banner banner banner
Властелины машин: точный расчет и дерзкие инженерные решения. Из цикла «Пассионарии Отечества»
Властелины машин: точный расчет и дерзкие инженерные решения. Из цикла «Пассионарии Отечества»
Оценить:
Рейтинг: 0

Полная версия:

Властелины машин: точный расчет и дерзкие инженерные решения. Из цикла «Пассионарии Отечества»

скачать книгу бесплатно


Свою линию с изменения жанрового прицела с ближнего на дальний В. Захарченко начал проводить последовательно, с убежденностью человека, давно вынашивающего эту идею: «В феврале 1953 года он опубликовал в журнале „Октябрь“ обзорную статью, в которой упрекнул советских фантастов в том, что их произведения либо воспроизводят сюжетные ходы западной литературы, либо недостаточно пытаются заглянуть в будущее – а это, по мнению автора, было связано с недостатком знаний писателей о достижениях современной техники. Именно в начале 1950-х Захарченко, вероятно, и понял, что фантастика, говорящая о далеком будущем и о невообразимых пока достижениях техники, лучше развивает воображение, чем советские опусы „ближнего прицела“» (Там же).

Теоретические выкладки главреда «Техника – молодежи» (ТМ) подтверждались и его редакторской политикой: «В журнале впервые на русском языке были опубликованы романы «Фонтаны рая» А. Кларка (1980) и «Звёздные короли» Э. Гамильтона (1988). Первая публикация романа И. Ефремова «Туманность Андромеды» состоялась именно в ТМ в 1957 году. Другой роман Ефремова, «Час Быка», впоследствии замалчиваемый советской пропагандой, также впервые был опубликован в ТМ (1968—1969). На страницах ТМ выступали многие выдающиеся отечественные учёные, специалисты, руководители производства: от маститых Ивана Павлова, Николая Зелинского, Петра Капицы, Анатолия Александрова, до никому тогда еще не известных Сергея Королёва, Виктора Глушкова, Игоря Курчатова, Ивана Артоболевского. Среди авторов были также такие научные светила, как Вернер Гейзенберг и Поль Дирак, Отто Ган и Роберт Оппенгеймер, Энрико Ферми и Луи де Бройль. Впервые в СССР журнал поставил вопрос о пересмотре официальной позиции в отношении к генетике (о чём писал в своих мемуарах академик Н. Дубинин), кибернетике (академик А. Берг), парапсихологии (член-корреспондент АН А. Спиркин) и т.д.» (из сатьи Г. Бородоча «Популярнейший советский журнал «Техника – молодёжи», 08.09.2018).

Выпускник Московского энергетического института и Литературного института им. Горького, инженер и поэт в одном лице, В. Д. Захарченко – это, без сомнения, исключительное явление в журналистике. За 35 лет его работы на посту главного редактора (всесоюзный рекорд) скромный научно-популярный журнал ЦК ВЛКСМ «Техника – молодежи» превратился в самое читаемое в СССР периодическое издание технической тематики, тираж которого за эти годы вырос в 60 (!) раз.

А теперь – на минуточку – задумаемся об истоках этого дива-дивного. Но, как оказалось, ничего сверхестественного. Истоки уникальности – в сфере иррационального (а именно к ней и относятся поэзия с романтикой): «Как будто самим провидением Василий Дмитриевич был предназначен для выполнения социального заказа того времени, которое настоятельно требовало поэтизации науки, утверждения ее безграничных возможностей, романтического взгляда на мир, как арену свершения самых дерзновенных замыслов человечества. Совпадение социального спроса и индивидуального предложения породило „феномен Захарченко“: превращение ординарного научно-популярного журнальчика во властителя дум нескольких поколений советской молодежи» (из статьи Германа Смирнова «Фономен Захарченко» // журнал «Техника – молодежи», №12, 1999 г.).

