banner banner banner
Респираторная поддержка при анестезии, реанимации и интенсивной терапии
Респираторная поддержка при анестезии, реанимации и интенсивной терапии
Оценить:
Рейтинг: 0

Полная версия:

Респираторная поддержка при анестезии, реанимации и интенсивной терапии

скачать книгу бесплатно

– минутный объем дыхания

– минутный объем вдыхаемый (аппарата ИВЛ)

– предварительно заданный дыхательный объем

VIM – инициируемое аппаратом ИВЛ принудительное дыхание

VS – поддержка объемом

Vte – выдыхаемый дыхательный объем

– скорость потока вдыхаемой газовой смеси

ПРЕДИСЛОВИЕ

За последнее время достигнуты большие успехи в респираторной медицине. Появилось много методов и режимов искусственной и вспомогательной вентиляции легких, сложных и эффективных технических средств и технологий, используемых при оказании специализированной анестезиологической и реаниматологической помощи. Это позволило проводить более эффективную респираторную поддержку и спасти жизнь многим тяжелым больным и пострадавшим.

Эффективность анестезиологической и реаниматологической помощи раненым и больным, требующим респираторной поддержки, во многом зависит от уровня профессиональной подготовки медицинских сестер анестезиологических и реаниматологических бригад. Однако их подготовка, особенно по респираторной медицине, в нашей стране пока во многом не отвечает современным требованиям. Кратковременность обучения по специализации и при общем усовершенствовании, отсутствие специального цикла обучения респираторной терапии, в том числе и по респираторной поддержке, при наличии острого дефицита учебно-методической литературы не позволяют медсестрам приобрести необходимые знания, навыки и умения в одном из самых нужных для пациентов и трудном для освоения разделе анестезиологии и реаниматологии.

К сожалению, вышедшие до сих пор учебные издания для медсестер ОАРИТ не содержат многих необходимых для практики данных по ряду вопросов искусственной и вспомогательной вентиляции легких, в них не представлены современные данные по использованию респираторной поддержки во время анестезии, реанимации и интенсивной терапии. Все эти вопросы рассмотрены в настоящем пособии.

Глава 1

КЛИНИЧЕСКАЯ ФИЗИОЛОГИЯ ДЫХАНИЯ

Сущность дыхания и подсистем, обеспечивающих газообмен в организме

Дыхание – процесс поглощения кислорода (О

) из атмосферы, транспортировки его к митохондриям клеток, где вследствие аэробного метаболизма образуется вода, углекислый газ (СО

) и основное количество энергии, необходимой для жизнедеятельности организма, с последующим выведением СО

в атмосферу. Лишь небольшое количество энергии может образоваться без участия кислорода (анаэробный метаболизм).

Кислород и углекислый газ перемещаются из области высокого давления в зону низкого давления, так как в организме поддерживается каскад парциального давления газов.

В атмосферном воздухе в обычных условиях давление – около 760ммрт.ст.(1атмосфера=760ммрт.ст.=101кРа).Воздух содержит 21 % О

(кислорода), 78 % N

(азота) и небольшое количество СО

(углекислого газа), Ar (аргона) и He (гелия). Давление, создаваемое этими газами, равно общему (атмосферному) давлению (760 мм рт. ст.). Парциальное давление О

в сухом воздухе (Р

О

) на уровне моря при атмосферном давлении 760ммрт.ст.равно160ммрт.ст. – (760?21/100=160).Воздух, продвигаясь по верхним дыхательным путям, нагревается и согревается, вальвеолярномвоздухеР

О

будетсоставлятьоколо 100 мм рт. ст. Его определение осуществляют по следующей формуле: Р

О

== [(760 мм рт. ст. минус давление паров воды в альвеолах) ?(21 % минус процент поглощаемого в легких О

)] = [(760 – 47) ? (21 – 7)/100] = 100 мм рт. ст.

Парциальное давление (напряжение) кислорода в артериальной крови (РаО

) – около 80 – 90 мм рт. ст., в венах (Р

O

)=40мм рт.ст., авмитохондрияхклетокснижаетсядо3ммрт.ст.Послеоксигенации в легких кровь поступает по легочным венам в левые отделы сердца и далее в ткани организма.

Постепенно снижается и напряжение СО

от митохондрий до атмосферы. Кровь из тканей возвращается в правые отделы сердца, она имеет Р

CO

= 45 мм рт. ст. Кровь идет к легким по легочным артериям к легочным капиллярам, где происходит отдача СО

через альвеолы в атмосферу (Р

СО

= 34 – 44 мм рт. ст., а Р

СО

– практически равно 0).

Таким образом, сущность дыхания – это обеспечение доставки к клеткам организма кислорода и выведение их них СО

. При этом вследствие окисления органических веществ освобождается энергия, необходимая для всех видов жизнедеятельности.

Система дыхания – одна из важнейших функциональных систем организма, поддерживающая оптимальные величины парциального давления O

и СО

, а также рН в крови и тканях.

Эффективный газообмен в организме возможен при интеграции и координации функций различных подсистем (этапов) системы дыхания (рис. 1.1).

