встречаются друг с другом.

7.2. Ионосферные слои в атмосфере

В начале XX века большой вклад в понимание физики атмосферного электричества внес шотландский физик Ч.Т.Р. Вильсон, лауреат Нобелевской премии по физике за 1927 год. Он обнаружил наличие ионов в атмосфере и показал, что Земля заряжена отрицательно, а космические лучи вызывают разрядку планеты. Согласно теории, атомы и молекулы, потерявшие один или несколько электронов, становятся положительно заряженными, а свободный электрон может присоединиться снова к нейтральному атому или молекуле, передавая им свой отрицательный заряд. Согласно теории, положительно и отрицательно заряженные атомы и молекулы называются ионами. Ионы и свободные электроны делают газ проводником электричества.

Ионосфера – область атмосферы выше 50 км, содержит заряженные частицы. Особенностью атмосферы выше 60-80 км является ее ионизация, т. е. процесс образования огромного количества электрически заряженных частиц – ионов. Атмосфера Земли представляет слоистую систему. В ней выделяют три основных области ионизации: D (80км), E (110км) и F-слой, который делится на F1 (170км) и F2 (250км) [46]. Ионосферная плазма – это среда, в которой присутствуют электроны и ионы тепловых энергий, являющиеся результатом ионизации составляющих нейтральной атмосферы электромагнитными и корпускулярными излучениями [47].

Высокие слои атмосферы менее всего изучены. Ранее предполагали, что верхняя граница атмосферы находится на высоте около 1000 км. Представление ученых об ионосфере изменилось, после запуска искусственных спутников Земли. Результаты исследований показали, что околоземное пространство заполнено заряженными частицами. На основе торможения искусственных спутников Земли было установлено, что на высотах 700—800 км в 1 см

содержится до 160 тысяч положительных ионов атомного кислорода и азота.

В исследовании высоких слоев атмосферы и околоземного пространства используются данные, получаемые со спутников серии «Космос» и космических станций. Применение ракет, а позже спутников, позволило непосредственно измерить ионный состав и другие физические характеристики ионосферы на всех высотах. Установлено, что концентрация электронов (n

) распределена в слоях по высоте неравномерно: имеются области, где она достигает максимума. Таких слоев, расположенных на разных высотах, в ионосфере несколько, они не имеют резко выраженных границ. На высоте 60—470 км имеется сплошной массив ионизованного газа с отдельными неоднородностями. Ранее предполагалось, что в ионосфере имеются четыре основных ионизованных слоя: слой D (на высоте 50 км), слой Е (110—120 км), слой F1 (120—200 км) и слой F2 (250—400 км). Средняя концентрация ионизованных частиц (электронов/см

): слой D – имеет концентрацию 10

, слой Е – 10

, слой F1 – 5 ? 10

, слой F2 – 10

[92]. Национальный стандарт Российской Федерации [87] уточнил местоположение слоев:

Область F – часть ионосферы, расположенная над поверхностью Земли на высоте более 140 км.

Область Е – часть ионосферы, расположенная приблизительно между 90 и 140 км над поверхностью Земли.

Область D – часть ионосферы, расположенная приблизительно между 50 и 90 км над поверхностью Земли.

Слой F2 – верхний из двух ионизированных слоев, на которые может распадаться область F.

Слой F1: нижний ионизированный слой из двух слоев, на которые может распадаться область F.

Слой E

(спорадический): узкий, нерегулярно образующийся слой на высотах области Е.

Максимуму ионизации соответствует верхний слой (F2). Положение ионосферных слоев и концентрация ионов в них все время меняются. Все зависит от солнечной активности. В ионосфере наблюдаются полярные сияния, а также резкие колебания магнитного поля – ионосферные магнитные бури. Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°. От степени ионизации зависит электропроводность атмосферы. Проводимость ионосферы в 10

раз больше, чем у земной поверхности. В ионосфере различают две части: простирающуюся от мезосферы до высот порядка 1000 км и лежащую над нею внешнюю часть. На высоте около 2000-3000 км газы, постепенно разрежаясь, переходят в мировое пространство. С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Радиационные зоны опасны для людей, совершающих полеты на космических кораблях.