Но наш рассказ – не подобие голливудского блокбастера, где в конце киноповествования – подобно неуступчивой регулярности смены времен года – почти всегда забенонирован «happy end». Харизматичный главред на вершине успеха своего чада, видимо, на какое-то время просто забыл о правилах игры: «Василий Захарченко был снят в 1984 году с должности главного редактора „Техники – молодежи“, которую занимал с 1949 года. Захарченко заказал для журнала перевод только что вышедшего романа Артура Кларка „2010: Одиссея Два“ („2010: Odyssey Two“, 1982), в оригинале посвященного Андрею Сахарову и космонавту Алексею Леонову. Посвящение Сахарову в переводе было снято, роман сильно сокращен – но ни переводчик, ни Захарченко не обратили внимания на то, что большинство русских персонажей романа носят фамилии советских диссидентов: Сахаров, Орлов (в честь Юрия Орлова), Якунин (в честь о. Глеба Якунина), Марченко (в честь Анатолия Марченко) и т. д. Когда это „совпадение“ заметили в „инстанциях“, после двух номеров публикация была остановлена, а Захарченко – уволен» (из статьи Ильи Кукулина «Периодика для ИТР: советские научно-популярные журналы и моделирование интересов позднесоветской научно-технической интеллигенции» // журнал «НЛО» №3, 2017 г.).

Как было принято в те годы: если уж опала, то по всем фронтам. В. Захарченко вывели из редакционных советов издательств «Детская литература» и «Молодая гвардия», перестали приглашать на радио и телевидение – даже на созданную им программу об автолюбителях с кулибинской жилкой «Это вы можете».

Выручила перестройка: в конце 1980-х его вновь стали печатать, а в ноябре 1991 года легендарный главред создал новый журнал. Несколько секунд на отгадку его названия… Что еще мог придумать порывистый герольд всего удивительного и неизведанного? – ну, конечно, – «Чудеса и приключения».

И здесь В. Захарченко оставался верен себе. Его кредо – материал должен вызывать, прежде всего, эмоциональный отклик у читателя: «В журнале печатались известные писатели Иван Ефремов, Феликс Чуев, Валентин Распутин, космонавт Владимир Джанибеков, чемпион мира по шахматам Василий Смыслов. Героями публикаций становились Джуна, Ванга, Мессинг. Темами – последствия катастрофы на Чернобыльской АЭС, тайны Туринской плащаницы, НЛО, кругосветный полет Федора Конюхова на воздушном шаре, поиск библиотеки Ивана Грозного и кладов Марины Мнишек, секреты создаваемого в Дубне российского коллайдера…» (из статьи Анастасии Орловой «Журналу „Чудеса и приключения“ исполнилось 25 лет», 14.12.2016).

А теперь – снова к культовому журналу пытливых мечтателей. Журнал «Техника – молодежи» с неутомимым упорством пытался будить технические фантазии своих читателей, предлагая самые дерзкие инженерные идеи. Так в №2 за 1963 год на обложке журнала появился гигантский океанский – заметим, не речной – корабль на подводных крыльях; в №9 за 1964 год (за 5 лет до первого шага на Луне американского астронавта Нила Армстронга) – рисунок с подробным описанием советской лунной базы; в №4 за 1979 год – изображение фееричной по смелости замысла сложнейшей конструкции космического лифта с Земли на Луну.

Смелость воображения создателей журнала и его главреда, согласитесь, действительно впечатляет. Но есть еще один – не менее захватывающий – аспект нахождения журнала «Техника – молодежи» в конкурентном информационном поле ХХ века – незримое его соперничество с футурологами по точности технических прогнозов. Возьмем для примера предсказания лишь двух уважаемых прогнозистов: «В конце 1990-х японский футуролог Митио Каку выпустил книгу „Видения: как наука произведёт революцию XXI века“, в которой излагал своё видение мира, каким он будет в XXI веке. В ней он предсказал расшифровку генетического кода человека (учёные добились этого в 2003), и массовое распространение „маленьких переносных компьютеров с сенсорным экраном“ – в 2010-м у многих пользователей действительно появились планшеты» (из статьи Екатерины Шевяковой «Что с нами будет? Идеи ведущих футурологов», 25.04.2020).

Коллега японского футуролога – один из главных инженеров Google Рэй Курцвейл был не менее проницателен: «Первые известные предсказания Курцвейла, посвящённые развитию технологий, появлялись ещё в 1990-х. К примеру, он говорил о том, что компьютерами станет возможно управлять при помощи речи {в 2010 г., действительно, была создана вопросно-ответная система Siri}. Он предсказал появление беспроводных устройств, способных посылать изображение с компьютера в человеческий глаз, создавая эффект виртуальной реальности {устройство Google Glass близко к реализации этого концепта}, а также появление экзоскелета и многое другое» (Там же).

