banner banner banner
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Оценить:
Рейтинг: 0

Полная версия:

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

скачать книгу бесплатно

эволюционно древнее, чем цикл Кальвина. Не случайно он обнаружен именно у архей – организмов, которых многие специалисты считают самыми архаичными формами жизни.

     (Источник: Takaaki Sato, Haruyuki Atomi, Tadayuki Imanaka. Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism // Science. 2007. V. 315. P. 1003–1006.)

В течение первого миллиарда лет существования прокариотной биосферы (примерно от 4,1 до 3,2 млрд лет назад) одни за другими появлялись новые формы микробов и новые способы получения энергии. В числе первых, по-видимому, появился бескислородный (аноксигенный) фотосинтез (? – 3,2–3,7 млрд лет назад). Его освоили бактерии – предки нынешних зеленых, пурпурных и цианобактерий.

Аноксигенные фотосинтезирующие бактерии научились использовать энергию солнечного света при помощи особых светочувствительных молекул – бактериохлорофиллов и связанных с ними белковых комплексов. Молекулярная "машина", необходимая для осуществления эффективного аноксигенного фотосинтеза, устроена довольно сложно (хотя и намного проще, чем та, что используется оксигенными фотосинтетиками, появившимися позже). По-видимому, эффективный фотосинтез возник не сразу. Начиналось все с того, что некоторые микробы научились немного "подкармливаться" солнечным светом при недостатке других источников энергии. Для такой "подкормки" не нужны сложные молекулярные комплексы – достаточно одного-единственного светочувствительного белка. Недавно выяснилось, что подобные архаичные, простые и малоэффективные способы утилизации солнечного света до сих пор очень широко распространены в мире прокариот. Стало ясно, что способность к росту за счет энергии солнечного света (фототрофность) распространена в живой природе гораздо шире, чем считалось до сих пор.

Цикл Кальвина – важнейший биохимический процесс в живой природе, в ходе которого неорганический углерод вводится в состав органических молекул.

При недостатке растворенной органики морские бактерии подкармливаются солнечным светом. Открытия последних лет показали, что кроме зеленых растений и цианобактерий, осуществляющих фотосинтез при помощи хлорофилла а, и известных ранее фототрофных бактерий, делающих то же самое при помощи бактериохлорофиллов, питаться солнечным светом могут и многие другие микробы, обладающие светочувствительными белками – протеородопсинами.

Протеородопсины представляют собой своеобразные "насосы", локализованные в клеточной мембране и использующие энергию солнечного света для перекачки протонов (Н

) из клетки во внешнюю среду. Таким образом световая энергия переводится в разность электрохимических потенциалов, которая может затем использоваться клеткой для различных нужд, в том числе для синтеза АТФ. АТФ в свою очередь является универсальной энергетической "разменной монетой" клетки, используемой в самых разных энергоемких процессах.

Протеородопсины были обнаружены у морских бактерий в 2000 году. Открытие привлекло большое внимание, поскольку оно означало, что многие организмы, до сих пор считавшиеся строго хемотрофными (получающими энергию за счет химических реакций), в действительности могут оказаться фототрофными – по крайней мере отчасти. В таком случае все представления об энергетическом балансе биосферы нуждаются в пересмотре.

Фототрофность на основе протеородопсинов – это гораздо менее эффективный способ утилизации солнечной энергии по сравнению с настоящим фотосинтезом, но зато и гораздо более простой.

Вскоре выяснилось, что протеородопсины встречаются не только у бактерий, но и у многих архей, обитающих в морях и океанах. По-видимому, морские микроорганизмы активно обмениваются друг с другом генами протеородопсинов, которые служат им важным подспорьем в конкурентной борьбе за энергетические ресурсы. Простота протеородопсиновой системы утилизации солнечного света облегчает ее горизонтальную передачу от одних микробов другим (о горизонтальном обмене генами подробно рассказано в главе "Наследуются ли приобретенные признаки?").

Однако до сих пор никому не удавалось экспериментально показать, что морские микробы, геном которых содержит гены протеородопсинов, действительно являются фототрофными организмами, то есть могут использовать энергию солнечного света для роста. Более того, первые попытки это подтвердить дали отрицательный результат: массовая и вездесущая морская бактерия Pelagibacter ubique, имеющая протеородопсины в клеточной мембране, в лабораторных условиях росла на свету не лучше, чем в темноте. Проблема осложнялась еще и тем, что большинство морских бактерий, содержащих протеородопсины, относятся к числу некультивируемых – в лабораторных условиях они просто не живут. Поэтому оставалось неопровергнутым предположение, что протеородопсиновая система использования солнечного света, возможно, настолько неэффективна, что не может внести заметного вклада в энергетический баланс морских экосистем и используется микробами лишь для каких-то второстепенных нужд.

