скачать книгу бесплатно
Результаты сбора полностью соответствовали поставленным требованиям.
Было получено в:
1 опыте 98 исключительно круглых желтых семян,
«94»»»»,
«31 круглое желтое, 26 круглых зеленых, 27 угловатых желтых, 26 угловатых зеленых семян,
4 опыте 24 круглых желтых, 25 круглых зеленых, 22 угловатых желтых, 27 угловатых зеленых семян.
При столь благоприятном результате нельзя было сомневаться, что ближайшее поколение принесет окончательное разрешение. Из высеянных семян в следующем году дошли до плодоношения в первом опыте 90, в третьем 87 растений; из них дали при опытах:
20.25 круглые желтые семена АВ.
23.19 круглые, желтые и зеленые семена АВb.
25.22 круглые и угловатые желтые семена АаВ.
22.21 круглые и угловатые, желтые и зеленые семена АаВb.
Во втором и четвертом опыте круглые и желтые семена дали растения с круглыми и угловатыми, желтыми и зелеными семенами АаВb.
От круглых зеленых семян были получены растения с круглыми и угловатыми зелеными семенами Ааb.
Угловатые желтые семена дали растения с угловатыми и зелеными семенами аВb.
Из угловатых зеленых семян были выращены растения, которые дали опять только угловатые зеленые семена аb.
То, что и в этих двух опытах также не проросли некоторые семена, не могло изменить чисел, добытых в предшествовавшем году, ибо каждый сорт семян дал растения, сходные между собою в отношении семян и отличные от других. Так при этом получено:
Таким образом, во всех опытах появились все требуемые при сделанном допущении формы и приблизительно в равном числе.
Для дальнейшего испытания были взяты признаки окраски цветка и длины оси, при этом выбор был сделан так, что в третьем опытном году каждый признак должен был проявиться у половины всех растений, если вышеупомянутое предположение правильно. А, В, а, b служат опять для обозначения различных признаков.
Форма Аb была оплодотворена аb, причем получился гибрид Ааb. Затем аВ было оплодотворено также ab, отсюда гибрид аВb. Во втором году для дальнейшего оплодотворения гибрид Ааb был взят как семенное растение, другой гибрид аВb – как пыльцевое растение.
Семенное растение Ааb пыльцевое растение аВb.
Возможные зачатковые клетки Аb, аb пыльцевые клетки аВ, ab.
Из оплодотворения между возможными зачатковыми и пыльцевыми клетками должны получиться четыре соединения, именно:
АаВb + аВb + Ааb + аb.
Отсюда видно, что по вышеизложенному предположению в третьем опытном году из всех растений половина должна была иметь
лилово-красные цветы (Аа)…. Члены 1-3
белые цветы (а)» 2-4
длинную ось (Вb)» 1-2
короткую ось (b)» 3-4
Из 45 оплодотворений второго года получилось 187 семян, из которых в третьем году достигли цветения 166 растений. Отдельные члены появились из них в следующем числе:
Следовательно:
лилово-красная окраска цветов (Аа) появилась у 85 растений
белая»» (а)»» 81»
длинная ось»» (Вb)»» 87»
короткая»»» (b)»» 79»
Итак, выставленное воззрение достаточно подтверждается и в этом опыте.
Для признаков формы бобов, окраски бобов и расположения цветов были также поставлены небольшие опыты, которые дали совершенно согласные результаты. Все соединения, которые были возможны при объединении различных признаков, появились в точности и приблизительно в равном числе.
Следовательно, экспериментальным путем подтвердилось предположение, что гибриды гороха образуют зачатковые и пыльцевые клетки, которые по своим свойствам и в равных количествах соответствуют всем константным формам, получающимся из комбинаций, соединенных при оплодотворении признаков.
Различие форм среди потомков гибридов, а также и численные отношения, в которых эти последние наблюдаются, находят себе достаточное объяснение в только что изложенном положении. Простейшим случаем является ряд двух различающихся признаков. Этот ряд обозначается, как уже известно, выражением А + 2Аа + а, где А и а означают формы с константно различающимися признаками и Аа – гибридную форму обоих. Он содержит в трех различных членах четыре индивида. При образовании этих последних пыльцевые и зачатковые клетки формы А и а вступают в оплодотворение в равных долях в среднем, поэтому каждая форма образуется дважды из четырех индивидов.
Следовательно, в оплодотворении участвуют:
пыльцевые клетки А + А + а + а,
зачатковые клетки А + А + а + а.