Как смотрится «Техника – молодежи» на фоне этих удачливых последователей легендарного Michel de Notredame? – думается вполне достойно (заметим, у «ТМ» сбывшиеся прогнозы сделаны еще в 1960-е): «В журнале публиковались футуристические идеи о технологиях будущего. Иногда авторы с поразительной точностью предсказывали появление технологий и гаджетов, которые окружают нас сегодня. В 1966 году „Техника – молодёжи“ {№3} опубликовала иллюстрацию гаджета, который сегодня известен под брендом Apple Watch. На иллюстрации человек смотрит передачу „Голубой огонек“ на экране часов. На другой иллюстрации журнала {№11, 1969 г.} изображен робот, которого вы могли видеть в фильме 2013 года „Тихоокеанский рубеж“. Да, советские мечтатели опередили голливудских продюсеров примерно на 30 лет. Но, в отличие от боевых роботов голливудского производства, советская машина предназначалась для вырубки лесов» (из статьи Николая Шевченко «Сумасшедшие предсказания будущего из советского журнала „Техника —молодёжи“», 16.08.2021).

2.3. Как ТРИЗ сэкономил Samsung 100 миллионов долларов

Если чуть выше мы говорили о фантазии, которую в ХХ веке будили, и не безуспешно, научно-популярные и научно-технические советские журналы, то не пора ли задаться непростым – на уровне философских – вопросом: «А что же является первоисточником творчества, в том числе, конечно, научного и инженерного?».

Приведем соображения по этому вопросу драматурга, специалистов-философов и комментарии к ним известнейшего отечественного специалиста по вопросам изобретательства: ««Как известно, акт творчества непроизволен», – пишет драматург В. Розов. – «Он не покорен даже очень мощному волевому усилию или категорическому повелению…» Как ни парадоксально, но художник в момент творческого акта как бы не мыслит, мысль убьет творчество… Как мне кажется, художник мыслит до момента творчества и после него, во время же самого акта творчества рефлексии быть не должно. Сложнее, конечно, дело обстоит с научным творчеством. Но и оно – сестра художественному, возможно, даже родная. Несколько лет тому назад в одной статье я прочел замечание о том, что «первоисточником величайших достижений и открытий во всех сферах культуры, науки, техники и искусства является внезапное и без видимой причины возникающее озарение. Это и есть творчество». («Вопросы философии», 1975, №8, с. 151.)» (из книги Генриха Альтшуллера «Творчество как точная наука» // Москва, издательство «Советское радио», 1979 г.).

«Без видимой причины» – это, получается, какой-то провал в непостижимое, иррациональное. Такой посыл показался Генриху Сауловичу Альтшуллеру (1926 – 1998) – будущему создателю Теории решения изобретательских задач – поверхностным, неубедительным: «Впервые я встретился с таким взглядом на творчество тридцать лет назад, когда начал заниматься изобретательством. Ученые и изобретатели, рассказывая о своей работе, с поразительным единодушием говорили о внезапном озарении, о невозможности не только управлять творческим процессом, но и понять, что это такое и как это происходит. И хотя о непознаваемости творчества высказывались люди, много сделавшие в науке и технике, я не поверил им, не поверил сразу и безоговорочно. Почему всё познаваемо, а творчество непознаваемо? Что это за процесс, которым в отличие от всех других нельзя управлять?..» (Там же).

Для людей неординарных, с даром первопроходца слово «нельзя» черным маркером безжалостно вымарывается из словаря, нет его – и всё… И, конечно, управлять инженерным озарением пытались, и многие. Среди них – кто бы сомневался – изобретатель фонографа (1877), лампы накаливания с угольной нитью (1879) и железо-никелевого аккумулятора (1908), обладатель более 3000 патентов Томас Эдисон, который в конце XIX века довел до совершенства применение для поиска инновационных идей метода проб и ошибок: «В его мастерской работало до тысячи человек, поэтому можно было разделить одну техническую проблему на несколько задач и по каждой задаче одновременно вести проверку многих вариантов. Эдисон изобрел научно-исследовательский институт (и это, на наш взгляд, величайшее его изобретение). Ясно, что тысяча землекопов могут рыть качественно иные ямы, чем один землекоп. Но все-таки сам способ рытья остается прежним…» (Там же).