7.3. Электрическое поле Земли

Земля заряжена отрицательно, ее полный электрический заряд равен 6 ? 10

Кл [10. С. 82]. Полярность Земли, в отсутствие грозовых облаков, всегда отрицательна, в тоже время верхний слой атмосферы (ионосфера) заряжен относительно Земли положительно. Электрическое поле в любой его точке характеризуется значением напряженности (Е), созданной всеми электрическими зарядами, которые имеются в Земле и в атмосфере. Электрическое поле во многом определяется электрическими свойствами веществ, слагающих геосферы Земли, и состоит из двух частей: поля земной коры (электротеллурическое поле) и электрического поля атмосферы. Между различными точками атмосферы, находящимися на разных высотах, имеется разность потенциалов. Наблюдения над электрическим полем вблизи земной поверхности показывают его изменчивость от различных факторов – влажности, осадков, облачности и т. п. Опыт показывает, что атмосфера заряжена положительно. Отклонение электрометра тем больше, чем выше точка над поверхностью земли. Напряженность поля вблизи поверхности Земли (в различное время года и для различных регионов) величина практически постоянная Е

= 130 В/м [9. С. 381]. На высоте 1 км напряженность земного поля падает до 40 В/м. На высоте 10 км поле Е

не превышает нескольких вольт на метр. На высоте 50 км и больше напряженность едва заметна. Большая часть падения потенциала приходится на малые высоты. Полная разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет ~ 400000 В [93. С.175]. Быстрое убывание Е с высотой объясняют тем, что объемные заряды, сосредоточенные преимущественно в нижних слоях атмосферы, уменьшают напряженность поля электрического заряда Земли. Электрическое поле Земли меняется в течение суток. Ночью поле больше его дневного значения. Напряженность атмосферного электрического поля (АЭП) уменьшается летом и возрастает зимой.

7.4. Электрические свойства горных пород

Твердую оболочку Земли (земную кору) слагают различные типы горных пород, состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Земная кора более чем на 98% сложена из элементов О, Si, Al, Fe, Mg, Ca, Na, К. При этом свыше 80% составляют кислород, кремний и алюминий. В его центре находится ион кремния Si

, а в вершинах – ионы кислорода О

, которые создают четырехвалентный радикал SiO

[94. С. 33]. Минералы в земной коре преимущественно находятся в кристаллическом состоянии, незначительная часть – в аморфном состоянии. К основным электромагнитным свойствам горных пород относят: удельное электрическое сопротивление, электрохимическую активность, диэлектрическую и магнитную проницаемости, поляризованность. Поляризованность характеризует степень электрической поляризации вещества, равна пределу отношения электрического момента некоторого объема вещества к этому объему, когда последний стремится к нулю [95]. Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Свойства кристаллических веществ обусловлены их составом. Кристалл состоит из ионов, попеременно заряженных противоположными зарядами. Электропроводность естественных кристаллов, меняется от вида к виду и зависит от примесей, заключенных в кристаллах. Кристаллический кварц является анизотропным одноосным кристаллом; плавленый кварц (стекло) – хороший диэлектрик. В отличие от металлов многие вещества в кристаллическом состоянии не являются хорошими проводниками электричества. Их нельзя отнести и к диэлектрикам, т.к. они не проявляют себя хорошими изоляторами. Такие вещества, как германий, кремний, селен, различные оксиды, сульфиды и др. относят к полупроводникам, этих веществ большинство, их общая масса составляет 4/5 массы земной коры.

Исследование электропроводности кристаллов кальцита и кварца А.Ф. Иоффе начинал совместно с В.К. Рентгеном в 1904 году. В дальнейшем Иоффе установил, что прохождение электрических токов через кристаллы-изоляторы характеризуется некоторыми особенностями. Если к кристаллической пластине, с обеих сторон покрытой слоем металла, приложить постоянную разность потенциалов, то возникнет ток, спадающий со временем, величина которого иногда не приближается к конечному пределу. Если снять напряжение и подключить обе обкладки к гальванометру, то зафиксирован противоположно направленный ток, который постепенно ослабевает и стремится к нулю. Кристаллы поляризуются, величина этой поляризации может достигать многих тысяч вольт. Это явление объяснили образованием встречной поляризации. Стационарное состояние в газе, соответствующее току насыщения, устанавливается в течение долей секунды, в кварце этот же процесс занимает несколько секунд. Сразу же после включения тока число свободных ионов в кварце остается тем же, но их скорости становятся прямо пропорциональными приложенной разности потенциалов. В начальный момент времени (0,5 с) закон Ома остается еще справедливым, ионы постепенно подводятся к электродам. Через 3 секунды достигается состояние насыщения. В кварце ток насыщения наблюдается при приближении к напряженности поля от 10000 до 50000 В/см [96].