Какой из двух видов пыльцы соединится с каждой отдельной зачатковой клеткой, вполне предоставлено случаю. По теории вероятности в среднем каждая форма пыльцы А и а соединяется одинаковое число раз с каждой формой зачатковой клетки А и а; поэтому одна из двух пыльцевых клеток А встречается при оплодотворении с зачатковой клеткой А, другая – с зачатковой клеткой а; таким же образом одна пыльцевая клетка а соединяется с зачатковой клеткой А, другая – с а.
Результаты этих оплодотворений можно сделать показательными, обозначая связанные зачатковые и пыльцевые клетки в форме дроби, причем пыльцевые клетки помещаются над чертой, а зачатковые клетки – под ней. В данном случае получается:
А/А + A/а + a/A + a/а
У первого и четвертого члена зачатковые и пыльцевые клетки одинаковы, поэтому продукты их соединения константны, а именно А и а; у второго и третьего, наоборот, происходит вновь соединение обоих различающихся исходных признаков, поэтому выходящие из этого оплодотворения формы совершенно тождественны с гибридом, от которого они произошли. Следовательно, происходит повторная гибридизация. Этим объясняется то замечательное явление, что гибриды могут производить наряду с обеими основными формами также потомков подобных себе; A/a и a/A дают оба одинаковое соединение Аа, потому что для успеха оплодотворения, как было показано раньше, нет никакой разницы, какой из двух признаков принадлежит пыльцевой или зачатковой клетке. Поэтому
A/A + A/a + a/A + a/a = A + 2Aa + a
Такой характер принимает в среднем ход распределения форм при самооплодотворении гибридов, если в них соединяются два различающихся признака. Но в отдельных цветках и у отдельных растений могут происходить значительные отклонения в относительном количестве производимых ими отдельных форм ряда. Несмотря на то, что количества, в которых встречаются оба рода зачатковых клеток в завязи, являются равными только в среднем, вполне предоставляется случаю, каким из двух видов пыльцы произведено опыление каждой отдельной зачатковой клетки. Поэтому отдельные цифры неизбежно подвергаются колебаниям, и возможны даже крайние случаи, которые приводились раньше в опытах над формой семян и окраской белка. Истинные числовые отношения могут быть даны только средними величинами, полученными из суммы возможно большего числа отдельных случаев; чем больше их число, тем вернее устраняются случайности.
Ряды развития гибридов, в которых соединены двояко различающиеся признаки, содержат 9 различных форм среди [каждых] 16 индивидов, именно: АВ + Аb + аВ + ab + 2АВb + 2аВb + 2АаВ + 2Ааb + 4АаВb. Между различными признаками исходных растений А, а и В, b возможны 4 комбинации; поэтому и гибрид дает четыре соответствующие формы зачатковых и пыльцевых клеток АВ, Аb, аВ, ab, и каждая из них вступает в среднем 4 раза в оплодотворение, если в ряду содержится 16 индивидов. Поэтому в оплодотворении принимают участие:
пыльцевые клетки: АВ + АВ + АВ + АВ + Аb + Ab + Аb + Ab + aB + аВ + аВ + аВ + ab + ab + ab + ab
зачатковые клетки: АВ + АВ + АВ + АВ + Аb + Ab + Аb + Ab + aB + аВ + аВ + аВ + ab + ab + ab + ab
В среднем при оплодотворении каждая форма пыльцы соединяется одинаково часто с каждой формой зачатковой клетки, поэтому каждая из 4 пыльцевых клеток АВ соединяется по одному разу с каждым из видов зачатковых клеток АВ, Аb, аВ, ab. Совершенно так же происходит соединение остальных пыльцевых клеток форм Ab, АВ, ab со всеми другими зачатковыми клетками. Отсюда получается:
AB/AB + AB/Ab + AB/Ab + AB/ab + Ab/AB + Ab/Ab + Ab/aB + Ab/ab + aB/AB + aB/Ab + Ab/aB + Ab/ab + ab/AB + ab/Ab + ab/aB + ab/ab
или
AB + ABb + AaB + AaBb + ABb + Ab + AaBb + Aab + AaB + AaBb + aB + aBb + AaBb + Aab + aBb + ab = AB + Ab + aB + ab + 2 ABb + 2aBb + 2 AaB + 2 Aab + 4 AaBb.