Забавно, но следующим смельчаком, попытавшемся в саду расходящихся тропок найти ту единственную, которая приведет к редкостной диковинке новации, был человек, мало сведущий в технических устройствах. В конце 1940-х Алекс Осборн, совладелец BBDO, самого передового рекламного агентства на Мэдисон-авеню, «заметил, что одни люди больше склонны к генерированию идей, другие – к их критическому анализу. При обычных обсуждениях „фантазеры“ и „критики“ оказываются вместе и мешают друг другу. Осборн предложил разделить этапы генерирования и анализа идей. За 20—30 минут группа „генераторов идей“ выдвигает несколько десятков идей. Главное правило – запрещена критика. Можно высказывать любые идеи, в том числе и заведомо нереальные (они играют роль своеобразного катализатора, стимулируя появление новых идей). Никто не боится предложить смелую идею, возникает доброжелательная творческая атмосфера, и это открывает путь всевозможным смутным идеям и догадкам» (Там же).

В 1950-е с мозговым штурмом связывались большие надежды, и казалось: «Вот он – чудо-метод!». Потом выяснилось, «что трудные задачи штурму не поддаются. Были испробованы различные модификации штурма (индивидуальный, парный, массовый, двухстадийный, «конференция идей», «кибернетическая сессия» и т. д.). Эти попытки продолжаются и сейчас. Но уже ясно, что мозговой штурм эффективен только при решении несложных задач. Хорошие результаты чаще всего удается получить, «штурмуя» не изобретательские, а организационные проблемы (найти новое применение для выпускаемой продукции, усовершенствовать рекламу и т. д.)» (Там же).

Не получилось с методом проб и ошибок, мозговой штурм не смог помочь неутомимым искателям инноваций зафиксировать рекордные веса – попытаемся зайти в хрустальный дом озарений с крыльца «психологической активизации творческого процесса». Так, похоже, думали авторы неисчислимых методов контрольных вопросов, среди которых, в том числе, список американского журнала «Продакт эндженеринг» (1965), вопросы математика Д. Пойа, метод «селфсторминга» С. И. Чурюмова и Е. С. Жарикова и др.

Для примера взглянем на наиболее известный в технике список Т. Эйлоарта (полностью опубликован в журнале «Изобретатель и рационализатор», №5, за 1970 год). Т. Эйлоарт предлагает перечислить и изменить все качества предполагаемого изобретения, набросать фантастические, биологические, экономические и другие аналогии, попробовать различные виды материалов и виды энергии, узнать мнение дилетантов в данном деле, устроить сумбурное групповое обсуждение. Далее автор рекомендует попробовать национальные решения: хитрое шотландское, всеобъемлющее немецкое, расточительное американское, сложное китайское и т. д. Т. Эйлоарт рекомендует спать с проблемой, гулять, есть – все с ней, бродить среди свалки, дома, в магазинах дешевых вещей, читать комиксы и журналы…» (из книги Николая Петровича и Владимира Цурикова «Путь и изобретению» // Москва, «Молодая гвардия», 1986 г.).

А что, если, избежав плутаний по гравийным дорогам проб, мозговых штурмов и контрольных вопросов, безбоязненно выехать на основную трассу – «хайвей парадоксального мышления»?

Адекватность выбора этого «парадоксального пути» подтверждают исследования профессора из Гарварда Альберта Роттенберга. В 1990-е он «провёл серию интервью с 22-мя нобелевскими лауреатами с целью найти что-то общее в их стиле мышления. Помимо этого он изучал и анализировал биографии и работы гениев прошлого. В итоге он пришёл к выводу, что всех их объединяет тенденция рассматривать два и несколько антитезисов одновременно. В то время как обычно человеку свойственно придерживаться одного из двух противоположных мнений» (из статьи Ивана Чуписа «Мыслить как гений», 16.08.2022).

За полвека до американского психиатра к мысли об использовании феномена противоречий и парадоксов, только для поиска оптимальных инженерных решений, пришел Е. С. Альтшуллер: «Проанализировав десятки тысяч патентов, он заметил, что самые прорывные технологии решают противоречивые задачи. Когда объект должен быть лёгким, но прочным, холодным, но горячим и т. д. Тогда он выдвинул и проверил гипотезу о том, что это может работать и в обратном порядке. Если грамотно формулировать задачу в виде противоречия, то шансы выйти на более сильное решение возрастают в разы. Позже эта концепция легла в основу известной многим Теории решения изобретательских задач (ТРИЗ) и стала причиной тысяч новых изобретений и решений по всему миру. Впоследствии ТРИЗ трансформировалась, и оказалось, что те же принципы можно успешно применять и к бизнес-вызовам» (Там же).

