banner banner banner
Методы и методики количественного анализа. Практическое пособие
Методы и методики количественного анализа. Практическое пособие
Оценить:
Рейтинг: 0

Полная версия:

Методы и методики количественного анализа. Практическое пособие

скачать книгу бесплатно


1.4.3. Технические характеристики оборудования

Данный критерий является наиболее значимым при принятии решения о приобретении приборов и оборудования. Приобретаемое оборудование по своим метрологическим и техническим характеристикам должно в обязательном порядке удовлетворять требованиям, предъявляемым к оборудованию лабораторий, а также позволять проводить испытания продукции с производительностью и себестоимостью, обеспечивающими конкурентоспособность испытательной лаборатории. Под этим подразумевается, что:

– диапазон измерения контролируемого показателя у средства измерения перекрывает интервал допустимых значений этого показателя в испытываемой продукции;

– погрешность измерения с использованием данного средства измерения соответствует заданным пределам допускаемых значений, при этом оптимальным вариантом считается тот, в котором погрешность измерения находится в интервале примерно от 20 до 60% установленных допустимых пределов;

– диапазон воспроизведения внешних воздействующих факторов и (или) режимов функционирования приобретаемого испытательного оборудования и его точностные характеристики соответствуют установленным в нормативных документах требованиям;

– производительность оборудования позволяет проводить испытания в соответствии с требуемой интенсивностью;

– используемое оборудование соответствует требованиям безопасности и не наносит вреда окружающей среде;

– желательно использование автоматизированных измерительных комплексов и оборудования с регистрирующими устройствами для снижения систематической составляющей погрешности измерения, создаваемой оператором, и обеспечения документированности полученных результатов.

1.4.4. Методическая обеспеченность средств измерения

Каждое средство измерения, внесенное в Госреестр, потенциально может быть использовано для оснащения испытательной лаборатории. Однако обязательным условием возможности использования того или иного средства измерения является наличие стандартизированных или аттестованных методик выполнения измерений (далее – МВИ). Для испытательного оборудования необходимо наличие методик первичной и периодической аттестации. В настоящее время большинство производителей аналитического оборудования финансируют разработку и аттестацию МВИ с использованием их приборов. Такие МВИ поставляются либо вместе с приборами, либо отдельно. Наличие аттестованных МВИ, поставляемых вместе с покупаемым аналитическим оборудованием, является весомым аргументом для принятия решения в пользу закупки того или иного прибора. При оценке методической обеспеченности аналитического оборудования необходимо учитывать то, что для подавляющего большинства показателей, по которым испытывается продукция, разработано несколько вариантов МВИ, предполагающих использование как различных методов измерения, так и различных вариантов средств измерения, работающих на одинаковых принципах.

1.4.5. Возможность технического обслуживания оборудования

Для любого измерительного или испытательного оборудования необходимо выполнение определенного перечня процедур, направленных на поддержание и подтверждение его работоспособности и соответствия заявленным техническим характеристикам. К таким процедурам относятся техническое обслуживание с периодичностью, определяемой руководством по эксплуатации, ремонт, замена комплектующих с ограниченным сроком службы, поверка (калибровка) или аттестация (первичная и периодическая).

В связи с этим при покупке оборудования необходимо учитывать наличие сервисных служб фирм-производителей и опыт взаимодействия с ними: оперативность, квалификация специалистов сервиса, объем гарантийного обслуживания, стоимость обслуживания.

Кроме этого, надо продумать, кем будет аттестовываться и поверяться закупаемое оборудование. Удобнее всего это делать в региональных центрах стандартизации и метрологии (далее – ЦСМ). Надо заранее поинтересоваться, имеют ли право на проведение поверки данного типа средств измерения или аттестацию интересующего вас испытательного оборудования близлежащий ЦСМ. Также необходимо учитывать, что для некоторых типов средств измерения и испытательного оборудования процедура поверки или аттестации может потребовать исключение поверяемого оборудования из рабочего цикла лаборатории на довольно длительный срок (несколько дней).

