banner banner banner
Инсульт. Нарушение мозгового кровообращения
Инсульт. Нарушение мозгового кровообращения
Оценить:
Рейтинг: 5

Полная версия:

Инсульт. Нарушение мозгового кровообращения

скачать книгу бесплатно


Вязкость – способность оказывать сопротивление течению жидкости при перемещениях одних частиц относительно других за счет внутреннего трения. Вязкость крови увеличивается при увеличении крупномолекулярных белков (фибриногена, липопротеинов), уменьшении суспензионных свойств крови). Кровь – неньютоновская жидкость: При понижении артериального давления вязкость крови увеличивается, при повышении АД вязкость уменьшается.

Основное влияние на уровень АД оказывают МОС и проходимость резистивных сосудов, поскольку у здоровых людей вязкость крови является постоянной величиной (при сужении резистивных сосудов вязкость может возрастать, дополнительно увеличивая проходимость резистивных сосудов).

Согласно синтетической концепции регуляции АД (А. Гайтон) биокибернетические механизмы сосредоточены в двух основных системах.

1. Система кратковременного действия, или адаптационная (пропорциональная) контрольная система представлена 2-мя основными регуляторными контурами или петлями биологической обратной связи:

– барорецепторы крупных артерий – центры головного мозга (ГМ) – симпатические нервы – резистивные сосуды, емкостные сосуды, сердце – повышение АД; о почечный (плазменный) эндокринный контур (юкстагломерулярный аппарат ЮГА) – ангиотензин II – резистивные сосуды – повышение АД.

2. Система длительного действия, или интегральная контрольная система.

Барорецепторный рефлекс

Барорецепторы дуги аорты и синокаротидной зоны + изменение АД – залповая афферентная импульсация через IX–X пару черепно-мозговых нервов (ЧМН) – 3 интегральных участка ЦНС:

1) дорзомедиальная медулла, nuclei tractus solitarii (NTS) – депрессорный эффект (опосредованный L-глутаматом, субстанцией P);

2) каудальная вентролатеральная медулла – снижение периферической симпатической активности, снижение проходимости резистивных сосудов – депрессорный эффект (опосредован норадреналином);

3) ростральная вентролатеральная медулла – повышение АД.

Барорефлексы достигают максимального эффекта через 10–30 с после начала воздействия и отвечают за колебание АД от 100 до 125 мм рт. ст.

Почечный (плазменный) эндокринный механизм К эндокринным аппаратам почек относят:

– юкстагломерулярный аппарат (ЮГ А), выделяет ренин и эритропоэтин; о интерстициальные клетки (ИК) мозгового вещества и нефроциты собирательных трубок (НСТ), вырабатывают простагландины; о калликреин-кининовая система (ККС); о клетки APUD-системы, содержащие серотонин.

ЮГА

В этом аппарате выделяют 4 компонента:

1) гранулированные эпителиоидные клетки в стенке афферентной артериолы (юкстагломерулярные клетки);

2) клетки плотного пятна;

3) клетки Гурмагтига (lacis-клетки);

4) мезангиальные клетки клубочка.

ЮГА-клетки вырабатывают ренин – катализатор начального этапа образования ангиотензина. В ЮГА-клетках ренин сосредоточен в специальных секреторных гранулах. Помимо этих гранул, в клетках имеются и неспецифические, например гранулы липофусцина.

Роль своеобразного рецептора играет плотное пятно, реагирующее на качественный состав содержимого дистального канальца. Плотное пятно в свою очередь взаимодействует с эпителиоидными клетками через клетки Гурмагтига, что имеет морфологические доказательства. Клетки Гурмагтига, негранулированные гладкомышечные клетки и мезангиальные клетки при гипертрофии ЮГА могут участвовать в выработке ренина, превращаясь в ЮГА-клетки.

ИК мозгового вещества и клетки собирательных трубочек

Ось ИК мозгового вещества ориентирована перпендикулярно к длиннику сосочка пирамиды, они расположены параллельно друг другу и лежат между собирательными трубочками, сосудами и тонкими сегментами петель Генле. ИК имеют длинные цитоплазматические отростки, позволяющие им контактировать с сосудами, канальцевым аппаратом почки и друг с другом. Клетки содержат липидные капли, причем концентрация гранул в ИК и самих ИК в мозговом веществе почки возрастает по направлению к вершине сосочка.

Функция ИК заключается в синтезе и выделении почечных простагландинов. Нефроциты собирательных трубочек также участвуют в синтезе почечных простагландинов, но меньше, чем ИК.

Калликреин-кининовая система

Представлена в почках нефроцитами дистальных канальцев. Калликреин, выделяясь в просвет канальцев, взаимодействует с кининогенами; образующиеся кинины могут достигать мозгового вещества почки и вызывают высвобождение простагландинов из ИК и НСТ.