Это называется дойти до сути. Выверив свои выводы по итогам скрупулезной работы (представьте, как это: шаг за шагом изучить 40 тысяч патентов!), на основе педантичного анализа осуществить поистине взрывной, высочайшей степени пассионарности синтез, предложив 40 базовых изобретательских приемов: «Вся методика ТРИЗ выстроена на решении противоречий. Например, чтобы создать компактный и одновременно вместительный автобус, нужно из обычного автобуса сделать двухэтажный. Или соединить два раздельных автобусных салона гибким переходом – тогда при поворотах сохранится желаемая маневренность, а людей в него поместится в два раза больше, чем в обычный. Здесь же на ум приходит и пример с жареным мороженым – десертом, одновременно горячим снаружи и холодным внутри: еще одно решение противоречий. Всего в ТРИЗ выделяют три вида противоречий: административное, физическое и техническое. Если вам будут известны противоречия, то вы сможете устранить ключевую проблему любой задачи и подобрать изобретательское решение. В этом и заключается смысл ТРИЗ» (из статьи Алины Лихоты «Что такое теория решения изобретательских задач (ТРИЗ)?», 13.09.2022).

Казалось, после этого только обучай инженерный персонал основам ТРИЗ – и патентные отделы просто вынуждены будут перейти на мобилизационный режим «24/7»… Но даже в сказке Иван-царевич на Сером волке не сразу нашел тропинку через заколдованный лес…

В 1957—1959 гг. Г. С. Альтшуллер, работая в Бюро технической помощи Министерства строительства Азербайджана, «долго пытался убедить Центральный совет Всесоюзного общества изобретателей и рационализаторов в действенности своей методики. Его проверяли: например, на одном из ранних семинаров попросили наглядно показать, как работает ТРИЗ. Речь шла о решении задачи, которая затем вошла в учебники по Теории. Необходимо было придумать, как повысить скорость ледокола в тяжёлых льдах, если увеличивать мощность двигателя больше не представляется возможным (у ледоколов его объём и так слишком велик). „Генрих сначала сам вызвался решить эту задачу. Но ему сказали: нет, вы-то, без сомнения, справитесь, пусть попробует кто-нибудь другой. Вызвалась молодая женщина, участница семинара ТРИЗ из Минска, которая по роду своей деятельности ни к судостроению, ни к иным подобным вещам никакого отношения не имела“ – вспоминает коллега Альтшуллера» (из статьи Г. Бородача «Изобретатель, ученый, писатель», 14.10.2021).

Дальше – как победа стремительным нокаутом «Железного» Майка на 49-й секунде первого раунда в бою 22 февраля 2003 года с Клиффордом Этьеном на арене Пирамид в Мемфисе: «Судно должно быть разделено на 2 части: верхняя, надводная, и грузовая, находящаяся под водой. Обе части соединяются прочными стойками, которые, по сути, являются гигантскими ножами, прорезающими лёд. Изящное решение так понравилось Альтшуллеру, что он предложил автору его зарегистрировать. Женщина отказалась, но задача вошла в учебное пособие. Совпадение это или нет, но спустя 3 года данная идея было запатентована за рубежом… В 1961 году вышла книга Альтшуллер „Как научиться изобретать“, где он сравнивал алгоритм решения изобретательских задач с подъёмом по лестнице, у которой примерно полсотни ступеней. Шаг за шагом, выполняя последовательные действия, человек взбирается на такую высоту, которой одним прыжком достичь никогда не сможет» (Там же).

После этого запоминающегося случая методика ТРИЗ стала распространяться по стране. В 1972 году школы ТРИЗ появились в Днепропетровске, Горьком, Курске, Волгограде. В период с 1979 по 1984 гг. журнал ВСНТО СССР «Техника и наука» (еще раз вспомним добрым словом председателя ВСНТО академика А. Ю. Ишлинского) почти в каждом номере публиковал материалы по ТРИЗ. В начале 1980-х обучение и работа по ТРИЗ велась более чем в 200 городах страны; наиболее крупные школы действовали в Ленинграде, Днепропетровске, Кишиневе, Новосибирске, Петрозаводске, Минске, Владивостоке, Ангарске, Риге и Челябинске.