1.4.6. Эксплуатационные расходы

Как правило, фирма-производитель при поставке оборудования в стандартной комплектации предусматривает запасные части и расходные материалы, достаточные для работы оборудования в течение полугода или года при условии оптимальной загрузки. В дальнейшем расходы на их приобретение несет испытательная лаборатория. Стоимость некоторых из них, в том числе являющихся элементами, определяющими функционирование и целевое назначение оборудования, может быть весьма значительна. Так, например, стоимость капиллярной колонки для газового хроматографа, срок службы которой от 6 до 18 месяцев, в зависимости от параметров колонки и фирмы-производителя находится в диапазоне от 500 до 3000 $ и выше.

Кроме приобретения расходных материалов и запасных частей к эксплуатационным затратам относятся:

– расходы на эксплуатацию и обслуживание вспомогательного оборудования (вентиляция, кондиционирование, газовые линии и пр.);

– расходы на утилизацию опасных для окружающей среды и здоровья людей отходов, образующихся при эксплуатации оборудования (сливы агрессивных сред и растворов, содержащих высокотоксичные соединения);

– расходы на различные виды обслуживания оборудования;

– расходы на коммунальные услуги (электроэнергия, водоснабжение, отопление).

Эксплуатационные расходы необходимо оценивать по результатам работы за достаточно длительный промежуток времени. Такое требование обусловлено тем, что эффект от приобретения некоторых приспособлений, расходных материалов и вспомогательного оборудования становится заметным именно при таком подходе. Например, затраты на приобретение защитного патрона для жидкостного хроматографа окупаются за счет существенного, в 2—3 раза, увеличения срока службы колонки без существенного уменьшения ее эффективности. В таких случаях полезно оценивать срок окупаемости того или иного оборудования.

1.4.7. Универсальность оборудования

Под универсальностью оборудования понимают техническую и юридическую возможность его использования для проведения испытаний разных групп однородной продукции. Универсальным в указанном смысле оборудованием является, например, атомно-абсорбционный спектрофотометр, использование которого для определения содержания токсичных элементов во всех видах пищевых продуктов и продовольственного сырья регламентировано стандартами или другими документами федерального уровня.

Еще одним примером универсального оборудования может служить жидкостной хроматограф. В настоящее время использование жидкостного хроматографа предусматривается стандартизированными методами для определения большой группы показателей, характеризующих качество, состав и безопасность различных видов продукции (например, для определения многих видов пищевых добавок). Универсальными средствами измерения являются также газовый хроматограф, инверсионный вольтамперометрический анализатор, колориметр (спектрофотометр), рН-метр, весы, термометры и др.

Универсальным испытательным оборудованием являются сушильные шкафы и термостаты. Преимущества универсального оборудования очевидны: резко снижаются статьи расходов испытательной лаборатории на закупку приборов и эксплуатационные расходы; снижаются расходы на подготовку и переподготовку персонала лаборатории; упрощается проведение внутрилабораторного и внешнего контроля качества выполняемых измерений.

В то же время, универсальные измерительные комплексы, по сравнению со специализированными приборами, имеют, как правило, меньшую производительность и, в некоторых случаях, более узкий диапазон измерений при проведении испытаний конкретного вида продукции. Это определяет целесообразность выбора специализированных измерительных комплексов в тех случаях, когда планируется поступление на испытания большого потока однородной продукции. Кроме того, необходимо учитывать то, что универсальность оборудования не всегда может быть в полном объеме использована в реальных условиях проведения испытаний. Например, определение микропримесей в пищевой продукции и определение жирно-кислотного состава масложировых продуктов можно проводить на одном и том же газовом хроматографе с использованием одного и того же детектора, но лучше иметь несколько экземпляров прибора.

Наличие нескольких экземпляров газовых хроматографов позволяет реализовать выполнение измерений по методикам, предполагающим использование различных типов детекторов или предназначенным для существенно различающихся диапазонов содержания определяемых веществ, без затрат времени на перенастройку прибора и без снижения качества измерений.

1.4.8. Перспективность оборудования

Рассматривая тенденции развития аналитического приборостроения, можно отметить, что в последнее время наиболее активно развиваются следующие направления: газожидкостная хроматография, инверсионная вольтамперометрия, атомно-абсорбционный и атомно-эмиссионый метод анализа. Перечисленные методы количественного химического анализа отличаются высокой чувствительностью (возможно обнаружение в пробе пикограммовых количеств определяемого вещества), специфичностью (при создании определенных условий анализа возможно раздельное определение пространственных и оптических изомеров) и производительностью.

