banner banner banner
Имитационное моделирование движения поезда на участках автономной тяги
Имитационное моделирование движения поезда на участках автономной тяги
Оценить:
Рейтинг: 0

Полная версия:

Имитационное моделирование движения поезда на участках автономной тяги

скачать книгу бесплатно

Имитационное моделирование движения поезда на участках автономной тяги
Евгений Лосев

Рассмотрено имитационное моделирование движения поезда на участках автономной тяги средствами пакета визуального моделирования Xcos. Моделирование выполнено применительно к основным задачам тяги поездов и тяговых расчётов. Книга может быть полезна студентам учебных заведений железнодорожного транспорта и инженерно-техническим работникам, специализирующихся на тяговых расчётах и испытаниях тепловозов.

Имитационное моделирование движения поезда на участках автономной тяги

Евгений Лосев

© Евгений Лосев, 2023

ISBN 978-5-0056-9166-8

Создано в интеллектуальной издательской системе Ridero

ВВЕДЕНИЕ

Сложные технические процессы математически описываются системой нелинейных дифференциальных уравнений, которые в общем случае не решаются в аналитическом виде, а использование численных методов решения нередко сопряжено со значительными вычислительными трудностями. Визуальное имитационное моделирование таких процессов позволяет наглядно представить их в виде структурной схемы, состоящей из различных блоков – своего рода «кирпичиков», из которых строится «здание», т. е. моделируемая система. К таким сложным техническим процессам относится и процесс движения поезда, моделированию которого на участках автономной тяги посвящена эта книга.

В книге описаны математические модели, созданные средствами пакета Xcos, входящего в свободно распространяемую программу SciLab и являющегося бесплатным аналогом таких коммерческих пакетов как Simulink и VisSim. Несмотря на это, Xcos не уступает им по своим возможностям, во всяком случае, в рамках решаемых нами здесь задач. Скачать SciLab можно на сайте https://www.scilab.org/. Пакет поставляется в версиях для операционных систем Windows, Linux и MacOS.

Структура книги построена следующим образом. В каждой главе рассмотрена группа однотипных задач, решаемых тяговыми расчётами – прикладной частью инженерной дисциплины «Тяга поездов» [1]. В начале главы даётся теоретическое описание задачи; затем приведено построение имитационной модели средствами Xcos; далее представлены результаты моделирования.

Предполагается, что читатель знаком с основами моделирования в среде Xcos или ей аналогичных.

ГЛАВА 1. СИЛА ТЯГИ АВТОНОМНЫХ ЛОКОМОТИВОВ

Сила тяги есть сила реакции рельса F

, приложенная к колесу в точке его касания рельса и равная по величине и направлению силе, приложенной к центру движущей оси и направленной в сторону направления движения.

Сила тяги F

, называемая касательной и приложенная к ободу движущих колёс, определяется из условия, что её работа за оборот колеса равна:

для тепловоза – работе газа во всех цилиндрах дизеля за вычетом работы сил сопротивления в самом дизеле (главным образом трения), энергии, затраченной на вспомогательные нужды (компрессор, холодильник, аккумуляторная батарея, вентиляторы и пр.) и работы сил сопротивления в передаточном механизме;

для газотурбовоза – работе газа на лопатках турбины за вычетом работы, затрачиваемой на компрессор, вспомогательные нужды и на преодоление сил сопротивления в передаточном механизме;

для паровоза – работе пара в паровой машине за вычетом работы сил в дышловом механизме.

Сила тяги любого локомотива ограничена сцеплением колеса с рельсом. Это значит, что сила тяги не может превышать силу сцепления, иначе возникнет боксование. Математически это выражается так:

F

? 1000?

P

, кгс (1)

где P

 – сцепной вес, тс – сумма нагрузок от всех

движущих осей на рельсы; ?

 – коэффициент сцепления.

1.1. Сила тяги и тяговые характеристики тепловозов

Расчётный коэффициент сцепления для тепловозов определяется по эмпирической формуле вида

?