Лишь в 2007 году микробиологам из Швеции и Испании удалось показать, что это не так. Они обнаружили протеородопсины у бактерии Dokdonia, обитающей в Средиземном море. Бактерию удалось культивировать в лабораторных условиях. Оказалось, что в натуральной морской воде бактерия на свету растет гораздо лучше, чем в темноте. В первом случае плотность популяции после 100 часов инкубации составляла 3х10

клеток на миллилитр, во втором – в шесть раз меньше (0,5х10

). Если культуру, выращенную в темноте, осветить, бактерии начинают быстро размножаться; если оставить в темноте – их численность постепенно снижается. Кроме того, бактерии, выросшие на свету, заметно крупнее тех, что росли в потемках.

Дополнительные эксперименты показали, что влияние света на рост бактерий зависит от концентрации растворенной органики. Конечно, протеородопсины в отличие от систем настоящего фотосинтеза не могут сделать бактерию полностью автотрофной, то есть не нуждающейся в готовых органических веществах. Такие бактерии лишь "подкармливаются" светом и без готовой органики существовать не могут. Dokdonia практически не растет в воде с содержанием органики ниже определенного порога, и свет нисколько не помогает ей в этой ситуации. Однако при более высоких концентрациях растворенного органического вещества бактерия растет на свету в несколько раз быстрее, чем в темноте. Если же поместить докдонию в воду с избытком органики, то свет снова перестает влиять на ее рост (в этих условиях она растет одинаково хорошо как на свету, так и в темноте).

Таким образом, протеородопсины повышают жизнеспособность морских бактерий лишь в условиях низких (но не слишком низких) концентраций растворенной органики. Возможно, отрицательные результаты, полученные ранее с Pelagibacter, объясняются именно нерациональным количеством органики в опытных средах.

Так или иначе, мы теперь знаем, что многочисленные и разнообразные морские микробы, имеющие в своем геноме гены протеородопсинов, действительно могут быть факультативными фототрофами, то есть способны разнообразить свою диету, состоящую в основном из растворенной органики, солнечным светом.

    (Источники: 1. Laura Gomez-Consarnau et al. Light stimulates growth of proteorhodopsincontaining marine Flavobacteria // Nature. 2007. V. 445. P. 210–213; 2. Gazalah Sabehi et al. New insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins // PLoS Biol. 2005.3(8): е273.)

Изобретение аноксигенного фотосинтеза было большим шагом вперед. Живые существа, овладевшие секретом фотосинтеза, получили доступ к неисчерпаемому источнику энергии – солнечному свету. Правда, их зависимость от дефицитных химических веществ, поступающих понемногу из земных недр, при этом все-таки сохранилась. Дело в том, что для фотосинтеза одного света мало – нужно еще какое-нибудь вещество, от которого можно оторвать электрон (это называется "фотоокисление"). В простейшем случае в роли донора электрона при фотосинтезе выступает сероводород. В результате деятельности аноксигенных фотосинтетиков сероводород превращается в серу (S) или сульфат (S0

). Опять незамкнутый цикл и накопление отходов!

Но жизнь уже набирала силу, разнообразие микробов росло, и незамкнутые циклы постепенно начинали замыкаться. Планета захлебывается метаном и сульфатами? Что ж, эволюция нашла отличный выход из сложной ситуации: появились микроорганизмы, способные окислять метан при помощи сульфатов. Это были не просто микробы, а симбиотические микробные сообщества, состоящие из архей и бактерий. Архей окисляли метан, а бактерии восстанавливали сульфаты, причем оба процесса были каким-то не до конца еще понятным образом сопряжены между собой в неразрывное целое. Такие сообщества сохранились и по сей день в соответствующих местах обитания – там, где достаточно метана и сульфатов (например, в окрестностях подводных грязевых вулканов – см. ниже сюжет "В подводном грязевом вулкане обнаружены неизвестные микробы").

Результатом окисления метана был углекислый газ, необходимый всем автотрофам, а результатом восстановления сульфатов – сероводород, который с удовольствием использовали фотосинтетики. Циклы замыкались, биосфера приобретала устойчивость и способность к саморегуляции. Начиналась эпоха Великого Содружества Микробов.

Примерно в тот же период (свыше 3,2 млрд лет назад), по– видимому, появились и первые гетеротрофы – так называемые бродильщики, которые получают энергию за счет бескислородной ферментации (сбраживания) готовой органики, произведенной автотрофами. В качестве отходов жизнедеятельности бродильщики имеют обыкновение выделять молекулярный водород, до которого в древней биосфере уже были охотники: во-первых, археи-метаногены, во-вторых, бактерии-сульфатредукторы (они охотно используют молекулярный водород в качестве восстановителя для восстановления сульфатов).