Влияние поля на кристаллы, по мнению А. Иоффе, определяется не их электропроводностью, а диэлектрическими свойствами. Кристаллическая решетка прочна, допускает только слабое диэлектрическое смещение ионов, а не полное их удаление и перемещение к электроду. При механических, температурных, электрических и оптических воздействиях на кристалл, ионы смещаются со своих положений равновесия как одно целое, вместе с присущим им зарядом [97]. По отношению к постоянной электрической силе, ученый предлагает их считать упруго закрепленными в тех положениях, которые по строению кристаллической сетки соответствуют минимуму их потенциальной энергии. Передвижение зарядов предполагает перенос самого вещества. Академик считает, что кроме переноса зарядов, образующих ток, аналогичные явления могут вызываться и вращением заряженных диполей. Если в данном веществе преобладает число молекул с такими свойствами, то поворот этих молекул представляет явление, аналогичное току. Положительные заряды при этом повороте смещаются в одну сторону, отрицательные – в противоположную сторону. Происходит разделение зарядов, аналогичное непосредственному переносу их сквозь диэлектрик [98]. Разные по своей физической природе явления, но одинаковые по своим внешним проявлениям, представляют собой движение зарядов (ток).

Важной характеристикой электрических свойств вещества, находящегося в недрах Земли, является удельная электропроводность горной породы. Она меняется в значительном интервале: от 10

до 10

(Ом ? м)

и зависит от минерального состава, фазового состояния, пористости, развитости системы трещин, насыщенности влагой, температуры, давления. До середины XX века основные сведения о распределении электропроводности в Земле были получены по данным электроразведочных работ и бурения. Данные электроразведки с искусственными источниками позволяли исследовать строение коры не более чем на 2—3 км. В 50-е годы прошлого века зародилась глубинная геоэлектрика, когда была высказана идея о возможности применения естественного электромагнитного поля внешнего происхождения для исследования электропроводности Земли. Его, главным образом, создают токи из частиц, направленных к планете из окружающего пространства. Метод, основанный на использовании естественного электромагнитного поля, получил название "магнитотеллурический". В основе предложенного метода лежит упрощенная модель естественного электромагнитного поля. Предполагается, что первичное поле, возбуждаемое внешними источниками, однородно на горизонтальной поверхности Земли. В этом случае отношение взаимно перпендикулярных горизонтальных компонент электрического и магнитного полей, измеренных на поверхности Земли, будет зависеть только от периода вариации и распределения проводимости по глубине [99]. Это отношение, названное импедансом Z, может быть вычислено по любой паре ортогональных компонент, то есть

Z = E

/H

= – E

/H

. (7.1)

Чем больше период вариаций, тем глубже проникает поле внутрь Земли. Изменение импеданса с ростом периода отражает изменение удельного сопротивления с глубиной. Изменение кажущегося удельного сопротивления (r

) выражается следующей формулой [99]:

r

= |Z|

/w?, (7.2)

w = 2?/Т, (7.3)

где ? = 4?·10

Генри/м – магнитная проницаемость вакуума, w – частота вариации поля, 1/с, T – период вариации в секундах, Z – в Ом.

Значения r

близки к истинному значению удельного сопротивления только в предельных случаях. При очень малых значениях периода, когда поле не проникает в нижележащий слой, значение r

равно удельному сопротивлению первого слоя. Регистрируя вариации естественного электромагнитного поля в широком интервале периодов, можно построить зависимость кажущегося удельного сопротивления от периода. Зависимость r

от периода называется кривой зондирования. Проще рассчитывать поведение кривой зондирования для среды, электропроводность которой меняется только по вертикали. Трудно рассчитывать поведение кривых зондирования, когда электропроводность меняется и по горизонтали.

7.5. Поляризация диэлектрика

По величине удельного электрического сопротивления вещества подразделяют на три группы: проводники, полупроводники и диэлектрики. Диэлектриками называются вещества, не проводящие электрического тока. В них отсутствуют свободные электрические заряды. Поляризация диэлектриков – процесс образования объемного дипольного электрического момента (смещение электрических зарядов) в диэлектрике. При возбуждении электрического поля, происходит поляризация диэлектрика, что может сопровождаться появлением механических сил в нем, упругих напряжений и изменением температуры. Электрическое поле неотделимо от зарядов, являющихся его источниками, оно однозначно определяется величиной и расположением зарядов. Заряды могут нейтрализовать друг друга. Согласно теории, поле, которое они возбудили, может продолжать существовать в виде электромагнитных волн. Переменные электромагнитные поля могут существовать самостоятельно, независимо от возбудивших их электрических зарядов [13. С. 115].