Взаимодействие эндокринных аппаратов почек

Клеточная гетерогенность ЮГА обеспечивает ауторегуляцию его функций: клетки плотного пятна улавливают изменения состава мочи (снижение концентрации хлорида натрия в моче, например, ведет к повышению активности ренина в плазме); мезангиальные клетки, обладающие рецепторами к ангиотензину II, улавливают изменения состава плазмы крови, а эпителиоидные и гладкомышечные клетки ЮГА, имеющие П-рецепторы, – изменения уровня артериального давления. Синтез ренина находится под контролем простагландинов, синтез простагландинов – под контролем ККС.

Почечный механизм проявляет активность в узком диапазоне – от 100 до 65 мм рт. ст. В основном включается при острой гипотензии.

ЮГА выделяет ренин, который в норме на 80 % находится в неактивном состоянии (проренин). Ренин является протеолитическим ферментом – аспартилпротеазой. Допускается, что активизация проренина осуществляется почечным калликреином. Поврежденные почки, в отличие от здоровых, секретируют преимущественно активный ренин, но повреждение не влияет на выделение проренина.

Ренин взаимодействует с плазменным белком П

-глобулином (тетрадекапептидом), называемым субстратом ренина или ангиотензиногеном. В результате образуется ангиотензин I (декапептид).

Ангиотензин I под влиянием ангиотензинконвертирующего фермента (АКФ) превращается в ангиотензин II. АКФ является дипептидилкарбоксипептидазой, отщепляющей с С-концевого участка молекулы ангиотензина I 2 аминокислотных остатка. Дигидропептидилкарбоксипептидаза выполняет 2 функции:

1) функцию АКФ;

2) функцию кининазы II – инактивацию брадикинина в результате отщепления с С-конца двух аминокислотных остатков.

Кроме того, АКФ участвует в метаболизме атриопептина, субстанции Р, энкефалинов, t– цепи инсулина, t-липотропина, рилизинг фактора лютенизирующего гормона.

АПФ (дипептидилкарбоксипептидаза) идентична кининазе II, вызывающей разрушение брадикинина.

В соматической форме АКФ имеются 2 активных центра, гомологичных домена: в N– участке, C-участке молекулы фермента. Каталитическая активность и химическая структура N и C доменов неодинаковы. C-домен катализирует расщепление ангиотензина I и брадикинина, тогда как N-домен расщепляет преимущественно рилизинг-гормон лютеинизирующего гормона.

Ингибиторы АКФ различаются по силе и избирательности связывания с активными центрами в молекуле соматической формы АКФ: каптоприл имеет сродство с N-доменом, лизиноприл – с C-доменом, трандолаприл – с обоими.

В микрососудах АПФ располагается на мембранах клеток. Этот фермент находится в адвентиции крупных сосудов в связи с vasa vasorum. Циркулирующие молекулы АПФ попадают в кровь, отделяясь от тканевых гликопротеидов. Важнейшая роль легких в превращении А! в АП обусловлена богатой их васкуляризацией и тем, что вне легких АП не подвергается инактивации.

Физиологические эффекты А-II, опосредованные АТ1 и АТ2 рецепторами – ангиотензиновыми рецепторами первого и второго типов

Все известные физиологические сердечно-сосудистые и нейроэндокринные эффекты. А II опосредованы АТ1-рецепторами. Все они способствуют повышению АД, развитиюгипертрофии левого желудочка, утолщению стенок артериол, что способствует уменьшению их просвета. Эффекты АН, которые опосредуются АТ

рецепторами, – вазодилятация и торможение пролиферации клеток, в том числе кардиомиоцитов, гладкомышечных клеток. Таким образом, через АТ

-рецепторы АТП частично ослабляет свои эффекты.

АТ1-рецепторы на мембранах гепатоцитов и клетках ЮГА почек опосредуют механизмы обратной отрицательной связи в ренин-ангиотензиновой системе. Поэтому в условиях блокады АТ1-рецепторов в результате нарушения этих механизмов обратной отрицательной связи увеличивается синтез ангиотензиногена печенью и секреция ренина клетками ЮГА. То есть при блокаде АТ1-рецепторов происходит реактивная активация ренин-ангиотензиновой системы, которая проявляется повышением уровня ангиотензиногена, ренина, АТ-I и АТ-II. Повышение образования АТ-II в условиях блокады АТ1-рецепторов приводит к тому, что преобладают эффекты стимуляции АТ:-рецепторов.

Третий механизм антигипертензивного действия блокаторов АТ1-рецепторов объясняется повышением образования ангиотензина (I-7), обладающего вазодилятирующими свойствами, – он образуется из А-I под действием нейтральной эндопептидазы или из А-II под действием пролиловой эндопептидазы. АТ (I-7) обладает, пaомимо вазодилятирующего, натрийуретическим свойствами, которые опосредуются простагландинами, простацилинами, кининами, эндотелиальным релаксирующим фактором. Эти эффекты обусловлены воздействием на АТх.