Ясно, что на этом этапе большинство микроорганизмов уже не могли обходиться друг без друга. Даже в наши дни многие бродильщики наотрез отказываются расти в отсутствие микробов, утилизирующих выделяемый ими водород (сульфатредукторов или метаногенов), а тем, в свою очередь, жизнь не мила без бродилыциков.

Уже 3,55 млрд лет назад на Земле, по-видимому, существовали сложные микробные сообщества – бактериальные маты. Именно они, скорее всего, ответственны за образование древнейших строматолитов. В наши дни нечто подобное можно наблюдать в некоторых экстремальных местообитаниях, таких как горячие источники. Древние бактериальные маты, вероятно, состояли из двух слоев. В верхнем обитали аноксигенные фототрофы. Они синтезировали органику из углекислого газа, потребляли сероводород и выделяли сульфаты. В нижнем слое жили бродильщики (они потребляли органику, произведенную фототрофами, и выделяли водород), сульфатредукторы (потребляли сульфаты и водород, производили сероводород), а также, возможно, метаногены с метанотрофами. В ходе жизнедеятельности сообщества под ним постепенно, слой за слоем, накапливался уплотненный осадок – так формировались слоистые образования, известные под названием строматолитов. Карбонат кальция – основной строительный материал строматолита – отчасти осаждался из морской воды, отчасти продуцировался самими микробами (в первую очередь сульфатредукторами).

Реликтовые микробные сообщества

В реконструкции древнейших этапов развития микробной жизни большую роль играют исследования современных реликтовых микробных сообществ. Некоторые из них, как недавно выяснилось, могут существовать в полном отрыве от всей остальной биосферы в течение миллионов лет, получая все необходимое исключительно из земных недр.

Одно из таких уникальных сообществ недавно было обнаружено глубоко под землей в Южной Африке. Все началось с того, что старатели на южноафриканском золотом прииске Мпоненг (Mponeng) стали бурить очередную скважину и на глубине 2,8 км наткнулись на водоносный слой. Глубинные воды, затерянные среди базальтов возрастом 2,7 млрд лет, находились под большим давлением, имели щелочную реакцию и оказались насыщены всевозможной химией: различными солями, среди которых преобладают сульфаты, растворенными газами, такими как водород, метан, углекислый газ и другие, и простыми органическими соединениями (углеводородами, формиатом, ацетатом). Большая часть органики, судя по изотопному составу, имеет абиогенное происхождение, то есть порождена не живыми организмами, а геологическими процессами. Температура подземной воды – чуть выше 60 градусов.

Находка привлекла внимание микробиологов, изучающих биоту земных недр. На сегодняшний день хорошо известно, что толща земной коры заселена микроорганизмами вплоть до глубины в 6–7 км или даже более. Подземные микробы, по-видимому, играют большую роль во многих геохимических процессах, в том числе в образовании и деструкции нефти и газа. Неясным остается вопрос о том, в какой степени эта инфернальная микробиота является автономной, независимой от "внешней", большой биосферы, которая живет в основном за счет энергии солнечного света.

Многие подземные микробы окисляют углеводороды или, к примеру, сульфиды при помощи кислорода, произведенного оксигенными фотосинтезирующими организмами (растениями и цианобактериями). Таких микробов, очевидно, нельзя назвать полностью автономными: исчезни жизнь на поверхности, и они тоже со временем погибнут. Другие – такие как археи-метаногены, восстанавливающие углекислый газ до метана при помощи водорода, – по-видимому, могли бы существовать в земных недрах неопределенно долго и после гибели всего живого на поверхности. Но до сих пор ни для одного подземного микробного сообщества не удавалось точно доказать, что оно в течение долгого времени действительно не использовало никаких веществ, произведенных "большой биосферой", и получало все необходимое исключительно из недр Земли.

Микробиота, обнаруженная в воде из южноафриканской скважины, стала первым доказанным случаем долгого автономного существования живых организмов в недрах Земли без всякой связи с "большой биосферой". Об этом сообщила в октябре 2006 года группа исследователей из США, Канады, Германии, Тайваня и Южной Африки[22 - Li-Hung Lin et al. Long-Term sustainability of a high-energy, low-diversity crustal biome // Science. 2006. v.314. p. 479–482.].