Если диэлектрик внести во внешнее электрическое поле, на его поверхностях появляются заряды. Под действием приложенного электрического поля, молекулы становятся электрическими диполями, ориентированными положительно заряженными концами в направлении электрического поля Е. Электростатическая индукция связана с тем, что в диэлектрических телах с одной стороны тела оказываются отрицательные концы диполей, а с другой – положительные. Смещение положительных и отрицательных зарядов диэлектрика в разные стороны называют электрической поляризацией. При наложении электрического поля диэлектрик становится поляризованным, дипольные моменты молекул ориентируются преимущественно в направлении поля. Согласно теории физики, заряды в диэлектрике могут смещаться из своих положений равновесия лишь на малые расстояния, порядка атомных. Поле внутри диэлектрика, создаваемое связанными зарядами, направлено против внешнего поля, создаваемого сторонними зарядами. Существуют диэлектрики, полярные молекулы которых обладают дипольными моментами в отсутствие электрического поля. Такие полярные молекулы беспорядочно ориентированы, совершают хаотические тепловые движения. Помимо электрически нейтральных молекул в диэлектрике могут существовать положительно или отрицательно заряженные ионы. Избыток ионов того или иного знака в какой-либо части диэлектрика означает наличие в этой части некомпенсированных макроскопических зарядов. Существуют диэлектрические кристаллы, построенные из ионов противоположного знака, например, NaCl. Такие кристаллы называются ионными. Избыток ионов того или иного знака в какой-либо части диэлектрика означает наличие в этой части некомпенсированных макроскопических зарядов.

Деформационная поляризация наблюдается для веществ с неполярными молекулами. Они ориентируются, образуя диполи, под действием электрического поля. В молекулах неполярных диэлектриков (Н

, N

, ССl

, углеводороды и др.) центры тяжести положительных и отрицательных зарядов в отсутствие внешнего поля совпадают, дипольный момент у молекул равен нулю. При помещении таких диэлектриков во внешнее электрическое поле происходит деформация молекулы (атома) и возникает индуцированный дипольный электрический момент молекулы, пропорциональный напряженности поля Е [13. С. 148]. При снятии внешнего поля поляризация практически исчезает. Углеводородные горючие соединения (С и Н) содержатся в земной коре в виде скоплений в пластах, они растворены в нефти (попутный газ) и подземных водах.

Вода – вещество, основной структурной единицей которого является молекула H

O, состоит из одного атома кислорода и двух атомов водорода, представляет собой диполь, содержащий положительный и отрицательный заряды. Молекулы воды в виде аэрозолей постоянно присутствуют в воздухе. Если молекулу воды, не связанную с другими молекулами, поместить в электрическое поле, то она повернется отрицательной стороной в направлении положительного потенциала электрического поля, а положительной стороной – к отрицательному потенциалу. При увеличении напряженности поля до величины достаточной для разрыва водородной связи, структура молекулы воды разрушается. В какой-то момент времени энергия связи в молекуле ослабляется электрическим полем настолько, что сила внешнего электрического поля превосходит энергию связи. Это приводит к тому, что атомы кислорода и водорода высвобождаются как самостоятельные газы. Под действием электромагнитных импульсов, происходит накопление энергии в кластерной структуре воды до некоторого критического значения, затем происходит разрыв связей и лавинообразное освобождение внутренней энергии, которая может затем трансформироваться в другие виды энергии.

Постоянное электрическое поле воздействует на воду. При разложении молекулы воды, на катоде выделяется водород, а на аноде кислород [100]. В кластерной структуре воды происходит накопление энергии, до некоторого критического значения. Затем происходит разрыв связей и лавинообразное освобождение внутренней энергии, которая может затем трансформироваться в другие виды энергии.

8. Ионизация газов, плазма

Атмосферный воздух состоит из смеси газов. Нижний слой атмосферы Земли (тропосфера) имеет следующий химический состав (по объему, в процентах): азот – 78,08, кислород – 20,95, аргон – 0,93, углекислый газ – 0,03 [92. С. 59]. Атомы этих газов объединяются в прочные и устойчивые связи, образуя молекулы. На долю остальных газов приходятся уже тысячные и десятитысячные доли процента. Такой состав атмосфера имеет почти до высоты 90 км. Кроме постоянных компонентов атмосфера содержит переменные компоненты: озон и водяной пар. Газы в нормальных условиях являются изоляторами и состоят из электрически нейтральных атомов и молекул. Атом и ион – частицы вещества микроскопических размеров и массы, являются носителями его свойств. Отличаются они зарядом. Атомы – нейтральны, ион – электрически заряжен.