С началом XXI века пришел черёд зарубежных стран: сегодня «все больше компаний и организаций по всему миру начинают признавать ТРИЗ лучшей инновационной практикой. Среди них Airbus, Boeing, Ford Motor, General Electric, Intel, Honda, Huawei, Hyundai, Mitsubishi, Procter & Gamble, и другие. В среднем, как показал эксперимент, проведенный в компании General Electric, применение ТРИЗ ускоряет поиск изобретательских решений в 6—7 раз, что достаточно критично, поскольку зачастую поиск изобретательского решения может занимать годы и десятилетия» (из статьи основателя нидерландской компании ICG Training & Consulting Валерия Сушкова «Прорывное мышление с ТРИЗ для бизнеса и управления: обзор», 2015 г.).

Признанным мировым лидером в использовании технической ТРИЗ является южнокорейская компания Samsung, обучившая ТРИЗ около 35 тыс. специалистов: «В 2003 году ТРИЗ привел к получению 50 новых патентов для Samsung, а в 2004 году только один проект – инновация в области подбора DVD – сэкономил Samsung более 100 миллионов долларов. Сотрудник передового технологического института Samsung Хио Джун Ким написал „Теорию решения изобретательских проблем“ – основополагающий текст по ТРИЗ. Текст был опубликован на корейском языке; с его помощью прошли обучение более 1000 инженеров компании Samsung только в 2004 году. С тех пор весь мир узнал, как Samsung подходит к инновациям. Это не конкурентная гонка, как это происходит в Apple, или стратегия, основанная на предоставлении инженерам большего времени для работы (как в Google), Samsung использует стратегию, основанную на развитии творческой элиты» (из статьи Ольги Бобрышевой «Зачем и как Samsung создал свою систему „инновационной креативности“ внутри компании», 17.12.2019).

Глава 3. Как учить инженерному делу

3.1. «…учить геометрию столько, сколько до инженерства надлежит»

Один из основоположников телефонии, основатель компании «American Telephone and Telegraph Company» Александр Белл как-то сказал: «Время от времени стоит сходить с тропы, погрузившись в лес. Вы найдете то, чего никогда не видели». Вот только как инженеру не заблудиться в этом, подчас непроходимом, лесу из технических догм, гипотез, интуитивных догадок? Позволим предположить, что без надежного компаса, нацеленного на Звездунадежды первопроходцев, в нашем случае – без основательного технического образования – уж никак не обойтись.

А теперь – об истоках российского инженерного образования и его крёстном отце – величайшем реформаторе в истории России Петре I: «Строительство флота в стране в конце XVII – начале XVIII века пошло такими темпами, что новые военные корабли вынуждены были стоять в гаванях из-за нехватки офицеров и матросов для укомплектования судовых команд. Целые полки отборных гвардейцев по велению Петра I срочно превращались в матросов, а рекрутский набор для нужд флота производился преимущественно в губерниях, прилежащих к морю, озерам и большим рекам. Иностранцы критически относились к энергичным действиям царя, уверенно считая, что русский солдат на сухом пути превосходен, но к морской службе малопригоден. Для подобных суждений существовали достаточно веские основания. Россия испокон веку являлась страной континентальной и никогда морских границ не имела. Однако, по твердому убеждению царя, молодому российскому флоту требовались свои национальные кадры морских офицеров и корабельных специалистов» (из книги Георгия Зуева «Историческая хроника Морского корпуса. 1701—1925 гг.» // Москва, ЗАО «Центрполиграф», 2005 г.).

Сложившаяся ситуация острой нехватки специалистов, в том числе инженерного профиля, убедила «царя Петра в необходимости организации в России собственного специального учебного морского заведения для подготовки в его стенах национальных кадров морских офицеров и корабельных специалистов. Посетив в 1698 году Лондон, царь еще тогда приказал подобрать для будущей Навигацкой школы хорошего преподавателя математики и морских наук. Ему представили профессора Абердинского университета Генри Фархварсона, охотно принявшего предложение русского царя и согласившегося не только преподавать математику и морские науки, но и организовать новое морское учебное заведение в Москве» (Там же).