Ученые обнаружили в подземных водах довольно большое количество микроорганизмов (40 млн клеток на литр). По нуклеотидным последовательностям генов рРНК, выделенных из проб, было установлено, что подавляющее большинство (более 88 %) этих микробов относятся к одной разновидности сульфатредуцирующих бактерий. Эти бактерии получают энергию, восстанавливая сульфат (S0

) при помощи молекулярного водорода. Кроме сульфатредукторов в пробах обнаружены в небольших количествах и другие микробы – всего около 25 разновидностей, в том числе 4 разновидности архей-метаногенов. Расчеты показали, что в условиях, в которых живут эти микробы, сульфатредукция является наиболее выгодным из всех возможных типов энергетического метаболизма.

Но микробиологический анализ был вовсе не главной частью исследования. Основное внимание авторы уделили изучению самой подземной воды, на которую была обрушена вся мощь современных методов аналитической химии. Воду разобрали чуть не по молекулам, изучили каждую примесь, измерили изотопный состав всех элементов, и все это для того, чтобы как можно точнее определить ее возраст и происхождение.

Ученые пришли к выводу, что существует два возможных сценария образования этой воды. Согласно первому сценарию, вся она имеет поверхностное (атмосферное) происхождение и просочилась в недра в период между 15,8 ± 7,8 и 25 ± 3,8 млн лет назад. Вторая возможность заключается в том, что эта вода является смесью очень древней геотермальной воды возрастом 0,8–2,5 млрд лет и более "молодой" поверхностной воды, просочившейся на глубину 3–4 млн лет назад.

В любом случае получается, что подземное микробное сообщество существует в абсолютной изоляции, без всякого притока вещества и энергии с поверхности, как минимум три миллиона лет, а возможно, и все 25 миллионов. И, несомненно, может существовать так и дальше – даже если все живое на поверхности погибнет, а из атмосферы исчезнет весь кислород.

Изучение подобных реликтовых, изолированных от остальной биосферы микробных сообществ помогает понять, что представляла из себя жизнь на нашей планете миллиарды лет назад.

Отважный странник. Когда эта книга уже готовилась к печати, стали известны новые удивительные подробности о жизни подземных микробов из прииска Мпоненг. Продолжая изучение подземной биосферы, исследователи выделили ДНК из 2600 литров воды, добытой в том же прииске и на той же глубине, но из другой скважины. К немалому удивлению ученых, в пробе обнаружился генетический материал лишь одного-единственного вида микробов. Анализы были проведены весьма аккуратно, и результат был подтвержден несколькими независимыми методами. Пришлось констатировать неожиданный и удивительный факт: обнаружена подземная экосистема, все население которой представлено лишь одним видом микробов. Следовательно, этот микроб должен обеспечивать себя всем необходимым без всякой помощи со стороны других организмов. Такая независимость и самодостаточность среди живых существ встречается очень редко.

Что же это за микроб, живущий сам по себе в 60-градусной воде на глубине 2,8 км? Он оказался "старым знакомым", тем самым сульфатредуктором, который доминирует в пробах из прииска Мпоненг, изученных ранее. До сих пор, однако, об этом микробе было известно немногое (ему даже не было присвоено имя), и только теперь появилась возможность изучить его более основательно. Дело в том, что выращивать таких микробов в лаборатории практически невозможно, и судить об их биохимии, строении и образе жизни можно только на основе анализа ДНК. Однако если в пробе присутствуют геномы многих микроорганизмов, то понять, кому из них принадлежит тот или иной обрывок ДНК, технически очень сложно.

Поэтому исследователи обычно ограничиваются анализом нескольких наиболее "показательных" генов, прежде всего – генов 16S-pPHK. По этим генам можно довольно точно определить, сколько и какие микробы присутствуют в пробе. Если попадается микроб, науке не известный, то по его гену 16S-pPHK можно определить, какой из известных микробов является его ближайшим родственником, а уже из этого делаются выводы о его биохимии и образе жизни.

Другое дело, если в пробе присутствует только один микроб, – в этом случае современные технологии позволяют сравнительно быстро и недорого собрать из кусочков весь его геном. Именно это и проделали исследователи с уникальной бактерией. Имея в руках полную нуклеотидную последовательность генома, о микробе можно сказать очень многое.

Для начала подземная бактерия получила имя – ее назвали Desulforudis audaxviator. "Audax viator" – слова из таинственной латинской фразы, указавшей герою повести Жюля Верна путь к центру Земли. В переводе они означают "отважный странник". Что ж, название вполне подходящее. По мнению исследователей, микроб совершил свое отважное путешествие в недра Земли и приспособился к жизни в полном одиночестве не менее 20 млн лет назад.