Современные газовые и жидкостные хроматографы, вольтамперометрические представляют собой автоматизированные измерительные комплексы, позволяющие проводить измерения в сериях образцов с минимальным вмешательством со стороны оператора, обрабатывать результаты в режиме реального времени и документировать их, создавать базы данных результатов испытаний с возможностью проведения различных видов статистического анализа и многое другое. Анализ разработанных за последнее время стандартизированных методов испытаний показывает, что подавляющее большинство из них основано на использовании перечисленных методов.

Стоимость оборудования – важный фактор. Некоторые руководители испытательных лабораторий придерживаются принципа «чем дороже – тем лучше» и забывают о том, что существует целый ряд российских фирм, выпускающих приборы, не уступающие по техническим и метрологическим характеристикам зарубежным аналогам, но при этом имеющие одно очень важное преимущество – их стоимость в несколько раз меньше.

1.5. Химические реактивы

1.5.1. Классификации и фасовка реактивов

По своему назначению реактивы могут быть разделены на две основные группы: общеупотребительные и специальные.

Общеупотребительныереактивы имеются в любой лаборатории, и к ним относится сравнительно небольшая группа химических веществ: кислоты (соляная, азотная и серная), щелочи (раствор аммиака, едкие натр и кали), окиси кальция и бария, ряд солей, преимущественно неорганических, индикаторы (фенолфталеин, метиловый оранжевый и др.).

Специальные реактивы применяются только для определенных работ.

По чистоте реактивы делятся на химически чистые (х. ч.), чистые для анализа (ч. д. а.), чистые (ч.).

Кроме того, имеются реактивы кондиций: технический (техн.), очищенный (оч.), особой чистоты (ос. ч.), высшей очистки (в. оч.) и спектрально чистый (сп. ч.).

Для реактивов каждой из этих категорий установлено определенное допустимое содержание примесей.

Наиболее употребительные реактивы, расход которых может быть значительным, покупаются в крупной расфасовке, в банках или бутылях, содержащих иногда по нескольку килограммов вещества. Мало употребительные и редкие реактивы обычно имеют мелкую расфасовку, от 10 до 1 г, и даже мельче. Наиболее дорогие и редкие реактивы, как правило, хранят отдельно.

Многие реактивы поступают в лабораторию в крупной таре. Отбор мелких порций веществ непосредственно из барабанов, больших бутылей запрещен. По этой причине расфасовка реактивов – довольно частая операция в лабораторной практике. Эта операция связана с рядом опасностей, поэтому доверять се можно только опытным лицам, хорошо знающим свойства данных веществ.

Твердые реактивы при хранении в банках могут слежаться в плотные комки, которые трудно извлекать. Поэтому, прежде чем брать твердый реактив из банки, нужно (при закрытой пробке) потрясти банку, ударяя её ладонью по боку. Если слежавшийся реактив при этом не рассыпается, тогда, открыв пробку, разрыхляют верхний слой при помощи чистого рогового или фарфорового шпателя, или стеклянной палочки. Металлический шпатель применять для этой цели не рекомендуется.

Перед взятием реактива из банки нужно осмотреть ее горло и удалить с него все, что может попасть в пересыпаемое вещество и загрязнить его (пыль, парафин, всякие замазки и пр.). Очень удобно брать реактивы из банки при помощи фарфоровой ложки, фарфорового шпателя или же пересыпать их через воронку для порошков. Воронку вставляют в горло банки, в которую пересыпают то или иное вещество; этой же воронкой можно пользоваться при переливании очень густых, вязких жидкостей.

Просыпавшийся на стол реактив (неизбежно при этом загрязняющийся) нельзя высыпать обратно в ту же банку, где он хранится. Забота о сохранении чистоты реактивов – самое главное правило при работе с ними.

Если в банке остается очень мало реактива, остатки следует пересыпать в более мелкую тару – это освободит место в шкафу и сократит потери при взятии реактива.

Перед тем как насыпать реактив в банку, ее нужно хорошо вымыть и высушить, предварительно подобрав к ней пробку. В непросушенные банки пересыпать реактив нельзя.

При взвешивании сухих реактивов нельзя насыпать их прямо на чашку весов, так как при этом возможна порча весов.

Расфасовку твердых реактивов, способных раздражать кожу или слизистые оболочки, следует производить в перчатках, защитных очках или в маске. Волосы надо убирать под косынку, манжеты и ворот халата должны плотно прилегать к телу.