Понятно, что забот у государя, особенно после начала в 1700 году Северной войны со Швецией, было предостаточно. Поразимся, в связи с этим, с какой дотошностью и, можно сказать, искренней страстью Петр I отнёсся к организации «первого российского военно-морского учебного заведения. Вместе с профессором Фархварсоном Петр I составил устав Навигацкой школы и утвердил ее конкретные задачи. Школа в первые годы своего существования числилась, в силу необходимости, учебным заведением, выпускающим, кроме моряков, учителей, геодезистов, архитекторов, инженеров, артиллеристов, гражданских чиновников, писарей и «добрых мастеровых». В архиве сохранилась записка русского царя. В ней он повелевал тогда «…детей учить: 1. арифметике; 2. геометрии; 3. приему ружья; 4. навигации; 5. артиллерии; 6. фортификации; 7. географии; 8. знанию членов корабельного гола {судового остова} и такелажа; 9. рисованию; 10. на произволение танцам для пастуры {осанки} «»(Там же).

В январе 1701 года государь подписал высочайший указ, положивший начало обучению в России инженерному делу: «Математических и Навигацких, то есть мореходных, хитростно наук быть…». Согласно царскому указу, в Навигацкую школу «велено было принимать детей дворянских, дьячих, подьячих, из домов боярских и других чинов, от 12 до 17 лет».

Школу-то открыли, да неувязка вышла: «Поступило в нее всего 4 человека. Темные слухи и злая обывательская молва сделали свое дело. Родовитые Солнцевы-Засекины, Хилковы и Урусовы не пожелали пускать своих чад в новую светскую школу. Царский указ оскорблял старые боярские роды, ибо велено детей дворянских посадить за один стол с детьми подьячих, дьячих, церковнослужителей, посадских, дворовых, солдатских и отроков других недостойных чинов. Придумали – отдать любимое чадо в руки ненавистных иностранцев, в товарищество к холопам, в светскую школу, где за „шалость“ „дитя“ могли принародно высечь. Тогда и в 18 лет дворянин почитался еще „неразумным младенцем“, получившим вполне достаточное для дворянина образование у сельского дьячка, которого недоросль, как наставника, и в грош не ставил» (Там же).

Но вышло то же, что с исполнением указов «О бритье бород и усов всякого чина людям, кроме попов и дьяконов» и «О ношении платья на манер венгерского»: Петр настоял на своём. Да еще велел, чтобы в уставе была предусмотрена смертная казнь за побег из школы, а за неисправимую неуспеваемость в науках – учеников отдавать в солдаты или матросы.

О подлинно отеческом внимании государя к нуждам будущего «приюта гардемаринов» говорит достойный уровень её обеспеченности учебными пособиями и приборами: «Каждому под расписку выдавалась „Арифметика“ Магницкого, включавшая под своим названием геометрию и тригонометрию, астрономию и навигацию. Воспитанник получал также экземпляр перевода на русский язык записок профессора Фархварсона по навигации, таблицу логарифмов, изданную специально для школы в 1703 году церковной типографией в Москве. Задачи в классе решались на „распилованных“ каменных столах (аспидных досках) „каменными перьями“ (грифелями). Комплект учебных инструментов учащегося обычно содержал „шкилы“ (координатные и навигационно-логарифмические линейки), „радиусы“ (градштоки – приборы для определения высот светил), „секторы“ и полуторафунтовые „квадранты“ (угломеры – очень точные приборы для определения широты и долготы). Выдавались также „ноктурналы“ (приборы для определения времени по звездам „Урзы малой“ и „Урзы большой“ (Малой и Большой Медведицы), готовальни и циркули» (Там же).

Всё шло, как и задумал государь: первый выпуск школы, располагавшейся в Сухаревой башне в Москве, состоялся в 1705 году; её закончили 64 человека. Однако, видимо, вспомнив свои «университеты» во время Великого посольства в Европу, Петр всё время возвращался мыслью к фразе «ученый мастер» (читай – «знаток инженерного дела»).