Электропроводность газов возникает при их ионизации. Ионизация – это эндотермический процесс образования положительных и отрицательных зарядов (ионов) из нейтральных атомов или молекул, сопровождающийся поглощением теплоты. Ион – электрически заряженная неэлементарная частица, получаемая в процессе ионизации. Ионы бывают двух типов – с положительным и отрицательным зарядом. Образование положительных ионов происходит путем отщепления электронов от атомов и молекул. Присоединение свободного электрона к нейтральному атому (молекуле) создает отрицательный ион. Основную роль в ионизованном газе играют парные столкновения, с коротким временем действия.

При ионизации атома (молекулы) совершается работа ионизации (А

), против сил взаимодействия между вырываемым электроном и другими частицами атома (молекулы). Работа ионизации зависит от химической природы газа и энергетического состояния электрона в атоме (молекуле). Она растет с увеличением кратности ионизации, т. е. с числом вырванных из атома электронов. Потенциалом ионизации ?

, называется разность потенциалов, которую должен пройти электрон в ускоряющем электрическом поле для того, чтобы увеличение его энергии равнялось работе ионизации: ?

= А

/е, где е – абсолютная величина заряда электрона. Для осуществления ударной ионизации одновалентные ионы должны пройти в ускоряющем поле большую разность потенциалов, чем электроны [101. С. 390].

Согласно современным теоретическим воззрениям, в виде самостоятельных ионов частицы встречаются во всех агрегатных состояниях вещества: в жидкостях (в расплавах и растворах), в кристаллах и газах. Газ, большинство частиц которого электрически заряжено, т. е. высоко ионизованный газ, отличается от обычного газа. В ряде явлений такой газ проявляет сходство с электролитами и твердыми проводящими телами (полупроводниками и металлами) [102]. Высоко ионизированный газ обладает свойствами, присущими только ему одному. Эти свойства вызывают либо сильные электрические поля между заряженными частицами, либо наличие большого числа возбужденных частиц, связанных с высокой степенью ионизации. Ионизованным до высокой степени газам И. Лэнгмюр дал название «плазма». В ионизованном газе плотность заряженных частиц становится значимым фактором.

Ранее работы по плазме широко не освещались. После конференции 1958 года, по мирному использованию атомной энергии, информация стала доступной научной общественности. Плазма состоит из большого числа частиц с зарядами +е и —е. В объеме одной поверхности заключено равное количество положительных и отрицательных ионов. По условию, заключенный в плазме заряд остается практически одинаковым и, в целом, нейтральным. Согласно теории, частицы газа с разноименными зарядами при встрече нейтрализуют друг друга. Это свойство является следствием внутреннего электрического поля, образованного заряженными частицами. Силы взаимодействия распространяются внутри плазмы, область которой может простираться на значительные расстояния. Плазма взаимодействует с внешними электрическими и магнитными полями [13. С. 509]. Систему заряженных частиц можно считать плазмой, т. е. материальной средой с новыми качественными свойствами. Динамические свойства плазмы разнообразны, существует много типов коллективных движений. Если плотность заряженных частиц в газе очень мала, то они взаимодействуют, в основном, с нейтральными частицами.

Вещества в плазменном состоянии, характеризуются высокой ионизацией частиц, доходящей до полной ионизации. Степень ионизации – отношение концентрации заряженных частиц к полной концентрации частиц. В зависимости от степени ионизации вещества (?) различают плазму [101. С. 396]: слабо ионизованную (? – доли процента), умеренно ионизованную (? – несколько процентов), полностью ионизованную (? – близко к 100%). Слабо ионизованная плазма в природных условиях наблюдается в ионосфере. В плазме одновременно взаимодействует множество частиц. Этим свойством плазма обязана действию кулоновских сил. Убыль заряженных частиц в плазме определенной температуры происходит за счет рекомбинации. Пополняется она за счет новых актов ионизации. Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона с электроном с превращением последнего в нейтральную молекулу (атом). Исчезновение газоразрядной плазмы, предоставленной самой себе, называется деионизацией газа. При удалении электрического поля, приложенного к плазме, противоположно заряженные частицы газа рекомбинируют, у газа исчезает плазменное состояние.