После работы с пылящими веществами полезно принять душ, а спецодежду отдать в стирку. Для защиты органов дыхания от пыли и едких паров пользуются респираторами или противогазами. Нельзя заменять респираторы марлевыми повязками – они недостаточно эффективны.

Расфасовку агрессивных реактивов должны производить не менее чем два работника. Наготове должны находиться средства дезактивации – вода, раствор соды и т. д. Дымящие и летучие жидкости, а также твердые пылящие вещества расфасовывают на открытом воздухе или в специальных вентилируемых помещениях.

При расфасовке многих органических растворителей необходимо принимать специальные меры предосторожности. Дело в том, что, хотя их пары не обладают выраженным раздражающим действием, они весьма токсичны. При переливании же больших количеств растворителей (особенно, если оно производится неаккуратно и без вентиляции) легко может создаться концентрация паров, опасная для здоровья и даже жизни. Использование сифонов при расфасовке таких растворителей, как четыреххлористый углерод, бензол, толуол, нитробензол, пиридин и т. п., является обязательной мерой предосторожности. Работать следует при очень хорошей вентиляции, желательно в противогазе.

1.5.2. Хранение реактивов и работа с ними

Важным требованием техники безопасности является сохранение чистоты реактивов. Ни в коем случае нельзя путать пробки от банок с реактивами, собирать просыпанное вещество и ссыпать его обратно в банку с реактивом, доставать продукт грязным шпателем и т. д.

Все емкости с химическими веществами, хранящиеся в лаборатории (в том числе и емкости с промежуточными продуктами в многостадийных синтезах), если они не используются немедленно, должны быть снабжены разборчивыми этикетками с указанием названия соединения и его формулы.

Запрещается исправлять надписи на этикетках, наклеивать новые этикетки, не сняв старых, наносить на тару легко смывающиеся надписи. Ошибочное использование не того реактива, который необходим для работы, – частая причина несчастных случаев.

Пользоваться реактивами без этикеток или с сомнительными этикетками категорически запрещается. В подобных случаях необходимо либо точно установить формулу вещества, либо немедленно уничтожить его.

Хранение реактивов допускается лишь в специально оборудованных, хорошо вентилируемых помещениях в строгом порядке. Не разрешается совместное хранение реактивов, способных бурно взаимодействовать друг с другом, например, окислителей и восстановителей, кислот и щелочей.

Обособленно следует хранить следующие группы реактивов:

– взрывчатые вещества;

– горючие или сжиженные газы (ацетилен, водород, пропан-бутан и др.);

– самовозгорающиеся и воспламеняющиеся вещества (карбид кальция, щелочные металлы, белый фосфор и др.);

– легковоспламеняющиеся жидкости (диэтиловый эфир, ацетон, петролейный эфир, бензин, бензол и т. д.);

– вещества, способные вызвать воспламенение (перманганат калия, концентрированные азотная и серная кислоты и др.);

– сильные яды (ряд солей синильной кислоты, ртути, соединения мышьяка, метанол – яд и др.).

С целью экономии реактивов (особенно, наиболее ценных) приготовлять растворы нужно в таком количестве, какое необходимо для работы. Приготовление избытка раствора – бесполезная трата реактива. Раствор, стоящий без употребления, обычно портится, кроме того, бутыли, содержащие ненужные растворы, загромождают лабораторию.

Необходимо следить, чтобы на всех банках с реактивами обязательно были или этикетки с обозначением, что находится в банке, или надписи, сделанные восковым карандашом для стекла. Место, на котором будет надпись, нужно слегка подогреть хотя бы ладонью руки. По нагретому месту восковой карандаш пишет легче, и надпись получается заметнее. Если на банке с реактивом нет этикетки или надписи, такой реактив применять нельзя. В подобном случае нужно установить точно, что находится в банке, так как ошибки могут привести к серьезным последствиям.

Особую осторожность нужно проявлять при обращении с ядовитыми веществами.

При хранении гигроскопических веществ или таких, которые могут изменяться при соприкосновении с воздухом, банки должны быть герметизированы, для этого пробки их заливают парафином, менделеевской замазкой или сургучом.

При обращении с реактивами, хранящимися в стеклянной таре большой емкости, требуется особая осторожность, так как эту тару очень легко разбить.