Поскольку "отважный странник" в одиночку выполняет все функции, которые должны выполнять живые существа в экосистеме, авторы ожидали, что его геном должен содержать полный набор средств жизнеобеспечения в экстремальных условиях, включая биохимические механизмы для получения энергии, фиксации азота и углерода и синтеза всех необходимых веществ. Так и оказалось. В геноме D. audaxviator обнаружились следующие "рабочие инструменты":

* полный набор генов для сульфатредукции, причем некоторые из этих генов бактерия явно позаимствовала когда-то у архей – микробов, по праву считающихся лучшими экспертами по выживанию в экстремальных условиях;

* набор гидрогеназ – ферментов, позволяющих утилизировать молекулярный водород (который используется многими анаэробными микробами в качестве донора электрона в окислительно-восстановительных реакциях);

* набор белков-транспортеров для перекачки готовых органических соединений – сахаров и аминокислот – из внешней среды в клетку. Это значит, что бактерия может вести себя не только как автотроф, то есть синтезировать органику из неорганических соединений, но и как гетеротроф, то есть питаться готовой органикой, если таковая вдруг появляется в окружающей среде. Очевидно, что там, где живет "отважный странник", единственным источником готовой органики могут быть мертвые распадающиеся клетки тех же самых бактерий. Не такова жизнь у "отважного странника", чтобы разбрасываться столь ценными ресурсами. Кстати, по имеющимся оценкам, бактерии, обитающие в подобных условиях, из-за острого дефицита ресурсов должны расти и размножаться невероятно медленно. Ученые не исключают, что между двумя клеточными делениями у таких микробов могут проходить сотни и даже тысячи лет;

* белки для автотрофного метаболизма, позволяющие использовать в качестве источника углерода углекислый газ (СО

), угарный газ (СО) и формиат (НСОО

);

* полный набор ферментов для синтеза всех 20 аминокислот;

* гены, необходимые для формирования спор с плотной оболочкой (это, очевидно, позволяет "страннику" переживать периоды, когда условия становятся совсем уж невыносимыми);

* гены, обеспечивающие образование жгутиков, при помощи которых микроб может плыть куда пожелает;

* гены различных рецепторов и систем передачи сигналов, то есть того, что заменяет микробам органы чувств и нервную систему (по-видимому, "странник" чует, где выше концентрация дефицитных веществ, и плывет туда);

* белки для транспорта аммония (NH

) из внешней среды. В исследованных пробах концентрация аммония достаточно высока, чтобы полностью обеспечить микробов азотом, но, по всей видимости, так бывает не всегда. Поэтому D. audaxviator имеет в своем арсенале еще и нитрогеназу – фермент, позволяющий осуществлять азотфиксацию, то есть превращать молекулярный азот в удобоваримые для живой клетки азотистые соединения (прежде всего в тот же аммоний). Нитрогеназа, как и многие другие белки, была заимствована "странником" у архей путем горизонтального генетического обмена.

Ученые нашли в геноме D. audaxviator немало других генов архейного происхождения. Большинство из них связано с приспособлением к жизни в экстремальных условиях. "Странник" позаимствовал у архей также и некоторые гены для защиты от вирусов (от них, оказывается, даже под землей не спрячешься). По-видимому, ему не удалось бы стать таким независимым и самодостаточным, если бы он предварительно не пообщался очень тесно с другими микробами и не одолжил бы у них кое-какие полезные гены.

А вот чего у "странника" нет совсем, даже в рудиментарном виде, так это белков, позволяющих утилизировать кислород или хотя бы защищаться от его токсичного действия. Это значит, что с кислородом "страннику" не приходилось иметь дела уже очень давно.

Главный теоретический вывод, сделанный авторами из изучения "отважного странника", состоит в том, что вся биологическая составляющая простой экосистемы, как выяснилось, может быть закодирована в одном-единственном геноме.

    (Источник: Chivian D. et al. Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth // Science. 2008. V. 322. P. 275–278.)

Первые альтруисты

По-видимому, уже на самых ранних этапах развития прокариотной биосферы микробам приходилось сотрудничать друг с другом, объединяться в сложные коллективы и сообща решать стоящие перед ними биохимические "задачи". Эффективность и устойчивость микробных сообществ повышались за счет развития средств коммуникации между микробами. Развивались системы химического "общения". Выделяя в окружающую среду различные вещества, микроорганизмы сообщали соседям о своем состоянии и влияли на их поведение. Тогда же зародился и альтруизм – способность жертвовать собственными интересами на благо сообщества.

Возможно, многим читателям покажется сомнительным утверждение о существовании сложной социальной жизни, коммуникации и тем более альтруизма у микробов. Чтобы не быть голословным, приведу несколько фактов из жизни самой обычной, повсеместно встречающейся бактерии.