Плазма непрозрачна для электромагнитных волн, частоты которых меньше плазменной. Проблема распространения волн проявляется и в физике твердого тела. В присутствии статического магнитного поля распространение поперечных электромагнитных волн через плазму твердого тела возникает много новых частот. Появляется такой параметр как угол между направлением распространения волны и магнитным полем. Для описания низкочастотных волн в плазме подходит модель возбуждения волн в заряженной струне, параллельно магнитному полю. Если силовая линия смещается поперек поля, то заряженные частицы вынуждены двигаться в нем подобно бусинкам, насаженным на тонкую струну [38].

Электрические заряды, покоящиеся относительно выбранной системы отсчета, имеют вокруг себя только электрическое поле. Действие электрического поля на заряды, между которыми существует разность потенциалов, вызывает их ток. Электрическое поле и ток плазмы, поддерживают ее в устойчивом состоянии. Электрические заряды, которые движутся в направлении вектора силы поля, не требуют затрат энергии. Вокруг движущихся зарядов образуется магнитное поле. Магнитное поле обнаруживается по его воздействию на тела и измерительные приборы. Прекращения направленного движения зарядов возможно снятием или встречным направлением поля, при котором равнодействующая двух сил равна нулю.

В зависимости от природы электрических зарядов принято различать электронную, ионную и смешанную электрическую проводимость. Электронная электропроводность характерна для металлов, рудных тел и полупроводников. Ионная электропроводность свойственна – природным водам, водным растворам, электролитам, а также газам. В окружающей среде постоянно присутствуют электромагнитные поля естественного и искусственного происхождения. Основными естественными электромагнитными полями являются атмосферное электричество, постоянное электрическое и магнитное поле Земли. Электрическое поле Земли ориентирует ионные структуры в атмосфере. Разность потенциалов в пространстве между зарядами структур и зарядом планеты вызывает их направленное движение. В течение последних десятилетий уровень интенсивности электромагнитного окружения значительно возрос. Основные составляющие электромагнитного загрязнения лежат в крайне низкочастотном (КНЧ: 10—300 Гц) и ультранизкочастотном (УНЧ: 0—10 Гц) диапазонах [103].

Поле объемного электрического заряда зависит от величины, протяженности, формы, количества, типа зарядов и прочих факторов. Между заряженными частицами плазмы действуют электростатические силы. Физика плазмы относится к проблеме многих тел, хорошо изучено электромагнитное взаимодействие. По условию, плазма нейтральна и состоит из большого числа частиц с зарядами +е и —е. Характерное для плазмы расстояние – r

, называемое "дебаевским" радиусом экранирования, определяется выражением [13. С. 505 ]:

r

= (kT/4?n

e

)

.  ()

где T – температура электронов; k = 1,380662 ? 10

Дж/К – коэффициент, переводящий единицы энергии в градусы; e – заряд электрона; n

– количество заряженных частиц в плазме (дебаевское число).

Плазма отличается от скопления заряженных частиц плотностью и определяется условием: L > r

, L – линейный размер системы заряженных частиц. Если к плазменному объекту приложить внешнее поле, то оно проникает на глубину порядка дебаевского радиуса. В объеме одной поверхности заключено равное количество положительных и отрицательных частиц. Для соблюдения нейтральности плазмы необходимо, чтобы ее характерный размер (L) был много больше дебаевского радиуса. Для разных объектов его величина изменяется в зависимости от температуры и числа ионов. Плазма называется газовой, если число ионов одного сорта велико. В термодинамическом отношении она рассматривается как идеальный газ. Газ, у которого дебаевский радиус мал, в сравнении с линейными размерами занимаемой им области, характеризуется высокой степенью ионизации. В теории Дебая – Хюккеля ион полностью ионизированного газа принимается за точечный заряд. При этом газ считают электрически нейтральным как целое. Если через плазму в форме столба пропустить сильный электрический ток вдоль оси, то магнитное поле этого тока, имеет форму как у прямолинейного проводника. Электродинамические силы сжимают плазму. Сжатие плазмы происходить до тех пор, пока давление, вызванное электродинамическими силами, не уравновесится давлением частиц самой плазмы [104].

Плотность и температура заряженных частиц являются важными параметрами характеристики плазмы. У разных тел, в зависимости от температуры и числа ионов, изменяется величина дебаевского радиуса (r