Совершенно таким же образом объясняется ряд развития гибридов, когда в них соединены трояко различающиеся признаки. Гибрид образует 8 различных форм зачатковых и пыльцевых клеток: АВС, АВс, АbС, Аbс, аВС, аВс, аbС, аbс, и каждая пыльцевая форма соединяется опять в среднем один раз с каждой формой зачатковой клетки.
Закон комбинации различающихся признаков, по которому происходит развитие гибридов, находит, следовательно, себе основание и объяснение в доказанном положении, что гибриды образуют в одинаковых количествах зачатковые и пыльцевые клетки, соответствующие всем константным формам, получаемым из комбинирования признаков, соединенных путем оплодотворения.
Опыты над гибридами других видов растений
Задачей дальнейших опытов было определить, приложим ли и к гибридам других растений закон развития, найденный для гороха. С этой целью в последнее время были поставлены многочисленные опыты. Закончены два небольших опыта с видами Phaseolus, которые и могут быть упомянуты здесь.
Опыт с Phaseolus vulgaris и Phaseolus nanus дал вполне согласный результат. Ph. nanus имеет наряду с карликовыми осями зеленые просто выпуклые бобы; Ph. vulgaris, наоборот, – оси длиною 10–12 и желтые бобы с перехватами ко времени созревания. Числовые отношения, в которых появлялись различные формы в отдельных поколениях, были такими же, как и у Pisurn. Так же и развитие константных соединений следовало закону простого комбинирования признаков, точно так, как это происходит у Pisurn. Было получено:
Зеленая окраска боба, выпуклая форма боба и длинная ось были, как и у Pisurn, доминирующими признаками.
Другой опыт с двумя очень различающимися видами Phaseolus имел только частичный успех. Семенным растением служил Phaseolus nanus, вполне константный вид с белыми цветами в коротких кистях и маленькими белыми семенами в прямых, выпуклых и гладких бобах; пыльцевым растением был Ph. multiflorus с высоко вьющимся стеблем, пурпурно-красными цветами в очень длинных кистях, с опушенными серповидно искривленными бобами и большими семенами с черными пятнами на персиковом кроваво-красном фоне.
Гибрид очень походил на пыльцевое растение, только цветы были менее интенсивно окрашены. Плодовитость их была очень ограниченна: от 17 растений, которые дали вместе многие сотни цветов, было собрано в общем только 49 семян. Они были средней величины и имели рисунок, одинаковый с Ph. multiflorus; основная окраска также не отличалась ничем существенным. В следующем году от них было получено 44 растения, из которых только 31 достигло цветения. Признаки от Ph. nanus, которые в гибриде были целиком патентны, снова обнаружились в различных комбинациях; отношение их к доминирующим вследствие незначительного числа опытных растений было колеблющимся; для некоторых признаков, как для оси и для формы боба, отношение было, как у Pisurn, почти точно 1:3.
Как ни мал успех этого опыта для установления числовых отношений, в которых появляются различные формы, но, с другой стороны, этот опыт представляет собою случай замечательного изменения окраски цветов и семян у гибридов. У Pisurn, как известно, признаки окраски цветов и семян появляются неизменными в первом и последующих поколениях и потомки гибридов несут исключительна тот или другой из двух исходных признаков. Иначе обстоит дело в настоящем опыте. Белая окраска цветов и семян Ph. nanus действительно появилась уже в первом поколении, но лишь на одном плодовитом экземпляре, у остальных же 30 растений окраска цветов представляла различные переходы от пурпурно-красного до бледно-фиолетового. Окраска семенной кожуры была не менее разнообразна, чем у цветов. Ни одно растение нельзя было считать вполне плодовитым; некоторые растения совсем не завязывают плодов, у других плоды развиваются только из последних цветов и не достигают созревания; только с 15 растений были собраны хорошо развившиеся семена. Наибольшую склонность к бесплодию обнаруживали формы с преобладающими красными цветами, из них 16 растений дали только 4 зрелых семени. У трех из них был одинаковый с Ph. multiflorus рисунок семян, однако с более или менее бледным основным фоном, четвертое растение дало только одно семя с однообразно коричневой окраской, формы с преобладающей лиловой окраской цветов имели темно-коричневые, черно-коричневые и совсем черные семена.