Бактерия Bacillus subtilis – широко распространенный почвенный микроб, относящийся к числу наиболее изученных. Геном "тонкой бациллы" (так переводится с латыни название этого микроорганизма) прочтен еще в 1997 году, и функции большинства генов в общих чертах известны.

Этого, однако, недостаточно, чтобы понять механизмы, управляющие сложным поведением бациллы. Этот микроб, например, умеет при необходимости отращивать жгутики и приобретать подвижность; собираться в "стаи", в которых передвижение микробов становится согласованным; принимать "решения" на основе химических сигналов, получаемых от сородичей. При этом используется особое "чувство кворума" – нечто вроде химического голосования, когда определенное критическое число поданных сородичами химических "голосов" меняет поведение бактерий. Мало того, В. subtilis способна собираться в многоклеточные агрегаты, по сложности своей структуры приближающиеся к многоклеточному организму.

В критической ситуации (например, при длительном голодании) бациллы превращаются в споры, устойчивые к неблагоприятным воздействиям, чтобы дождаться лучших времен. Но превращение в спору для В. subtilis – процесс дорогостоящий, требующий активизации около 500 генов, и эта мера приберегается на самый крайний случай. Ну а в качестве предпоследней меры в голодные времена микроб прибегает к убийству своих сородичей и каннибализму. Если, конечно, сородичей вокруг достаточно много, то есть плотность популяции высока. Если нет, тогда делать нечего, приходится превращаться в споры натощак.

Ученые выяснили, что при голодании у В. subtilis срабатывает особый генный переключатель, который может находиться лишь в одном из двух дискретных состояний (включено/выключено). "Переключатель" состоит из ключевого гена-регулятора SpooA и нескольких других генов, которые взаимно активируют друг друга по принципу положительной обратной связи.

Активизация SpooA приводит к целому каскаду реакций, в том числе к производству клеткой токсина SdpC, убивающего тех бацилл, у которых "переключатель" выключен. Однако хитрость состоит в том, что голодание приводит к активизации SpooA только у половины микробов. Погибшие клетки распадаются, высвободившиеся из них органические вещества всасываются убийцами. Если никаких перемен к лучшему так и не произойдет, они, по крайней мере, будут превращаться в споры сытыми.

До сих пор было неясно, почему токсин убивает только тех бацилл, которые его не выделяют (то есть тех, у кого SpooA не активирован). И вот что выяснилось (С.D. Ellermeier, E.C. Hobbs, J.E. Gonzales-Pastor, R. Losick A three-protein signaling pathway govering immunity to a bacterial connibalism toxin // Cell. 2006. 124. 549–559.). На мембране бацилл сидит защитный белок Sdpl, выполняющий сразу две функции. Во-первых, он защищает клетку от токсина SdpC (просто хватает молекулы токсина и держит, не дает им ничего делать). Во-вторых, молекула белка Sdpl, схватившая молекулу токсина, изменяется таким образом, что другой ее конец (торчащий из внутренней стороны мембраны) хватает и удерживает молекулы белка SdpR, функция которого состоит в том, чтобы блокировать производство защитного белка Sdpl.

Таким образом, схватывание защитным белком молекулы токсина приводит к инактивации белка, тормозящего производство защитного белка. То есть чем больше будет токсина, тем больше клетка будет производить защитного белка. А как только токсин в окружающей среде закончится, молекулы SdpR перестанут инактивироваться, и производство защитного белка остановится.

По молекулярно-биологическим меркам это крайне простой регуляторный каскад, проще некуда. Так бациллы защищаются от собственного токсина. А почему же бациллы с выключенным SpooA оказываются незащищенными? Оказывается, синтез спасительного Sdpl у них блокируется еще одним белком – AbrB. Отключить AbrB можно только путем включения Spo0A, поэтому клетки с выключенным Spo0A просто– напросто обречены.

Самым интересным тут является даже не каннибализм бацилл-убийц, а альтруизм бацилл-жертв, которые отключают себе все, что только можно, лишь бы помочь своим сородичам себя съесть.

Казалось бы, естественный отбор должен способствовать закреплению в потомстве признака "Spo0A включается при голодании" и отбраковывать особей с противоположным признаком. Действительно, ведь первые выживают и оставляют потомство, а вторые погибают, и так раз за разом, при каждой очередной голодовке. Однако генный "переключатель" упорно остается настроенным так, чтобы включаться при голодовке только в 50 % случаев. Ведь если все особи в популяции захотят стать каннибалами, а жертвами – никто, то все мероприятие потеряет смысл, есть будет некого. Интересы общества оказываются выше личных, и каннибализм одних расцветает лишь благодаря альтруизму других.