Реактивы, изменяющиеся под действием света, хранят в желтых или темных склянках, иногда вставленных в картонную коробку.

Реактивы, которые нельзя хранить в стеклянной таре, помещают в тару из материалов, устойчивых к действию данного реактива. Например, раствор фтористоводородной кислоты хранят в сосудах из чистого парафина, церезина, эбонита или полиэтилена. Для хранения фтористоводородной кислоты в основном применяют бутыли из полиэтилена.

Иногда парафином покрывают внутреннюю поверхность стеклянных бутылей и склянок. Так, пергидроль (30%-ный раствор перекиси водорода) и растворы щелочей лучше всего хранить именно в таких бутылях.

Некоторые реактивы обладают способностью самовоспламеняться, к ним относятся белый или желтый фосфор, пирофорные металлы, металлоорганические соединения (например, этилат алюминия). К огнеопасным реактивам, хранение которых требует особых условий, относятся эфиры (диэтиловый, амиловый и др.), спирты (метиловый, этиловый, бутиловый и др.), углеводороды (бензин, газолин, петролейный эфир, керосин и др.), ароматические соединения (бензол, толуол, ксилол), сероуглерод, ацетон и др.

Нельзя совместно хранить реактивы, способные при взаимодействии возгораться или выделять большое количество тепла. Например, металлические натрий, калий и литий, а также перекись натрия и белый фосфор нельзя хранить с огнеопасными веществами; металлические натрий, калий, литий и кальций, а также фосфор – с элементарными бромом и йодом.

Бертолетову соль, марганцовокислый калий, перекись натрия, перекись водорода, концентрированную хлорную кислоту и другие окислители нельзя хранить вместе с восстановителями – углем, серой, крахмалом, фосфором и др.

Самовоспламеняющиеся и огнеопасные вещества следует хранить только в соответствующей таре.

Совершенно недопустимо смешивать и растирать бертолетову соль, марганцовокислый калий, перекись натрия и другие окислители с органическими веществами. Очень осторожно следует обращаться с хлорной кислотой, так как пары ее взрываются при соприкосновении с органическими веществами и легко окисляющимися соединениями, например, с солями трехвалентной сурьмы и др. Соли хлорной кислоты также способны взрываться, иногда даже без видимой причины. Все эти вещества требуют особых условий хранения. В лаборатории не должно быть большого запаса таких веществ. Взрывоопасны также ацетилениды серебра и меди, азиды тяжелых металлов, соли гремучей кислоты, некоторые нитросоединения и др.

Не следует путать пробки от склянок, содержащих разные реактивы, во избежание загрязнения последних.

Работники лаборатории должны знать основные свойства применяемых ими реактивов, особенно, степень их ядовитости и способность к образованию взрывоопасных и огнеопасных смесей с другими реактивами.

При работе с реактивами следует исходить из того, что любые химические вещества, даже самые «безобидные», в большей или меньшей степени ядовиты. Особенно опасно систематическое попадание в организм в течение длительного времени даже ничтожных количеств соединений, вызывающее хронические отравления. Тяжелые последствия хронических отравлений усугубляются тем, что их симптомы на первой стадии бывают не ярко выраженными (общая слабость, сонливость, снижение работоспособности и т. п.), и не вызывают особой тревоги до тех пор, пока дальнейшее проникновение ядов в организм не приводит к серьезным трудноизлечимым поражениям.

Для предотвращения попадания химических соединении на кожу, в рот, в дыхательные пути, необходимо соблюдать следующие меры предосторожности:

– в рабочих помещениях не следует создавать запасов реактивов, особенно летучих – через неплотности в упаковке они могут испаряться и отравлять атмосферу в лаборатории. Необходимые для текущей работы реактивы следует держать плотно укупоренными, а наиболее летучие (например, соляную кислоту, раствор аммиака, бром) – на специальных полках в вытяжном шкафу;

– все работы с пылящими и летучими реактивами следует проводить только в вытяжном шкафу. Шкафы, в которых сушат вещества, также обязательно устанавливают под тягой;

– при работе с ядовитыми химическими веществами необходимо быть особенно аккуратными. Просыпанные или пролитые случайно реактивы следует немедленно и тщательно убрать;

– категорически запрещается выбрасывать в раковины несмешивающиеся с водой жидкости и твердые вещества, а также, сильные яды. Отходы подобного рода следует в конце рабочего дня выносить в специально отведенные места для сливов.