Итак, некоторые эпизоды посещения государем европейских стран в конце XVII века: «Поработав месяца четыре в Голландии, Петр узнал, „что подобало доброму плотнику знать“, но, недовольный слабостью голландских мастеров в теории кораблестроения, в начале 1698 г. отправился в Англию для изучения процветавшей там корабельной архитектуры, радушно был встречен королем, подарившим ему свою лучшую новенькую яхту, в Лондоне побывал в Королевском обществе наук, где видел „всякие дивные вещи“, и перебрался неподалеку на королевскую верфь в городок Дептфорд, чтобы довершить свои познания в кораблестроении и из простого плотника стать ученым мастером. Отсюда он ездил в Лондон, в Оксфорд, особенно часто в Вулич, где в лаборатории наблюдал приготовление артиллерийских снарядов и „отведывал метания бомб“. В Портсмуте он осматривал военные корабли, тщательно замечая число пушек и калибр их, вес ядер» (из книги Василия Ключевского «Курс русской истории» (лекция пятьдесят девятая) // Москва, «АЛЬФА-КНИГА», 2019 г.).

Думается, уроки «Великого посольства» и подвигли государя не только на укрупнение в 1712 году Навигацкой школы, но и на существенное изменение учебных программ: «Школу инженерную умножить, а именно учеников из русских, которые у?чены цифири, на Сухареву башню для сего учения посылать, а когда арифметику окончат, учить геометрию столько, сколько до инженерства надлежит; а потом отдавать инженера учить фортификацию и держать всегда полное число 100 человек или 150, из коих две трети или по нужде были из дворянских людей…» (из указа Петра I от 16 (27) января1712 года).

Итоги первых пятнадцати лет работы Навигацкой школы иначе как увенчавшиеся полной Victoria, пожалуй, и не назовешь: «До 1716 года учреждение окончило 1200 человек. Среди выпускников Школы математических и навигацких наук – гидрограф Фёдор Иванович Соймонов, автор первого экономико-географического описания России Иван Кириллович Кириллов, адмиралы Николай Фёдорович Головин и Василий Яковлевич Чичагов, первые российские полярные исследователи и путешественники Алексей Ильич Чириков, Фёдор Фёдорович Лужин, Семён Иванович Челюскин. Уже после реформы образования, в 1715 году старшие мореходные классы школы перевели из Москвы в Петербург, где были преобразованы в Морскую академию. К тому моменту город на Неве взял на себя функции столицы – в нем было сосредоточено почти всё судостроение, базировался Балтийский флот» (из статьи Дениса Данилова «Приют гардемаринов. Как Петр I создал первую в России Навигацкую школу», 26.01.2016).

3.2. «Русский метод». МГТУ им. Н. Э. Баумана

А теперь перенесемся за океан, в американский «штат заливов» – Массачусетс, в пригород Бостона. Именно здесь расположился Массачусетский технологический институт (Massachusetts Institute of Technology – MIT), признанный в 2018 году (впрочем, как и предыдущие несколько лет) британской консалтинговой компанией Quacquarelli Symonds (QS) лучшим техническим университетом мира. Да и то: среди выпускников и преподавателей вуза 80 лауреатов Нобелелевской премии; здесь была разработана космическая программа «Аполлон», впервые химически синтезирован пенициллин, изобретена компьютерная память и в первый раз применен известный термин «хакер»; а за выпускниками университета «охотятся» крупнейшие корпорации мира: Google, Apple, Oracle, Boeing, Microsoft, Amazon.

Источником таких успехов в подготовке высокопрофессиональных инженеров одни называют революционную для 1861 года (год основания университета) идею физика и геолога Уильяма Роджерса объединия гуманитарных и профессиональных наук для получения студентами разносторонних знаний. Другие прагматично объясняют феномен MIT циклопическими объемами финансирования вуза: только такие гиганты индустрии как Lockheed Martin, Northrop Grumman, Raytheon, Boeing ежегодно направляют на университетский НИОКР (в т.ч. военного назначения) свыше одного миллиарда долларов. И лишь некоторые эксперты робко отмечают, что MIT просто наиболее адекватно сумел перенести на американскую почву лучшие модели деятельности европейских политехнических институтов, причем, не называя каких именно.

А между тем, как оказалось, секрета никакого нет: для Массачусетского технологического института образцом передового европейского технического вуза стало Императорское Московское техническое училище – ИМТУ (нынешний Московский государственный технический университет имени Н. Э. Баумана). Отметим для справки, что в 1868 году ИМТУ было преобразовано в училище из Ремесленного учебного заведения для мальчиков-сирот Воспитательного дома, учрежденного вдовствующей императрицей Марией Фёдоровной, что было одобрено в 1830 году императором Николаем I.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 10 форматов)