Опыт был проведен еще через два поколения при таких же неблагоприятных обстоятельствах, так как даже потомки плодовитых растений были частью менее плодовиты, частью совсем бесплодны. Других окрасок семян и цветов, кроме вышеописанных, больше не появлялось. Формы, которые в первом поколении получали один или несколько рецессивных признаков, оставались по отношению к этим признакам все без исключения константными. Некоторые из тех растений, которые имели лиловые цветы и коричневые или черные семена, в следующих поколениях тоже не изменили больше окраски цветов и семян, однако большинство из них дало наряду с совершенно одинаковыми потомками такие, которые получили белые цветы и так же окрашенную кожуру семян. Растения с красными цветами оставались столь мало плодовитыми, что об их дальнейшем развитии нельзя сказать ничего определенного.
Несмотря на многочисленные помехи, с которыми приходилось бороться при наблюдении, все же из этого опыта ясно, что развитие гибридов по отношению к тем признакам, которые касаются формы растения, следует тем же законам, как и у Pisurn. Относительно признаков окраски затруднительно обнаружить достаточную согласованность. Кроме того, что из соединения белой и пурпурно-красной окраски получается целый ряд оттенков, от пурпурного до бледно-лилового и белого, бросается в глаза еще то обстоятельство, что между 31 цветущими растениями только одно получило рецессивный признак белой окраски, тогда как у Pisurn он появляется в среднем у каждого четвертого растения.
Но также и эти загадочные явления можно было бы правдоподобно объяснить законами, установленными на Pisurn, если предположить, что окраска цветов и семян Ph. multiflorus состоит из двух или нескольких совершенно самостоятельных окрасок, которые отдельно ведут себя совершенно так же, как любой другой константный признак у растения. Если окраска цветов А слагается из самостоятельных признаков А
+ А
+…, которые вызывают общее впечатление пурпурно-красной окраски, то при оплодотворении формы с различающимся признаком белой окраски а должны образовываться гибридные соединения А
а + А
а +…; то же самое происходит с соответствующей окраской семенной кожуры. При вышеупомянутом предположении каждое из этих гибридных соединений окраски самостоятельно и развивается поэтому совершенно независимо от остальных. Отсюда легко видеть, что из комбинации отдельных рядов развития может получиться полный ряд окрасок. Если, например, А = А
+ А
, то гибриды А
а и А
а соответствуют рядам
А
+ 2A
a + a
А
+ 2А
a + a.
Члены этих рядов могут войти в 9 различных соединений, и каждое из них представляет обозначение для особой окраски:
Числа отдельных соединений показывают, сколько растений с соответственной окраской принадлежит данному ряду. Так как сумма этого последнего равняется 16, то все окраски в среднем распределяются между каждыми 16 растениями, однако, как показывает сам ряд, в неодинаковых отношениях.
Если развитие окраски происходит действительно таким образом, то может найти себе объяснение и тот вышеприведенный случай, когда белая окраска цветов и бобов встретилась среди 31 растения первого поколения только один раз. Эта окраска содержится в ряду только однажды, и поэтому может развиться в среднем по одному разу на каждые 16, а при трех признаках окраски даже на каждые 64 растения.
Однако не следует забывать, что приведенное здесь объяснение основывается на одном лишь предположении, которое ничего больше, кроме очень неполного результата вышеизложенного опыта, не имеет за собой. Но если бы проследить развитие окраски гибридов в таких опытах дальше, то это была бы многообещающая работа, так как, вероятно, мы могли бы научиться понимать таким путем необычайное разнообразие окраски наших декоративных цветов.
До сих пор едва ли достоверно известно больше того, что окраска цветов у большинства декоративных растений является крайне изменчивым признаком. Часто высказывалось мнение, что устойчивость видов оказывается сильно поколебленной или совсем разрушается культивированием, и существует сильная склонность представлять развитие культурных форм неправильным и случайным; при этом обычно указывается на окраску декоративных растений как на пример непостоянства. Однако нельзя постигнуть, почему одно перемещение на садовую почву должно производить столь глубокую и продолжительную революцию в растительном организме. Никто не станет серьезно утверждать, что развитие на воле управляется другими законами, чем на садовой грядке. Как здесь, так и там должны появиться характерные изменения, если для данного вида изменяются жизненные условия и этот вид обладает способностью приспособляться к новым обстоятельствам. Вполне допустимо, что культура благоприятствует возникновению новых разновидностей, и человек сохраняет многие изменения, которые не удержались бы на свободе; все же это не дает нам основания предполагать, что склонность к образованию разновидностей столь необычайно повышается, что виды теряют всякую самостоятельность, а их потомки расходятся в бесконечные ряды высокоизменчивых форм. Если бы изменение в условиях произрастания было единственной причиной изменчивости, то следовало бы ожидать, что те культурные растения, которые в течение столетий возделываются при почти одинаковых условиях, должны были вновь приобрести известную устойчивость. Как известно, этого не наблюдается, так как именно между ними мы находим не только самые разнообразные, но также и самые изменчивые формы. Только бобовые, как Pisurn, Phaseolus, Lens, половые органы которых закрыты лодочкой, представляют замечательное исключение. Хотя и у них в течение больше чем 1000-летней культуры при разнообразных условиях возникли многочисленные разновидности, но в одинаковых условиях существования они удерживают такую же самостоятельность, какая свойственна дикорастущим видам.