Рис. 1.1. Схема газообмена в организме

Система дыхания включает в себя следующие подсистемы (схема):

1) внешнее дыхание, обеспечивающее газообмен в легких, а также через кожу и слизистые оболочки дыхательной функцией легких, кожи и слизистых оболочек;

2) транспорт газов кровью, осуществляемый дыхательной функцией сердечно-сосудистой системы и крови;

3) внутреннее, тканевое дыхание (ферментативный процесс биологического окисления в клетках), обеспечивающее газообмен в тканях.

Все эти подсистемы работают во взаимосвязи благодаря нейрогуморальной регуляции (дыхательный центр находится в ретикулярной формации головного мозга).

Основные механизмы газообмена в легких, транспорта газов кровью и газообмена в тканях, показатели, характеризующие их

Газообмен в легких («легочное дыхание») обеспечивается: 1) легкими с дыхательными путями и капиллярным кровотоком, 2) грудной клеткой с дыхательными мышцами и 3) аппаратом управления. С помощью легочного дыхания осуществляется обмен О

иСО

между атмосферным воздухом и артериальной кровью. Газообменная функция легких – одна из важнейших.

Газообмен в легких обеспечивается тремя механизмами: вентиляцией альвеол, диффузией газов через альвеолокапиллярную мембрану и кровотоком в легочных капиллярах.

Вентиляция легких происходит благодаря работе дыхательных мышц (диафрагмы, межреберных и др.) и изменению объема легких с продвижением по воздухоносным путям дыхательного газа: на вдохе от атмосферы до альвеол и обратно на выдохе. Воздухоносные пути (ВП) подразделяют на верхние (полость носа, носовая и ротовая часть глотки) и нижние (гортань, трахея, бронхи, включая внутрилегочные разветвления бронхов). В носу, во рту и в глотке вдыхаемый воздух увлажняется и согревается. Во время вдоха воздух поступает в легкие сначала по механизму объемного потока (в первых 16 разветвлениях, до конечных бронхиол), а затем путем диффузии газов в переходной и дыхательной зонах (17 – 23 генерации ВП) – в дыхательные бронхиолы, альвеолярные ходы, альвеолярные мешочки до альвеол, объединенных под названием ацинусов или респиронов (рис. 1.2).

Рис. 1.2. Схема воздухоносных путей человека по Е. R. Weibel (1963)

Эпителий, выстилающий внутреннюю поверхность альвеолы, состоит из плоских выстилающих клеток (I тип), занимающих до 95 % площади альвеолярной поверхности, и секреторных (II тип) продуцирующих и секретирующих сурфактант, состоящих из протеинов и фосфолипидов. Он распределяется по альвеолярной поверхности и снижает поверхностное натяжение. Это предотвращает спадение альвеол и образование ателектазов. В зоне альвеол базальные мембраны эпителия и эндотелия создают сверхтонкий барьер для обмена газов, а также воды и растворенных в ней веществ между плазмой и интерстициальным пространством.

Из общей емкости легких (5 л) бо?льшая часть (около 3 л) приходится на дыхательную зону, которая включает в себя около 300 млн альвеол, площадь которых 50 – 100 м

, а толщина – 0,5 мкм.

(!) Эффективность вентиляции зависит от объема альвеолярной вентиляции

и характера ее распределения в легких (равномерности).

При каждом вдохе в легкие поступает у здорового взрослого человека около 500 мл воздуха (колебания дыхательного объема, V

= 360 – 670 мл). Через дыхательную зону проходит примерно на 150 мл воздуха меньше, потому что объем так называемого «мертвого пространства» (V

), где газообмен почти не осуществляется, составляет 2,2 мл/кг массы больного. Поэтому газообмен в легких будет определяться не минутным объемом дыхания (

= 5,6 – 8,1 л/мин в норме), а минутным объемом альвеолярной вентиляции, которая рассчитывается по формуле:

Объемальвеолярнойвентиляцииопределитьтрудно, поэтому в клинической практике чаще всего ограничиваются определением минутного объема дыхания с помощью волюмоспирометра и учитывают при этом частоту дыхания. При частом и поверхностном дыхании, когда резко возрастает объем физиологического мертвого пространства, при нормальном или даже увеличенном минутном объеме дыхания может быть снижен объем альвеоляр

ной вентиляции. Так,

например, при V

=300 мл и f = 20 мин

,

составит 6 л/мин, а

= 3 л/мин. Поэтому объем вентиляции лучше оценивать на основании определения содержания СО

вконечной порции выдыхаемого воздуха.

Наиболее информативным показателем, характеризующим объем альвеолярной вентиляции, является концентрация (парциальное давление) углекислого газа в конечно-выдыхаемом воздухе – F

CO

(P

CO

).

При отсутствии нарушения вентиляции (снижения или увеличения объема альвеолярной вентиляции) P

CO

почти равно парциальному давлению углекислого газа в альвеолярном воздухе (P

CO

), которое лишь на 1 мм рт. ст. меньше, чем парциальное давление CO

в артериальной крови (PаCO

). Однако при нарушении вентиляции между ними может быть существенная разница.

При нормальной альвеолярной вентиляции в условиях спонтанного дыхания организм поддерживает постоянство состава альвеолярного воздуха, поддерживая парциальное давление O

в альвеолярном воздухе (Р

О

) на уровне 90 – 110 мм рт. ст., а Р

СО

– 34 – 44 мм рт. ст. При изменении объема вентиляции Р

СО

изменяется быстрее, чем РаСО