Сине-зеленые революционеры

Важнейшим поворотным пунктом в развитии жизни стало изобретение оксигенного, или кислородного, фотосинтеза, благодаря которому в атмосфере начал накапливаться кислород и стало возможным существование высших организмов. Это великое событие произошло, по-видимому, 2,5–2,7 млрд лет назад (хотя ряд ученых придерживается мнения о более раннем появлении кислородных фотосинтетиков). "Изобретателями" кислородного фотосинтеза были цианобактерии, или, как их раньше называли, сине-зеленые водоросли.

Как мы помним, при бескислородном фотосинтезе донором электрона служат соединения серы (чаще всего сероводород), а в качестве побочного продукта выделяется сера или сульфат. Недавно был открыт вариант бескислородного фотосинтеза, при котором донором электрона служат соединения железа. Побочным продуктом в этом случае являются более окисленные соединения железа. Не исключено, что именно микробы, осуществлявшие "фотоокисление" железа, ответственны за образование древнейших железных руд. Таким образом, существование аноксигенных фотосинтетиков зависит от довольно дефицитных веществ. Поэтому аноксигенный фотосинтез не мог обеспечить производство органики в количестве, необходимом для развития разнообразных гетеротрофов (потребителей органики), включая животных.

При кислородном фотосинтезе донором электрона является обычная вода, а побочным продуктом – кислород. Изобретение кислородного фотосинтеза сделало бактерий независимыми от соединений серы или железа, и это открыло перед ними небывалые возможности. Ведь вода – ресурс практически неисчерпаемый.

По сравнению с бескислородным фотосинтезом кислородный фотосинтез – гораздо более сложный процесс. Аноксигенные фототрофы утилизируют солнечный свет при помощи единого белкового комплекса, называемого фотосистемой. Для кислородного фотосинтеза потребовалось введение второго белкового светоулавливающего комплекса – второй фотосистемы. Обе фотосистемы в основных чертах похожи друг на друга (обе содержат хлорофилл, располагаются на клеточной мембране и отчасти состоят из похожих по структуре и функции белков). По-видимому, обе они являются вариациями одной и той же базовой "модели", то есть происходят от единого общего молекулярного "предка". Скорее всего, предки цианобактерий приобрели вторую фотосистему от каких-то других фотосинтезирующих микробов путем горизонтального переноса генов (см. главу "Наследуются ли приобретенные признаки?"). Объединившись в одной клетке, две фотосистемы со временем приспособились друг к другу, специализировались и разделили между собой функции.

«Недостающее звено» в эволюции фотосинтеза. Как произошел переход от бескислородного фотосинтеза (при котором донором электрона служит сероводород) к кислородному, при котором донором электронов служит вода? Еще в 1970 году была предложена теоретическая модель, согласно которой этот переход осуществился через промежуточный этап, когда донорами электрона служили соединения азота[23 - Olson J.M. The evolution of photosynthesis // Science. 1970. v.168. p. 438–446]. Однако до самого последнего времени азотный фотосинтез оставался чисто гипотетической конструкцией – в природе его обнаружить не удавалось.

Лишь в 2007 году азотный фотосинтез – искомый промежуточный этап на пути становления кислородного фотосинтеза – наконец-то был обнаружен. Открытие было сделано в ходе изучения микробов, обитающих в пресных водоемах и отстойниках сточных вод[24 - Benjamin N. Griffin, Joachim Schott, Bernhard Schink Nitrite, an electron donor for anoxygenic photosynthesis // Science. 2007. v. 316. p. 1870]. Микробиологи из университета Констанца (Германия) выращивали микробов в бескислородных условиях на свету в среде с небольшим количеством нитрита (NО

). Через несколько недель в 10 пробах из 14 стала заметна розовая окраска, характерная для бактерий, практикующих бескислородный фотосинтез, и было зарегистрировано окисление нитритов и превращение их в нитраты (NО

). При помощи специальных тестов удалось показать, что окисление нитритов является результатом именно фотосинтеза, а не какого-либо иного биологического или химического процесса.

Активнее всего осуществляли "азотный" фотосинтез микробы, происходящие из отстойника города Констанца. Из этой культуры выделили самый массовый вид бактерий – шарообразные клетки диаметром 2–3 микрометра – и при помощи генетического анализа установили их родственные связи. Выяснилось, что ближайшим родственником этих микробов является Thiocapsa roseopersicina, широко распространенная фотосинтезирующая бактерия, относящаяся к группе пурпурных серных бактерий (эти микроорганизмы при фотосинтезе используют в качестве донора электрона соединения серы).