Более чем вероятно, что в изменчивости культурных растений действует фактор, которому до сих пор уделяли мало внимания. Различные наблюдения и опыты (Erfahrungen) заставляют полагать, что наши культурные растения за немногими исключениями являются членами различных гибридных рядов, дальнейшее закономерное развитие которых нарушается и задерживается частыми взаимными скрещиваниями. Не следует упускать из виду, что культурные растения большей частью выращиваются в больших количествах совместно, и этим предоставляется благоприятная возможность для взаимного оплодотворения между разновидностями и даже видами. Вероятность этого взгляда поддерживается тем фактом, что среди множества изменчивых форм всегда находятся некоторые остающиеся в том или ином признаке константными, если только тщательно охранять их от всякого чужого влияния. Эти формы размножаются точно так же, как определенные члены сложных гибридных рядов. Даже по отношению к самому чувствительному из всех признаков, к окраске, при внимательном наблюдении не ускользает, что у отдельных форм наклонность к изменчивости проявляется в очень различной степени. Между растениями, которые происходят в результате одного и того же произвольного оплодотворения, часто встречаются такие, потомки которых далеко отстоят друг от друга в особенностях и распределении окраски, тогда как другие дают мало уклоняющиеся формы, и среди множества растений попадаются такие, которые передают потомкам свою окраску цветов неизменной. Культивируемые виды Dianthus дают тому поучительное доказательство. Цветущий белыми цветами экземпляр Dianthus caryophyllus, который сам произошел от разновидности с белыми цветами, был перенесен во время цветения в теплицу; полученные от него многочисленные семена дали растения с совершенно одинаковой белой окраской цветов. Сходный результат был получен от красного, немного отливающего лиловым и от белого с красными полосами подвида. Наоборот, многие другие подвиды, таким же образом защищенные, дали более или менее различно окрашенных и разрисованных потомков.
Кто обозревает окраски, которые появляются у декоративных растений из одного и того же оплодотворения, с трудом может отказаться от убеждения, что и здесь развитие подчиняется также определенному закону, выражающемуся, по-видимому, в комбинировании многих самостоятельных признаков окраски.
Заключительные замечания
Небезынтересно сравнить наблюдения, сделанные у Pisurn, с результатами, к которым пришли в своих исследованиях два авторитета в этой области – Кельрейтер и Гэртнер. По их согласному представлению, гибриды по своим внешним проявлениям или держатся средней формы между обоими исходными видами, или же они подходят ближе к типу того или другого из них, иногда едва отличаясь от него. Из этих семян, если происходит опыление собственной пыльцой, обыкновенно выходят различные формы, отклоняющиеся от нормального типа. Как правило, большинство индивидов из такого оплодотворения удерживает форму гибрида, тогда как немногие другие растения больше похожи на семенное растение и один-два индивида близко подходят к пыльцевому растению. Однако это не относится ко всем гибридам без исключения. В некоторых случаях потомки стоят ближе то к одному, то к другому исходному растению или все они склоняются больше в одну какую-нибудь сторону, но у некоторых [растений] они остаются совершенно подобными, гибридами размножаются дальше, не изменяясь. Гибриды разновидностей ведут себя, как гибриды видов, только обладают еще большей изменчивостью формы и еще большей склонностью возвращаться к исходным формам.