Влияние АТ-II на функцию и структуру клетки

Белки РААС и их генетические детерминанты

Интегральная система регуляции АД включает:

1) цепь почки – кора надпочечников (альдостерон) – консервация ионов натрия – жидкая среда организма;

2) депрессорные механизмы, сосредоточенные в мозговом слое почек и стенках резистивных сосудов.

Помимо циркулирующей в крови (эндокринной системы), имеются местные системы ренин – AII, оказывающие аутокринные («на себя») и паракринные («на соседние клетки») влияния, изменяющие локальные тканевые функции.

Между почечной (эндокринной) и местными (аутокринной и паракринной) системами нет четкой связи. Локальные системы способны оказывать длительное воздействие на резистивные сосуды, регулируя их проходимость. Тканевые системы в большей степени участвуют в осуществлении противогипертензивного эффекта. Ингибиторы АПФ тормозят образование АП на месте и вызывают обратное развитие гипертрофии гладкомышечных клеток и поперечно-полосатой мускулатуры миокарда.

Воздействие А11 на баланс натрия и жидкой среды организма – важнейшая функция интегрирующей, длительно действующей системы регуляции. Усиление реабсорбции натрия обеспечивается двумя механизмами:

1) непосредственным воздействием А II на почечные канальцы;

2) опосредованным усилением секреции альдостерона клетками клубочкового слоя коры надпочечников.

Системы регуляции АД

Данные системы не антагонистичны в функциональном плане.

Выявлены значительные гетерогенность и разнонаправленность действия различных типов ?– и ?-АР. В пределах системы простагландинов имеются как вазоконстрикторные (простагландины ПГ-F

, ТХ-А

), так и вазодилятаторные субстанции.

Эндотелиальные системы состоят из прессорных компонентов (эндотелинов) и депрессорных. При ЭГ взаимодействие прессорной и депрессорной систем рассогласовано. Вначале, при лабильной гипертензии, повышается активность как прессорных, так и депрессорных систем с преобладанием первых, далее активность и тех и других систем снижается – прессорных до нормы, а депрессорных ниже нормы (этим центрогенная теория объясняет феномен стабилизации гипертензии).

Механизм «давление – натрийгидроурез» в норме является депрессорным, в условиях патологии способствует стабилизации АГ.

Имеется связь между потреблением поваренной соли и артериальной гипертензией. Но между количеством потребляемой поваренной соли и высотой АД имеется лишь слабая корреляция.

У крыс линии SHR резко усилен солевой аппетит, что может быть подавлено блокадой ренин-ангиотензиновой системы. Можно предположить и вторичное увеличение потребления соли в условиях гипертензии и высокой активности А-II.

При высоком артериальном давлении увеличивается натрийурез и гидроурез (при повышении АД от 100 до 150 мм рт. ст. натрий-, гидроурез увеличивается в 3 раза). Этот механизм есть следствие изменения канальцевой реабсорбции в тубулярных сегментах почечной медуллы и сохраняется на изолированной почке. Решающую роль играет интерстициальное гидростатическое давление.

Механизм «давление – натрийгидроурез» при ЭГ

Нормальное функционирование этого механизма возможно лишь в том случае, если причины, вызывающие изменение АД, одновременно не повреждают базисных внутрипочечных механизмов. При нарушении этого условия для удаления с мочой равновеликого (у здоровых людей) количества натрия и воды требуется более высокое АД, следовательно, происходит становление гипертензии (переключение почек на более высокий уровень регуляции).

В результате переключения почек происходит задержка натрия и воды. Вначале имеется недостаточное расширение артериол при высоком МОС, но оно относительно. Позже (в эксперименте с форсированным введением жидкости – на второй неделе) АГ зависит от абсолютного повышения ОПС. Этот эффект опосредован эндогенным гликозидом – оаубаином, выделяемым в условиях гипергидратации нейронами гипоталамуса и ингибирующего Na



АТФазу у мембран гладко-мышечных клеток резистивных сосудов – накопление в миоплазме ионов кальция и более интенсивное сокращение мышечных клеток с сужением просвета артериол и прекапилляров.

Теории патогенеза ЭГ

Можно выделить 3 наиболее распространенные теории:

1) центрогенную;

2) мембранную;

3) «мозаичную».

Центрогенно-нервная теория патогенеза ЭГ

С точки зрения Г. Ф. Ланга, ЭГ есть следствие психического перенапряжения человека, воздействия на его психическую сферу эмоций отрицательного характера, психотравматизации.

В эксперименте повышение норадреналина было обнаружено лишь у части молодых людей с лабильной и пограничной артериальной гипертензией. У больных в возрасте 40–60 лет концентрация норадреналина не отклоняется от нормы. Таким образом, нет оснований полагать наличие прямой связи между тонусом симпатической системы и артериальным давлением.

Первопричины, пускающие в ход цепную реакцию патогенеза, со временем у большинства больных сходят на нет («мавр сделал свое дело»). АД по-прежнему поддерживается на высоком уровне, но за счет других самовоспроизводящихся механизмов.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)