= a + b / (c + v), (2)

где

a, b и c – коэффициенты, зависящие от серии тепловоза;

v – скорость движения, км/ч.

Подставив (2) в (1), определяем силу тяги по сцеплению.

Кроме ограничения по сцеплению сила тяги тепловоза также ограничивается мощностью дизеля и электрической передачи.

Сила тяги по дизелю определяется выражением

F

= 0,094d

lmp

n

?

?

?

/v/?, кгс (3)

где

d

 – диаметр цилиндров, см;

l – ход поршней, м;

m – число цилиндров дизеля;

p

 – среднее индикаторное давление, кгс/см

;

n

 – частота вращения коленвала, об/мин;

?

 – механический к. п. д. дизеля, учитывающий потери

только в самом дизеле;

?

 – коэффициент, учитывающий расход мощности на

вспомогательные нагрузки;

?

 – к.п.д. электрической передачи;

? – тактность дизеля: 2 – двухтактный; 4 – четырёхтактный.

Сила тяги по передаче определяется как

F

= 367I

U

?

?

/v, кгс (4)

где

I

 – ток главного генератора, A;

U

 – напряжение главного генератора, В;

?

 – к.п.д. тягового электродвигателя;

?

 – к.п.д. зубчатой передачи.

Рис. 1.1.1

Сила тяги по электрической передаче ограничивается величиной тока, вызывающего перегрев обмоток главного генератора или тяговых электродвигателей выше допустимого.

Тяговые характеристики тепловозов различных серий приводятся в Правилах тяговых расчётов для поездной работы (ПТР) [2] или в технической документации завода-изготовителя.

Паспортные тяговые характеристики тепловозов 2ТЭ25КМ, 2ТЭ116У и ТЭП70 показаны на рис. 1.1.1 – 1.1.3.

Рис. 1.1.2

1.2. Сила тяги и тяговые характеристики газотурбовозов

Сила тяги газотурбовозов с электрической передачей постоянного, постоянно-переменного и переменного тока с частотным регулированием имеет те же ограничения, что и рассмотренные в предыдущем параграфе. Тяговые характеристики газотурбовозов с такими «эластичными» передачами также схожи с тепловозными.

При механической передаче или жёсткой передаче переменного тока (при свободной тяговой турбине) тяговая характеристика как бы копирует моментную характеристику тяговой турбины. Простейшая одно- или двухступенчатая газовая турбина имеет практически линейную моментную характеристику, а следовательно, газотурбовоз с такой турбиной имеет также линейную тяговую характеристику, причём обычно ограничение по сцеплению лежит значительно выше силы тяги при частоте вращения турбины и, соответственно, скорости движения v = 0.

Рис. 1.1.3

Приближение тяговой характеристики к гиперболической осуществляется либо введением одной или нескольких ступеней скорости, либо за счёт улучшения характеристики турбины применением различных программ регулирования, в частности, поворотом лопаток. При нерегулируемых проточных частях близкую к гиперболической характеристику можно получить за счёт форсирования турбокомпрессорной части на нерасчётных режимах, увеличивая скорость вращения вала турбокомпрессора при изменении скорости тяговой турбины [3].

1.3. Сила тяги и тяговые характеристики паровозов

В последнее время интерес к казалось бы навсегда ушедшим в историю паровозам вновь возрос в связи с организацией ретро-туров для любителей паровой тяги. Кроме того, по распоряжению РЖД, в России поддерживается небольшой парк горячих паровозов в нескольких локомотивных депо (в специально выделенных для этих целей цехах). Аналогичное положение существует и на Украине.

Расчётный коэффициент сцепления для паровозов согласно ПТР определяется по формуле

?

= 30 / (100 + v). (5)

Кроме ограничения по сцеплению, у паровозов сила тяги ограничивается паропроизводительностью котла (ограничение силы тяги по котлу) и машиной.

Сила тяги по котлу имеет следующую зависимость:

F