В отношении формы гибридов и их обычного развития нельзя не признать известного сходства с наблюдениями, сделанными над Pisurn. Иначе обстоит дело с упомянутыми исключительными случаями. Гэртнер признается сам, что точное определение, на какой из двух исходных видов больше похожа данная форма, встречает большие затруднения, так как здесь надо отнести многое на счет субъективного впечатления наблюдателя. Затем здесь следует принять во внимание еще одно обстоятельство, а именно, что, несмотря на тщательное наблюдение и различение, результаты были неустойчивые и неопределенные. Для опытов служили большей частью растения, которые считались хорошими видами и отличались во многих признаках. Наряду с резко выступающими признаками, там, где приходилось считаться с большим или меньшим общим сходством, нужно было обращать внимание и на такие признаки, которые трудно определить словами, но которых, тем не менее, достаточно, чтобы придать формам другой вид, как это известно каждому знатоку растений. Если признать, что развитие гибридов следует закону, установленному для Pisurn, то ряд в каждом отдельном опыте должен охватить очень много форм, так как число членов, как известно, увеличивается в третьей степени по отношению к числу различающихся признаков. При относительно незначительном числе опытных растений результат должен быть только приблизительно правильным и в отдельных случаях может значительно отклоняться. Если, например, два исходных вида различаются в семи признаках и из семян их гибридов выращено от 100 до 200 растений для установления степени родства потомства, то нам ясно, как шатко будет суждение на основании такого материала, так как для семи различающихся признаков ряд в 16 384 индивида содержит 2187 различных форм. В зависимости от того, какая форма попадет случайно в руки наблюдателя в большем количестве, может быть придано большее значение то одному, то другому сродству.
Далее, если среди различающихся признаков встречаются доминирующие, которые переходят к гибриду совершенно или почти совершенно неизмененными, то среди членов ряда будет выступать на первый план тот из обоих исходных видов, который обладает большим числом доминирующих признаков. В опыте с Pisurn, приведенном раньше для трояко различающихся признаков, доминирующие признаки принадлежали все семенному растению, и хотя по своему внутреннему составу члены ряда склонялись равномерно к обоим исходным растениям, все же тип семенного растения получил в этом опыте такой значительный перевес, что между каждыми 64 растениями первого поколения 54 были совершенно одинаковы с ним или отличались от него только одним признаком. Отсюда видно, как рискованно при некоторых обстоятельствах по внешнему сходству гибридов делать заключения об их внутреннем сродстве.
Гэртнер упоминает, что в тех случаях, когда развитие идет закономерно, среди потомков гибридов получаются не сами исходные виды, но только единичные особи, близко стоящие к ним. При очень обширном ряде развития ничего другого нельзя было и ожидать. Например, для семи различающихся признаков среди 16 000 потомков гибридов обе исходные формы встречаются только по одному разу. Поэтому получить их уже при небольшом числе опытных растений мало возможно, однако с некоторой вероятностью можно рассчитывать на появление таких отдельных форм, которые стоят в ряду близко к исходным видам.
Существенное отличие мы встречаем у тех гибридов, которые остаются константными в потомстве и размножаются как чистые виды. По Гэртнеру, сюда принадлежат превосходно плодовитые гибриды: Aquilegia atropurpurea-canadensis, Lavatera pseudolbia-thuringiaca, Geum urbanorivale и некоторые гибриды Dianthus; по Вихура – гибриды видов ив. Для истории развития растений это обстоятельство имеет особенное значение, так как константные гибриды получают значение новых видов. За правильность этого обстоятельства ручается имя превосходного наблюдателя, и оно не может подвергаться сомнению. Гэртнер имел возможность проследить Dianthus Armeria-deltoidcs до 10 поколения, так как это растение нормально размножалось в саду само по себе в одну единую клетку, которая развивается в самостоятельный организм путем восприятия веществ и образования новых клеток. Это развитие следует постоянному закону, который основывается на материальном составе и расположении элементов, достигших в клетке жизнеспособного соединения. Если воспроизводительные клетки однородны и подобны основной клетке материнского растения, тогда развитие нового индивида управляется тем явнее законом, которому подчиняется материнское растение. Если же удается соединить зачатковую клетку с неоднородной пыльцевой клеткой, то мы должны признать, что между теми элементами обеих клеток, которые обусловливают взаимные различия, осуществляется некое уравновешивание (Ausgleichung). Образующаяся из них некоторая согласованная клетка (Vermittlungszellе) является основой для гибридного организма, развитие которого обязательно следует другому закону, чем у каждого из обоих исходных видов. Если признать уравновешивание полным в том смысле, что гибридный зародыш образуется из одинаковых клеток, в которых различия совершенно и прочно согласованы, то надо признать дальнейшее следствие, что гибрид должен оставаться в своих потомках константным, как всякий другой самостоятельный вид растения. Воспроизводительные клетки, которые образуются в завязях и пыльниках такового, однородны и вполне сходны с основной согласованной клеткой.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: