banner banner banner
Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее
Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее
Оценить:
Рейтинг: 0

Полная версия:

Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее

скачать книгу бесплатно

Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее
Игорь Лисов

В книге «Разведчики внешних планет: путешествие „Пионеров“ и „Вояджеров“ от Земли до Нептуна и далее» Игорь Лисов в захватывающих подробностях излагает историю подготовки, планирования, финансирования, запусков и полетов «Пионеров» и «Вояджеров» – космических аппаратов, миссией которых являлось исследование планет внешней Солнечной системы. Эти экспедиции позволили получить невероятно ценную информацию о Юпитере, Сатурне, Уране и Нептуне – небесных телах, знания человечества о которых прежде были весьма поверхностными. Два «Вояджера» и по сей день находятся в полете: постепенно теряя мощность, они перестают подавать сигналы и уходят все дальше от Земли, за пределы Солнечной системы. Этим кораблям никогда не суждено вернуться назад, однако на своем борту «Вояджеры» несут послания землян неземным цивилизациям – на случай, если такая встреча когда-нибудь состоится.

Игорь Лисов

Разведчики внешних планет. Путешествие «Пионеров» и «Вояджеров» от Земли до Нептуна и далее

Научный редактор Дмитрий Вибе, д-р физ. – мат. наук

Редактор Ирина Сисейкина

Издатель П. Подкосов

Руководитель проекта А. Шувалова

Ассистент редакции М. Короченская

Корректоры Е. Чудинова, И. Астапкина

Компьютерная верстка А. Ларионов

Арт-директор Ю. Буга

Дизайн обложки А. Бондаренко

© Лисов И., 2022

© ООО «Альпина нон-фикшн», 2022

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Ане Горелышевой

Предисловие

5 ноября 2018 г. американский космический аппарат «Вояджер-2» пересек на расстоянии 17,8 млрд км от Солнца границу, отделяющую вещество Солнечной системы от межзвездного. Шел 42-й год с момента запуска самого знаменитого межпланетного зонда, который отправился в космос с мыса Канаверал 20 августа 1977 г. На его счету были пионерские исследования всех четырех планет-гигантов Солнечной системы – Юпитера, Сатурна, Урана и Нептуна, – выполненные за 12 первых лет полета. Следующие 30 лет «Вояджер-2» пунктуально передавал на Землю данные о солнечном ветре и об обстановке в ударной волне и гелиослое, и вот теперь он прошел гелиопаузу и оказался в потоке межзвездного вещества.

Никто в обозримой перспективе не сможет повторить этот научно-технический подвиг. «Вояджер-2» использовал уникальное расположение внешних планет, подобного которому не случится до 2154 г. Если бы не это обстоятельство, первая разведка газовых гигантов случилась бы намного позднее и обошлась бы в несколько раз дороже. И хотя позднее земные аппараты изучили подробно системы Юпитера и Сатурна и достигли Плутона, «Вояджер-2» до сих пор остается единственным посланцем человечества, который побывал вблизи Урана и Нептуна.

Пионерский этап исследования внешних планет занял 17 лет, с 1972 по 1989 г., и был реализован всего четырьмя американскими космическими аппаратами: двумя «Пионерами» с номерами 10 и 11 и двумя более сложными и совершенными «Вояджерами». Их жизнь и судьба от идеи до старта и на протяжении всего полета является темой книги, которую вы держите в руках. В основу ее положены материалы о «Пионерах» и серия статей о «Вояджерах», опубликованные нами в 2007–2017 гг. в журнале «Новости космонавтики». В подготовке некоторых из них участвовали Анатолий Копик и Павел Шаров, чей вклад автор отмечает с благодарностью. История «Вояджеров», однако, потребовала значительной доработки, а несколько глав по «Пионерам» были по существу написаны заново.

Читатель вправе спросить, почему мы ограничились двумя проектами и четырьмя аппаратами и не включили в повествование детективную историю зонда «Новые горизонты», впервые достигшего Плутона в июле 2015 г. Краткий ответ состоит в том, что в полет к Плутону отправился аппарат совсем другого поколения и другой эпохи и что сам Плутон является не большой планетой, а лишь одним из самых крупных астероидов занептунного пояса (известного также как пояс Койпера), хотя и самым известным из них и очень интересным. Кроме того, это обязало бы нас рассказать и о трех других аппаратах, исследовавших дальние планеты, – о «Галилео» и «Кассини», в течение многих лет успешно работавших на орбитах вокруг Юпитера и Сатурна, и о новой юпитерианской станции «Джуно». К счастью, история «Новых горизонтов» уже описана руководителем этого проекта д-ром Аланом Стерном и издана в отличном переводе Виктории и Александра Краснянских[1 - Стерн А., Гринспун Д. За новыми горизонтами: Первый полет к Плутону. – М.: Альпина нон-фикшн, 2020. – Здесь и далее примечания автора, если не указано иное.].

Среди источников необходимо в первую очередь назвать описания проектов «Пионер» и «Вояджер», изданные Национальным управлением по аэронавтике и космосу NASA: The Pioneer Mission to Jupiter (SP-268), Pioneer Odyssey: Encounter with a Giant (SP-349), Pioneer Odyssey (SP-396), Pioneer: First to Jupiter, Saturn, and Beyond (SP-446), Voyage to Jupiter (SP-439), Voyages to Saturn (SP-451). Все содержащиеся в них данные были перепроверены, дополнены и исправлены по пресс-релизам NASA и его центров за период с 1969 г., по отчетам Сети дальней связи DSN о сопровождении межпланетных аппаратов и реконструкции ее технических средств, по научным статьям о результатах исследований в области планетологии, физики космической среды и небесной механики.

Автор считает своим долгом предупредить, что вы держите в своих руках сложную книгу, полную технических терминов, сокращений из трех и более букв, а также дат, диаграмм и таблиц. Тем большей будет радость читателя, который с нашей помощью сумеет разобраться в исторических и технических деталях этой удивительной и героической истории.

Введение

Историю пионерских исследований ближайших к Земле планет Солнечной системы – Венеры и Марса – можно рассматривать через призму напряженного соперничества США и СССР. Хотя советские станции были первыми отправлены к Венере (февраль 1961 г.) и Марсу (ноябрь 1962 г.), заданную программу изучения этих планет первыми смогли выполнить американские космические аппараты (КА). «Маринер-2» был запущен 27 августа 1962 г. и впервые исследовал Венеру с пролетной траектории 14 декабря того же года. «Маринер-4» стартовал 5 ноября 1964 г. и впервые отснял на пролете с близкой дистанции планету Марс 15 июля 1965 г.

«Венера-7» первой сумела достичь в рабочем состоянии поверхности Венеры 15 декабря 1970 г. Последующие советские аппараты внесли определяющий вклад в изучение этой негостеприимной планеты, хотя американские станции «Маринер-5» и «Пионер-Венера» (орбитальный аппарат и атмосферные зонды) тоже выступили неплохо. «Марс-3» первым совершил мягкую посадку на Марс 2 декабря 1971 г., но, к несчастью, сразу после этого прекратил работу. Основные «сливки» в первоначальном изучении Марса сняли американцы – «Маринер-9» долго и плодотворно работал на орбите вокруг планеты, а два «Викинга» летом и осенью 1976 г. выполнили успешные посадки на Марс, изучили грунт планеты и попытались найти признаки жизни.

К сожалению, ни одно из предложений советских разработчиков по созданию КА для исследования дальних планет не было принято к реализации. На изучение Юпитера, Сатурна, Урана и Нептуна отправлялись только американские и позднее европейские аппараты.

«Пионер-10», запущенный 3 марта 1972 г., выполнил первый пролет и исследования Юпитера 2 декабря 1973 г.

«Пионер-11», который стартовал 6 апреля 1973 г., прибыл к Юпитеру 3 декабря 1974 г., а от него направился к Сатурну, которого впервые достиг 1 сентября 1979 г.

«Вояджер-1» был запущен 5 сентября 1977 г. и провел более подробное изучение систем Юпитера и Сатурна в ходе пролетов 5 марта 1979 г. и 12 ноября 1980 г.

«Вояджер-2» отправился в путь 20 августа 1977 г. и последовательно посетил все четыре гигантские планеты: 9 июля 1979 г. – Юпитер, 26 августа 1981 г. – Сатурн, 24 января 1986 г. – Уран и 25 августа 1989 г. – Нептун. Практически все, что мы знаем о двух последних, основано на данных приборов «Вояджера-2».

Подсчитано, что уже к моменту пролета «Вояджера-2» у Нептуна на Землю было передано около 5 трлн бит научных данных. Но это – бесстрастные числа, а по сути именно «Пионеры» и «Вояджеры» открыли нам внешние планеты Солнечной системы. На потрясающих воображение снимках мы увидели новые, неизвестные миры. Многие загадки планет-гигантов и их спутников будоражат умы ученых и по сей день.

Все четыре КА в результате встреч с планетами развили скорости, достаточные для того, чтобы навсегда покинуть Солнечную систему. «Вояджер-1» является лидером этого парада. 6 августа 2020 г. он ушел от Солнца на 150 астрономических единиц, то есть оказался от него в 150 раз дальше, чем Земля. Это самый далекий космический аппарат, когда-либо запущенный в космос человеком (см. таблицу 1), и конкурентов ему, по крайней мере в ближайшие десятилетия, не предвидится.

Оба «Вояджера» уже вышли за пределы той области околосолнечного пространства, где доминирует истекающий от Солнца поток вещества, проникли в межзвездную среду и регулярно сообщают нам сведения о ней. Руководители полета надеются, что вплоть до 50-летней годовщины запуска аппараты все еще будут передавать научную информацию.

Глава 1

«Пионеры» Юпитера

Гравитационный маневр – ключ к Солнечной системе

Главной идеей при создании «Пионеров» и «Вояджеров» было использование гравитационного маневра в поле тяготения одной планеты с набором скорости для полета к другой. Если бы аппараты летели по «классическим» полуэллипсам Вальтера Гоманна, описанным им в 1925 г., то перелет до Нептуна, например, занял бы почти 31 год вместо 12, не говоря уже о том, что одна станция смогла бы исследовать лишь одну планету.

Вся история космонавтики – это история достижения все более высоких скоростей. Спутник на низкой околоземной орбите высотой 200 км имеет скорость 7790 м/с. Чтобы долететь до Луны, нужно увеличить ее как минимум до 10 920 м/с. Если добавить еще чуть-чуть – какие-то 100 м/с, то полная энергия относительно Земли станет положительной, а значит, ваш космический аппарат уйдет в бесконечность по гиперболе и не вернется.

Но всякая прибавка скорости в космонавтике оплачивается расходом топлива в соответствии с формулой Циолковского. Когда стартовали «Пионеры» и «Вояджеры», высокоэффективные электроракетные двигатели только создавались и не было опыта длительного разгона с характерной для них малой тягой, обретенного в самом конце XX в. В 1970-е гг. можно было рассчитывать лишь на традиционные жидкостные (ЖРД) или твердотопливные (РДТТ) ракетные двигатели.

Ракета «Союз» выводила на низкую орбиту КА массой около 7000 кг. «Молния» – тот же «Союз» с четвертой ступенью – отправляла к Луне до 1600 кг при стартовой массе 305 т. На этом примере можно увидеть и цену выхода на орбиту, и плату за добавку в 3100 м/с, от скорости спутника до скорости освобождения.

Достижение планет требует намного больших скоростей.

Земля обращается вокруг Солнца со средней скоростью 29,78 км/с. Среднее расстояние до светила называется астрономической единицей (а.е.), которая в привычных нам единицах равна 149,6 млн км. Более строгое описание гласит, что Земля обращается по эллипсу, в одном из двух фокусов которого находится Солнце, и что одна а.е. – это большая полуось ее орбиты[2 - В 2012 г. Международный астрономический союз зафиксировал величину астрономической единицы 149 597 870 700 м, фактически отвязав ее от параметров орбиты Земли. – Прим. науч. ред.]. Однако этот эллипс довольно близок к окружности, и для оценочных расчетов различием между ними можно пренебречь.

Рассмотрим абстрактную задачу перелета от Земли к Нептуну. Для простоты будем считать орбиту Нептуна круговой с радиусом 30 а.е. и лежащей в той же плоскости, что и земная орбита. (Эта плоскость называется также плоскостью эклиптики – она пересекает небесную сферу по линии видимого годового движения Солнца.) Можно доказать, что среди всех возможных траекторий перелета минимальную скорость отправления имеет половинка эллипса, касающегося земной орбиты в своей ближайшей к Солнцу точке – в перигелии – и орбиты Нептуна в самой далекой точке – в афелии. Простые формулы небесной механики позволяют вычислить скорость в перигелии, необходимую для удаления на 30 а.е., – это 41,43 км/с. Это значит, что к имеющейся средней орбитальной скорости Земли надо добавить еще 11,65 км/с. Естественно, в правильном направлении – в том же, в котором летит наша планета. Если две скорости имеют различные направления, нужно будет выполнить векторное сложение, осознавая при этом, что сумма окажется меньше ожидаемой. И естественно, нужно стартовать в совершенно определенную дату – иначе после 30,6 года пути окажется, что Нептун находится не там, куда мы прилетели, а в абсолютно иной точке своей орбиты.

Величина 11,65 км/с ужасает, тем более что это не отлетная, а остаточная скорость КА – уже после того, как он преодолел притяжение Земли и ушел от нее «на бесконечность». На самом деле не все так страшно. Нам не потребуется добавлять к типичной скорости освобождения 11,02 км/с еще столько же и даже больше.

Из закона сохранения энергии следует, что, если из квадрата начальной скорости у Земли вычесть квадрат скорости освобождения на этой же высоте, получится квадрат остаточной скорости объекта. (В баллистических расчетах указанную величину называют характеристической энергией и обозначают символом C

.)

Вот почему для нашего условного гоманновского перелета к Нептуну достаточно уйти с низкой орбиты в правильный момент и в правильном направлении со скоростью 16,04 км/с, которая «всего» на 5,02 км/с выше скорости освобождения. И тогда не исключено, что через 30,6 года КА будет еще жив и что-нибудь сообщит. Конечно, можно немного распрямить траекторию и сократить время перелета – но за счет увеличения отлетной скорости, которая, конечно, меньше той, что мы вообразили, но все же очень велика.

За всю историю космонавтики только один раз была реализована отлетная скорость выше рассчитанной нами – 19 января 2006 г. при отправке КА «Новые горизонты» к Плутону. Получив начальную геоцентрическую скорость 16,21 км/с, этот аппарат достиг цели после 9,5 лет полета. «Вояджер-2» отправился в путь, имея лишь 15,20 км/с, и все же за 12 лет добрался до Нептуна. Согласитесь, 9,5 или 12 лет – это намного лучше, чем 31 год. Волшебное средство сокращения продолжительности межпланетного полета и называется гравитационным (пертурбационным) маневром.

Зададим себе такой вопрос: что значит «уйти на бесконечность» после старта с Земли? Он имеет смысл для ограниченной задачи трех тел – двух центров притяжения, Солнца и Земли, и движущегося под их действием объекта. В первом приближении можно говорить о пересечении некой границы, до которой мы еще должны рассматривать гиперболическое движение КА относительно родной планеты, пусть и возмущаемое Солнцем, а после уже имеем право считать его спутником Солнца, хотя и испытывающим остаточное возмущение Земли. Эта граница имеет форму, близкую к сфере радиусом 1 млн км, которая называется сферой действия Земли. Так как Юпитер намного массивнее, его сфера действия обширнее, ее радиус – 55 млн км.

Допустим, мы летим от Земли на межпланетном корабле по орбите с афелием около 9 а.е., пересекающей орбиту Юпитера на расстоянии 5,2 а.е. от Солнца. Более того, мы выбрали траекторию так, что пройдем вблизи Юпитера, но все же не попадем в него. (Не пытайтесь проделать это в реальности – там очень мощная радиация!) Чтобы понять в первом приближении, что из этого получится, разделим наш путь на три части: до входа в сферу действия планеты, внутри этой сферы и после выхода из нее. Снаружи мы считаем единственным притягивающим центром Солнце, а внутри – только Юпитер.

На входе в сферу действия мы имеем скорость корабля в гелиоцентрической системе отсчета. Зависимость ее от конкретной точки входа довольно существенна, но на ход рассуждений это не влияет. Примем, что точка входа находится в ближайшей к Солнцу части сферы действия, где скорость корабля составляет 13,7 км/с. Орбитальная скорость Юпитера в этой же системе близка к 13,1 км/с. Чтобы определить начальные условия полета относительно планеты, мы должны вычесть из вектора нашей гелиоцентрической скорости на входе вектор скорости Юпитера – честно нарисовать треугольник скоростей и найти их разность по правилам векторной алгебры. Учитывая, что угол между двумя векторами в нашем случае близок к 53°, планетоцентрическая скорость корабля составит 11,9 км/с.

В пределах сферы действия мы движемся по гиперболической орбите относительно Юпитера, параметры которой определяются вектором состояния (три координаты и три компоненты скорости) в точке входа. По гиперболической – потому что пришли из бесконечности с ненулевой относительной скоростью и имеем положительную полную энергию относительно планеты. Нельзя оказаться на орбите вокруг Юпитера или любой другой планеты без специальных ухищрений!

Результат облета сильнее всего зависит от положения точки входа, которое задается предшествующей межпланетной траекторией и проведенными на подлете коррекциями. Чем ближе к планете мы пролетим, тем сильнее ее тяготение завернет нашу траекторию. К примеру, мы могли подходить с таким расчетом, чтобы траектория полета указывала на точку правее Юпитера на 15 его радиусов – эта величина называется прицельной дальностью. В реальности минимальное расстояние от центра планеты будет намного меньше, и, если прицельная дальность выбрана неправильно, мы можем столкнуться с планетой. Но мы взяли прицельную дальность с запасом, а потому благополучно огибаем Юпитер и возвращаемся к границе сферы действия, имея ту же самую величину скорости 11,9 км/с, что и при входе, но другое направление полета. Заходили вдоль одной асимптоты гиперболы, выходим вдоль второй.

Мы прощаемся с планетой, для чего векторно складываем с нашей новой скоростью относительно Юпитера скорость планеты относительно Солнца. Последняя имеет прежнюю величину и лишь слегка отклонилась по направлению – мы считаем, что пролет длился недолго по сравнению с периодом обращения планеты, и на самом деле так оно и есть. Однако направление отлетной скорости сильно изменилось: в нашем случае корабль повернул на 84° влево. Треугольник скоростей выглядит совсем иначе, и мы заканчиваем сближение с иной гелиоцентрической скоростью и по величине, и по направлению, нежели скорость входа. Теорема косинусов подсказывает, что величина скорости относительно Солнца увеличилась до 24,1 км/с!

Да, скорость корабля увеличилась на 75 % – и это произошло оттого, что мы позаимствовали немного энергии у Юпитера и чуть-чуть притормозили его орбитальное движение. В общем случае могло быть и наоборот – мы отдали бы часть энергии планете, а сами замедлились. Достаточно интересно «поиграть» с этими векторами, считая задачу двумерной и рассматривая события «сверху», со стороны Северного полюса мира. Несложно показать, что при облете планеты с задней полусферы корабль выйдет с большей скоростью, чем имел на входе, а с передней – наоборот.

Самый первый пертурбационный маневр в истории космонавтики был выполнен в ходе полета советской межпланетной станции Е-2А («Луна-3»), запущенной 4 октября 1959 г. на сильно вытянутую эллиптическую, почти параболическую орбиту спутника Земли. Выполняя облет Луны с целью фотографирования ее обратной стороны, станция затормозила, изменила свою траекторию на чисто эллиптическую меньшего размера и вернулась затем к Земле с направления, благоприятного для передачи изображений. Этот полет стал возможным в результате пионерских работ В. А. Егорова, М. Л. Лидова, Д. Е. Охоцимского и их коллег из Математического института АН СССР, выполненных в 1957 г. под руководством академика М. В. Келдыша.

В США к идее гравитационных маневров пришли своим путем.

Летом 1961 г. в Группе траекторий Лаборатории реактивного движения (Jet Propulsion Laboratory, JPL) стажировался 26-летний студент-математик из Калифорнийского университета в Лос-Анджелесе Майкл Эндрю Минович. Решив поставленную перед ним конкретную математическую задачу определения параметров траектории полета в поле тяготения между двумя заданными точками при фиксированном времени перелета, он заинтересовался проблемой расчета траектории КА, выполняющего облет Марса с последующим возвращением к Земле. Будучи одним из вариантов ограниченной задачи трех тел, аналитического решения она не имела, а численный расчет на имеющемся в JPL компьютере IBM 7090 сходился далеко не всегда.

Минович придумал способ приближенной оценки параметров облетной траектории, пригодных для дальнейшего численного расчета, и заметил интереснейшую вещь: энергия КА после сближения с планетой – если измерять ее в системе отсчета, связанной с Солнцем, – может очень значительно отличаться от энергии до сближения.

В августе Майкл подготовил 47-страничный доклад с алгоритмом расчета траекторий в случае последовательного пролета нескольких планет. Молодой автор показал, что, войдя с нужного направления в поле тяготения планеты, можно «позаимствовать» часть ее энергии и выйти в другом направлении со значительно большей энергией и гелиоцентрической скоростью. В частности, на выходе можно получить направление и скорость, позволяющие направить аппарат к другой, более далекой планете. При этом скорость отлета от Земли может оказаться меньше, а время перелета – короче, чем если бы аппарат сразу запускался ко второй планете. Аналогичный «фокус» можно проделать и у второй планеты – и направиться к третьей. В качестве иллюстрации Минович предложил для расчета траекторию Земля – Венера – Марс – Земля – Сатурн – Плутон – Юпитер – Земля.

Руководитель Майкла встретил эту инициативную работу без энтузиазма, и Миновичу пришлось самостоятельно программировать свои уравнения и вводить исходные данные – координаты девяти планет на 1960–1980 гг. Он проводил расчеты с января 1962 по сентябрь 1964 г. на институтском компьютере, а с июня 1962 г. и на машинах в JPL, после того как продемонстрировал руководителю Группы траекторий Виктору Кларку свои результаты расчета траектории Земля – Венера – Марс – Земля и получил поддержку.

В марте 1963 г. Минович представил в JPL официальный отчет на 130 страницах уже с конкретными вариантами траекторий Земля – Венера – Меркурий и Земля – Венера – Марс. Среди них, в частности, была и та трасса, по которой спустя десять лет проследовала американская АМС «Маринер-10» (Mariner 10). Она была запущена 3 ноября 1973 г. и совершила 5 февраля 1974 г. пролет Венеры, благодаря которому была направлена к своей главной цели – Меркурию. Это и был первый гравитационный маневр в американской космической программе.

Весной и летом 1963 г. Минович выступил с несколькими докладами, после чего его работа стала хорошо известна в профессиональной среде, а метод взят на вооружение. Практическое использование «планетной» тяги поначалу казалось затруднительным из-за высокой чувствительности метода к погрешностям траекторий, но в начале 1965 г. Эллиотт Каттинг и Фрэнсис Стёрмс показали, что с использованием существующей навигационной аппаратуры необходимые точности достижимы.

Майкл Минович и сегодня живет в Лос-Анджелесе и пребывает в полной уверенности, что именно он изобрел метод гравитационного маневра и открыл человечеству доступ к планетам Солнечной системы. Он утверждает, что все его предшественники хоть в чем-нибудь да ошиблись. Вальтер Гоманн (1925) и Гаэтано Крокко (1956) рассматривали вариант посещения одним кораблем нескольких планет, но возмущения от его сближения с планетами, скорее всего, не использовали и пытались компенсировать либо включениями бортовых двигателей, либо взаимно. Фридрих Цандер, зная об изменении энергии КА при пролете у планеты, оставался якобы «в плену» гоманновских траекторий. Дерек Лауден (1954) вычислял приращение скорости от пролета планеты, но не указывал на возможность его использования. (Ознакомившись с этими претензиями, мы не были удивлены, узнав, что Минович является держателем целого ряда патентов.) О работах советских специалистов, выполненных в конце 1950-х гг., и о полете «Луны-3» он «благоразумно» не упоминает.

Если уж говорить о предшественниках, то нужно заметить, что работа Ф. А. Цандера «Перелеты на другие планеты (Теория межпланетных путешествий)», написанная в 1925–1929 гг., была впервые опубликована на русском языке в 1961 г. – воспользоваться ею американец не мог. Но при внимательном прочтении видно, что Цандер использовал тот же принцип суммирования вектора планетоцентрической скорости КА и скорости самой планеты, что и Минович, вычислял изменение энергии и гелиоцентрической скорости после пролета, считал приращение скорости в результате гравитационного маневра важным ресурсом, оценивал соответствующую ему экономию топлива и поставил вопрос о вычислении максимально возможного удаления корабля от Солнца в результате пролета планеты. Единственное, что Цандер не сделал, – это не направил свой корабль после гравитационного маневра к другой планете.

«Большой тур» начинается

Второй и последний отчет Майкл Минович выпустил в феврале 1965 г. – он был посвящен использованию гравитационного поля Юпитера для полетов к дальним планетам, выхода из плоскости эклиптики и отправки зонда в окрестности Солнца. Все эти идеи были реализованы в период со второй половины 1970-х до начала 1990-х гг.

Автор указывал на возможность перелета по трассе Земля – Юпитер – Сатурн в 1976 г. и Земля – Юпитер – Плутон в 1977 г. с продолжительностью полета до Плутона всего в семь лет. Один из представленных в отчете вариантов предусматривал запуск КА 8 сентября 1977 г. с возможностью дальнейшего полета от Юпитера к Сатурну. Расчет этой траектории, однако, закончен не был: в распоряжении Миновича не было эфемерид планет на период после 1980 г.

Не был он, кстати, и первым, кто опубликовал предложение о гравитационном маневре у Юпитера: Максвелл Хантер, знакомый с работами Миновича, еще в 1964 г. предложил использовать такой пролет для быстрого достижения внешних планет. А осенью 1965 г. с аналогичной идеей выступил аспирант Калифорнийского технологического института Гэри Фландро, приглашенный в JPL продолжить исследования Майкла Миновича.

Он выполнил расчеты различных вариантов пролета внешних планет с использованием поля тяготения Юпитера в 1975–1981 гг. Фландро показал, в частности, что при запуске в 1976–1978 гг. можно осуществить последовательный пролет всех четырех внешних планет – Юпитера, Сатурна, Урана и Нептуна – при весьма скромной отлетной скорости. Фландро дал этой поистине головокружительной траектории название Grand Tour («Большой тур» или «Великое путешествие»), хотя проекты с таким наименованием уже существовали[3 - Вероятно, первым использовал название Grand Tour в космонавтике Стэнли Росс из Lockheed в отчете для Центра Маршалла (июнь 1962 г.), описывающем последовательный пилотируемый облет Марса и Венеры.]. Было ясно, что это уникальная возможность: следующего благоприятного периода для пролета всей четверки больших планет пришлось бы ждать почти 180 лет.

Наибольший интерес к «Большому туру» проявила, что неудивительно, Лаборатория реактивного движения, базирующаяся в Пасадене, в Калифорнии. Уже в декабре 1966 г. руководитель перспективного планирования JPL Хомер Стюарт, говоря современным языком, пропиарил проект «межпланетного бильярда» в журнале Astronautics & Aeronautics. Там же освещались дальнейшие этапы работы над проектом.

Детальное изучение траекторий показало, что пуски по трассе «Большого тура» в принципе возможны в период с 1976 по 1980 г. Как установил в 1967 г. Брент Силвер из Lockheed Missiles and Space Company, в наибольшей степени траектория зависела от того, на каком расстоянии от Сатурна можно будет пройти. Траектории, проходящие сквозь кольца Сатурна, нельзя было рассматривать всерьез из-за высочайшей вероятности гибели аппарата от столкновения с образующими их частицами. Пролет между нижним краем колец и поверхностью Сатурна, по так называемой внутренней траектории, увеличивал отлетную скорость и сокращал продолжительность маршрута до Нептуна на два-три года по сравнению с пролетом выше колец, но условия в этой области были неизвестны, и навскидку шансы благополучно миновать ее оценивались не более чем в 50 %.

Оптимальное время старта к Юпитеру повторялось с интервалом в 13 месяцев. Почему так? Будем считать орбиты обеих планет круговыми. Земля движется вокруг Солнца с угловой скоростью 1 оборот за год, а Юпитер – 1/12 оборота за год. Разность угловых скоростей составляет 11/12, а значит, одно и то же оптимальное взаимное положение двух планет повторяется через 12/11 года[4 - Эта величина называется синодическим периодом обращения Земли относительно Юпитера.]. В реальности обе орбиты немного эллиптические, эллипсы несоосны, а плоскость орбиты Юпитера наклонена на 1,3° к эклиптике. Поэтому оптимальные даты слегка «плавали», а требуемые отлетные скорости заметно отличались. Минимальными они были в 1976 г., а максимальными – в 1980 г.

Разумеется, с каждым годом Сатурн и остальные внешние планеты смещались, отставая от Юпитера; отсюда вытекали дополнительные ограничения на условия встреч. Чтобы при пуске в 1976 г. пройти по «внутренней» траектории у Сатурна, нужно было сначала пролететь на высоте всего 1500 км над Юпитером. Опять же, это расценивалось как неприемлемый риск – как физический, в силу неизвестных пока опасностей, так и баллистический – такую точность прицеливания было трудно реализовать. В 1977 и 1978 гг. полеты по «внутренним» траекториям были намного более выгодными. Сходным образом лучшие из «внешних» траекторий получались в 1976 и 1977 гг.; после этого аппарат прошел бы слишком далеко от Юпитера, чтобы изучить его детально.

Дальнейшие уточнения показали, что наиболее благоприятны пуски в 1977 и 1978 гг. по «внутренней» траектории – условные обозначения 1977I и 1978I, а также в 1977 г. по «внешней» траектории 1977E. Их основные данные приведены в таблице 2.

К концу 1960-х уже не было проблемой придумать и рассчитать межпланетную траекторию с гравитационными маневрами, пусть даже очень хитроумную. Намного сложнее и дороже были следующие шаги на пути к реализации проекта. Имеет ли полет по предложенной траектории очевидную ценность? Каким должен быть облик космического аппарата, способного пройти по ней? Какую научную программу он мог бы выполнить и какие приборы нужно для этого сделать и поставить? Какой носитель потребуется для того, чтобы отправить его в долгое путешествие?

Подготовив ответы на вопросы о потенциальной реализуемости проекта, разработчики должны были доказать необходимость его осуществления, то есть убедить в этом руководство NASA и научное сообщество, которому больше импонировали малые краткосрочные миссии с быстрой отдачей, а затем и правительство, чтобы получить необходимые – и немалые – средства.

В течение нескольких лет было предложено несколько вариантов реализации «Большого тура» и других перспективных проектов изучения дальних планет с аппаратами разного класса и на носителях разной грузоподъемности.

Верхнюю планку возможностей определяла комбинация двух ступеней ракеты «Сатурн V» и третьей ядерной ступени NERVA с тягой 34 тс и удельным импульсом 825 секунд – почти вдвое большим, чем у штатной кислородно-водородной ступени[5 - Удельным импульсом называется сила тяги ракетного двигателя, отнесенная к расходу компонентов топлива. Если тяга измеряется в килограммах силы, а расход – в килограммах массы в секунду, результату по традиции приписывается размерность «секунда». Лучшие химические двигатели на кислороде и водороде имеют удельный импульс около 455 сек.]. Вместе они могли отправить в облет Юпитера полезный груз массой 25 т, в то время как обычный «Сатурн V» – лишь примерно 9 т. Для масштаба: самым тяжелым американским межпланетным аппаратом 1970-х гг. был марсианский «Викинг» (Viking) – чуть более 3500 кг.

Центр космических полетов имени Маршалла, головной разработчик «Сатурна V», предлагал космический комплекс исключительной сложности. Он должен был не просто пройти трассу «Большого тура», но дополнить «обязательную программу» сбросом зондов в атмосферы Юпитера и Сатурна и выходом отделяемых спутников на орбиты вокруг них, а также отправкой отдельного зонда к Плутону.

«Сатурн V» вышел в 1967 г. на летные испытания. Агентство заказало 15 экземпляров носителя под программу «Аполлон» и в проекте бюджета на 1970 финансовый год (ф.г.) просило средства на начало производства еще трех летных машин, но не было уверено, что их получит[6 - И не получило.]. Двигатель NERVA ожидался примерно в 1975 г., а ракетная ступень с ним – к 1978 г., в лучшем случае – к 1977-му. На доводку ядерного двигателя до летного статуса требовалось примерно 600 млн долларов, а на разработку ступени – 500 млн. И затем весь дорогостоящий комплекс «Большого тура» пришлось бы поставить на первую летную ступень со всеми сопутствующими рисками.

В общем, Управление космической науки и приложений NASA не могло открыто отказаться от такой возможности, не внушив законодателям сомнений в необходимости ядерной ступени, но уже в марте 1969 г. сообщило Конгрессу, что «Большой тур» можно реализовать и без нее. И хотя агентство пока не было готово предъявить ни оптимального варианта программы, ни носителя, ни оценки стоимости, заместитель администратора NASA по космической науке Джон Ногл все-таки дал понять, что NASA очень серьезно просчитывает проекты на базе ракеты «Титан-Центавр»[7 - Оценивались также варианты запуска на более легком носителе «Атлас-Центавр», но с дополнительным разгоном с помощью электроракетной двигательной установки (ДУ) на борту КА.].

Выбор носителя и здесь был непрост, потому что затрагивал межведомственные интересы. Носители семейства «Титан» были созданы по заказу ВВС США для запуска военных аппаратов. NASA намеревалось запустить в 1971 г. два тяжелых межпланетных аппарата с целью мягкой посадки на Марс на своей ракете «Сатурн IB» с дополнительной ступенью «Центавр» (Centaur). Этот проект тоже назывался «Вояджер» и имел несчастливую судьбу: в октябре 1965 г. отменили разработку носителя, а в октябре 1967 г. Конгресс прекратил финансирование марсианского аппарата. Проект возродился год спустя под новым именем «Викинг» и с новым носителем: NASA договорилось с ВВС об установке ступени «Центавр» на военный носитель «Титан IIID». Правда, стоимость такой комбинации была головокружительной: 43 млн долларов на работы по интеграции и 19 млн за каждый летный экземпляр, в то время как серийный «Атлас-Центавр» обходился в 10 млн, но зато и грузоподъемность при запуске к Марсу с отлетной скоростью около 12 км/с достигала 3700 кг. Новый носитель «Титан-Центавр» получил еще два официальных обозначения – «Титан IIIE» и «Титан 23E».

Джон Ногл обещал принять решение о характере «Большого тура» в августе-сентябре 1969 г., чтобы затребовать необходимое финансирование начиная с 1971 ф.г. Он также отметил, что, помимо основной версии с пролетом всех четырех внешних планет, имеется ряд возможностей для посещения только двух или трех – эти сценарии получили название «мини-туры».

25 марта 1969 г. сенаторы заслушали доклад Дональда Харта, директора планетарных программ в управлении Ногла. Он сообщил, что не далее как в январе была найдена очень перспективная траектория Земля – Юпитер – Сатурн – Плутон со стартом в 1977 или 1978 г. продолжительностью полета семь лет. Столь же быстро можно было бы пройти маршрут Земля – Юпитер – Уран – Нептун со стартом между 1978 и 1980 гг.

В мае 1969 г. Рабочая группа по внешним планетам, созданная при Управлении космической науки и приложений NASA, поддержала идею разделить «Большой тур» надвое и исследовать двумя аппаратами все пять дальних планет. Подробное изложение нового сценария сделал Джеймс Лонг из Отдела перспективных проектов Лаборатории реактивного движения JPL в июньском номере Astronautics & Aeronautics, а, чтобы все поняли, что проект санкционирован «наверху», NASA оповестило об этой публикации специальным пресс-релизом от 2 июня 1969 г.

Предполагалось, что первый аппарат GT1 стартует в августе 1977 г., минует Юпитер в январе 1979 г. и Сатурн в августе 1980 г., а затем направится к Плутону, которого достигнет в январе 1986 г. При этом «гравитационная роль» Сатурна заключалась главным образом в повороте траектории КА под 25° к плоскости эклиптики – поскольку в момент ожидаемой встречи Плутон находился примерно в 8 а.е. над нею. Дополнительным достоинством сценария, обозначаемого JSP77 – по первым буквам названий исследуемых планет и году старта, был назван безопасный пролет Сатурна выше колец.

Далее аппарат GT2 запускается в ноябре 1979 г. и следует по маршруту JUN79, то есть Юпитер (апрель 1981 г.) – Уран (май 1985 г.) – Нептун (июль 1988 г.), завершая разведку оставшихся планет-гигантов.

За счет разделения задач максимальная продолжительность полета уменьшалась с 12 до 9 лет, что несколько упрощало реализацию. Аппараты запитывались от радиоизотопного генератора. Двигательная установка предлагалась в двух вариантах – на ЖРД или на электроракетных двигателях. Стартовая масса зонда была около 540 кг, в качестве носителя Лонг вновь назвал комбинацию «Титана» с верхней ступенью «Центавр».

Рабочая группа также предложила создать для скорейшего исследования внешних планет более дешевый аппарат класса «Маринер». Созванная в июне 1969 г. конференция ученых из Комиссии по космической науке поддержала эту идею и выдала на-гора план аж из пяти пусков в порядке приоритетов: один старт в 1974 г. для сброса зонда внутрь Юпитера или для отклонения Юпитером к Солнцу и изучения околосолнечной среды, запуск в 1976 г. с целью создания спутника Юпитера, две миссии «Большого тура», описанные выше, и дополнительная экспедиция к Урану и Нептуну со сбросом зондов в начале 1980-х.

В описываемое время NASA еще не имело опыта создания межпланетных аппаратов с гарантированным сроком активного существования в несколько лет. Нужно было доказать техническую реализуемость проекта с учетом большой продолжительности полета (от 7 до 13 лет в зависимости от сценария). С этой целью в JPL в июле 1968 г. была начата перспективная работа по теме TOPS: Thermoelectric Outer Planets Spacecraft, то есть «Термоэлектрический КА для внешних планет». Она предусматривала подготовку проекта, изготовление и испытание отдельных систем и инженерного макета КА, а также создание системы сертификации для длительных миссий. Сначала проработка велась по основному сценарию «Большого тура», затем – для вариантов JSP и JUN.

В декабре 1968 г. необходимый объем средств на проект TOPS был оценен в 17,5 млн долларов; фактически до декабря 1971 г. был израсходован 21 млн – 7 млн в 1970-м, 10 млн в 1971-м и 4 млн в 1972 ф.г., причем от изготовления инженерного макета по ходу реализации отказались. Предварительный проект TOPS был закончен к маю 1970 г., общее описание аппарата и его подсистем появилось в сентябрьском номере Astronautics & Aeronautics, а проект в целом представлен на брифинге для представителей промышленности в сентябре 1971 г.

Проектанты предложили аппарат, питаемый от четырех радиоизотопных генераторов типа MHW-RTG на плутонии-238 суммарной мощностью 550 Вт в начале и 439 Вт после девяти лет использования. Источники питания размещались на откидной 1,5-метровой штанге, служебная аппаратура экранировалась от их воздействия. Предусматривалась и защита от мощных радиационных полей, ожидавшихся в окрестностях Юпитера. Камеры и другие научные инструменты размещались на поворотной (сканирующей) платформе. Штанга магнитометра и детектора плазмы имела длину 9,1 м. Всего под полезную нагрузку резервировалось 107 кг массы и 115 Вт мощности.

TOPS должен был иметь трехосную систему стабилизации, измерительными устройствами которой были солнечный датчик и датчик Канопуса, используемые на АМС серии «Маринер», а исполнительными – маховики, работающие от электросети КА и требующие лишь минимального расхода гидразина в сеансах разгрузки за счет включения в импульсном режиме двигателей ориентации тягой по 0,23 кгс[8 - Три маховика управляют угловыми скоростями КА относительно трех осей за счет принудительного изменения собственной скорости вращения. Внешние возмущения, как правило, «устроены» так, что для сохранения стабилизации КА нужно постоянно увеличивать скорость вращения маховиков. Поэтому время от времени их приходится разгружать – снижать скорость, компенсируя возникающий угловой момент с помощью ЖРД. Сейчас такая схема является общепринятой, но в описываемых далее проектах она не нашла себе места.]. Коррекции траектории возлагались на однокомпонентный ЖРД тягой 25 фунтов (11,3 кгс, 110 Н) с запасом топлива, соответствующим суммарному приращению скорости 220 м/с.

Связной радиокомплекс включал командный приемник S-диапазона, передатчики диапазонов S и X с усилителями двух разных типов и четыре антенны: остронаправленную зонтичную диаметром 4,26 м, разворачиваемую после запуска КА и сходную по конструкции с антенной лунного научного комплекса ALSEP, малонаправленную и две ненаправленные. Он обеспечивал передачу от Нептуна, с расстояния 30 а.е., на скорости 2048 бит/с, что позволяло за 11 суток принять на Земле до 400 снимков размером по 5 Мбит каждый. Для промежуточного хранения данных предусматривалось два записывающих устройства на магнитной ленте емкостью по 1 Гбит и буферная память на 64 Мбит. При пролете Юпитера всю информацию можно было передавать в реальном масштабе времени со скоростью 131 072 бит/с.

Как это делается: биты и байты