Это открытие интересно еще и тем, что оно расширяет наши представления об участии микробов в круговороте азота. До сих пор не были известны фотосинтезирующие организмы, способные окислять соединения азота в отсутствие кислорода. Теперь эту возможность придется учитывать и при реконструкции ранних (бескислородных) этапов эволюции биосферы.

Важность сделанного цианобактериями "открытия" трудно переоценить. Без цианобактерий не было бы и растений, ведь растительная клетка – результат симбиоза нефотосинтезирующего (гетеротрофного) одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл – пластид, которые суть не что иное, как симбиотические цианобактерии. И неясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения – всего лишь удобные "домики" для проживания цианобактерий. По сути дела цианобактерии не только изобрели кислородный фотосинтез, но и по сей день сохранили за собой "эксклюзивные права" на его осуществление.

Цианобактерии не только создали биосферу "современного типа". Они и сегодня продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии – одни из немногих живых существ, способных фиксировать атмосферный азот (N

), переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только прокариоты, и то далеко не все.

Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации – нитрогеназы – не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие – покрытые плотной оболочкой гетероцисты – не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).

До недавнего времени ученые полагали, что совместить фотосинтез и азотфиксацию в одной и той же клетке невозможно. Однако новейшие исследования показали, что мы до сих пор сильно недооценивали метаболические способности цианобактерий. Эти микроорганизмы являются еще более универсальными и самодостаточными "биохимическими фабриками", чем было принято считать.

Цианобактерия Synecbococcus в процессе деления. Этот микроб днем фотосинтезирует, а ночью фиксирует атмосферный азот.

В январе 2006 года Артур Гроссман и его коллеги из Института Карнеги (США) сообщили, что живущие в горячих источниках цианобактерии Synecbococcus ухитряются совмещать в своей единственной клетке фотосинтез и фиксацию азота, разделяя их во времени. Днем они фотосинтезируют, а ночью, когда в отсутствии света фотосинтез останавливается и концентрация кислорода в цианобактериальном мате резко падает, переключаются на азотфиксацию. Таким образом удалось выяснить, откуда берут азот микробные маты, живущие при температурах, не пригодных для роста обычных нитчатых азотфиксирующих цианобактерий с гетероцистами. Кроме того, открытие позволяет по-новому взглянуть на древнейшие этапы развития микробной жизни на нашей планете.

После появления цианобактерий безраздельное господство прокариот на нашей планете продолжалось еще очень долго – полтора или два миллиарда лет. Микроорганизмы постепенно становились все более многочисленными и разнообразными (об этом можно судить по их ископаемым остаткам). Однако именно появление цианобактерий запустило цепочку событий, в результате которых эстафета эволюционного прогресса была в конечном счете передана более высокоорганизованным живым существам – эукариотам. Ключевую роль в этом сыграл кислород, накопившийся в атмосфере благодаря цианобактериям, а также давние традиции кооперации и симбиоза, сложившиеся в микробных сообществах еще на заре земной жизни. В конце концов уровень интеграции в сообществе прокариот достиг такого уровня, что несколько разных видов микроорганизмов слились в единый организм – эукариотическую клетку. О том, как это произошло, рассказывается в следующей главе.

Что почитать на эту тему в Интернете

М. В. ГУСЕВ, Л. А. МИНЕЕВА. Микробиология. 1992. http://evolution. powernet.ru/library/micro/index.html

Г. А. ЗАВАРЗИН. Особенности эволюции прокариот //Эволюция и биоценотические кризисы. 1987. М.: Наука. С. 144–158. http://evolbiol. ru/zavarzin_1987.htm

Г. А. ЗАВАРЗИН. Развитие микробных сообществ в истории Земли. 1993. // Проблемы доантропогенной эволюции биосферы. М.: Наука. С. 212–222. http://evolbiol.ru/zavarzin.htm

Г. А. ЗАВАРЗИН. Эволюция микробных сообществ. 2003. (Доклад, прочитанный на теоретическом семинаре геологов и биологов "Происхождение живых систем". 15–20 августа 2003 г., Горный Алтай, стационар "Денисова Пещера"), http://evolbiol.ru/zavarzindok.htm

А. В. МАРКОВ. Обзор "Зарождение жизни. Прокариотная биосфера 2003–2007. http://evolbiol.ru/paleobac.htm

А. Ю. РОЗАНОВ. Ископаемые бактерии и новый взгляд на процессы осадкообразования. 1999. http://rogov.zwz.ru/Macroevolution/roza– nov1999.pdf

A. Ю. РОЗАНОВ. Ископаемые бактерии, седиментогенез и ранние стадии эволюции биосферы. 2003. http://evolbiol.ru/rozbakrus.htm