При переливании жидкостей из больших бутылей возможно, особенно при небрежной работе, проливание жидкости и попадание ее на одежду и руки. Поэтому в лаборатории нужно обязательно иметь специальные металлические стояки, которые дают возможность легко наклонять бутыли.

Для переливания жидкостей удобно применять насадки на горло больших бутылей или применять сифоны.

При переливании жидкостей нужно обязательно пользоваться воронками.

Некоторые реактивы продаются и сохраняются в запаянных ампулах разного размера. Такую ампулу вскрывают следующим образом. На расстоянии 1 см от конца оттянутой части ампулы очень осторожно делают царапину напильником или специальным ножом. Полезно место надреза предварительно смочить водой. Когда надрез сделан, обтирают оттянутый конец ампулы чистой ватой и, держа ампулу в левой руке так, чтобы открываемый конец ее был направлен в сторону от работающего и от соседей, правой рукой отламывают надрезанную часть быстрым рывком. Если оттянутый конец имеет сравнительно толстые стенки, к царапине нужно прикоснуться раскаленным докрасна концом оттянутой стеклянной палочки или же раскаленной железной проволокой.

Когда в ампуле находится жидкость, нужно быть особенно осторожным при вскрывании – при отламывании кончика ампулу нельзя перевертывать или сильно наклонять. Если после взятия реактива часть его остается в ампуле, последнюю нужно снова запаять на паяльной горелке.

Вылить из ампулы немного жидкости (0,5—1 см

) бывает очень трудно. Чтобы добиться этого, можно пользоваться сифоном из тонко вытянутого стеклянного капилляра диаметром около 0,2—0,25 мм. Жидкость, поднимаясь по трубке капилляра, вытекает из нее каплями. Обращаться с ампулами следует очень осторожно, их лучше всего хранить в картонных коробках завернутыми в гофрированный картон или же переложенными чем-либо мягким.

1.5.3. Растворы химических реактивов

Растворы – это гомогенные (однофазные) системы переменного состава, состоящие из двух или более веществ (компонентов).

По характеру агрегатного состояния растворы могут быть газообразными, жидкими и твердыми. Обычно компонент, который в данных условиях находится в том же агрегатном состоянии, что и образующийся раствор, считают растворителем, остальные составляющие раствора – растворенными веществами. В случае одинакового агрегатного состояния компонентов растворителем считают тот компонент, который преобладает в растворе.

В зависимости от размеров частиц растворы делятся на истинные и коллоидные. В истинных растворах (часто называемых просто растворами) растворенное вещество диспергировано до атомного или молекулярного уровня, частицы растворенного вещества не видимы ни визуально, ни под микроскопом, свободно передвигаются в среде растворителя.

Плотность раствора отличается от плотности растворителя. Раствор кипит при более высокой температуре, чем растворитель. Последним свойством пользуются, применяя солевые бани. Температура замерзания раствора, наоборот, ниже, чем у растворителя.

Растворимость для различных веществ колеблется в значительных пределах и зависит от их природы, взаимодействия частиц растворенного вещества между собой и с молекулами растворителя, а также от внешних условий (давления, температуры и т. д.) Растворимость твердого вещества можно повысить, если раствор нагревать. Однако некоторые соли не подчиняются этому правилу. Растворимость их или понижается с повышением температуры или повышается только до определенной температуры, выше которой растворимость уменьшается.

Скорость растворения твердого вещества зависит от размера его частиц. Чем крупнее куски, тем медленнее идет растворение; наоборот, чем мельче отдельные частицы твердого вещества, тем скорее переходит оно в раствор. Поэтому перед растворением твердого вещества его всегда следует измельчить в ступке и отвешивать для растворения только измельченное вещество. Растворение тонко измельченного вещества значительно легче, но при этом возникают свои трудности. Дело в том, что некоторые порошки при высыпании их в воду не смачиваются и плавают на поверхности воды, образуя тонкую пленку. В подобных случаях порошок вначале обливают небольшим количеством чистого спирта (метилового или этилового), а уже затем приливают воду или высыпают в нее порошок. Явление всплывания порошка при этом не наблюдается. Само собой разумеется, что применять спирт можно лишь в том случае, если он не оказывает химического действия на вещество или на его раствор. Спирта следует брать очень немного, лишь бы он только смочил порошок.