banner banner banner
Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции
Оценить:
Рейтинг: 5

Полная версия:

Логика случая. О природе и происхождении биологической эволюции

скачать книгу бесплатно

Логика случая. О природе и происхождении биологической эволюции
Евгений Викторович Кунин

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией. Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Кунин

Логика случая. О природе и происхождении биологической эволюции

«The Logic of Chance. The Nature and Origin of Biological Evolution»

Copyright © 2012 by Pearson Education, Inc.

© Перевод, издание на русском языке, ЗАО «Издательство Центрполиграф», 2014

© Художественное оформление, ЗАО «Издательство Центрполиграф», 2014

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

Предисловие автора к русскому переводу

Сообщение о том, что группа энтузиастов, самоорганизовавшаяся через LiveJournal, начала работу над переводом этой книги, было для автора полной неожиданностью, конечно же приятной. В XXI веке вопрос о необходимости перевода научной литературы с английского на какие-либо другие языки, мягко говоря, неоднозначен. Научные тексты теперь публикуются по-английски, и умение их читать на этом языке – элементарное требование профессиональной пригодности. Научно-популярная литература – дело, конечно, совершенно иное. Эта книга не популярная, но и не типичная специализированная монография. В идеале этот текст рассчитан на широкие круги ученых разных специальностей, включая аспирантов и студентов старших курсов. Было бы, конечно, прекрасно, если бы вся эта читательская аудитория могла свободно прочесть оригинал, однако пока что это вряд ли реалистично. Самым же главным аргументом в пользу перевода стал для автора сам факт, что немалый коллектив переводчиков собрался в считаные дни. В этой ситуации автор считал своей почетной обязанностью прочесть и отредактировать весь текст перевода, конечно следя в первую очередь за фактической точностью.

Оригинал этой книги был опубликован осенью 2011 года, за два года до русского издания. Биологические исследования в наше время прогрессируют в беспрецедентном темпе, и за эти годы, естественно, накопилось множество важных новых результатов и было опубликовано немало серьезных статей, проливающих свет на фундаментальные проблемы эволюционной биологии, обсуждаемые в книге. Разумеется, новые соображения, только частично опубликованные, появились и у автора. Более того, многие читатели, включая переводчиков, и сам автор при редактировании перевода отметили неточности и неясности в изложении (к счастью, насколько автору известно, ни одна из них не может считаться серьезной ошибкой). Учесть все это в русском переводе было невозможно, но автор сделал попытку отразить наиболее важные уточнения и некоторые самые интересные научные новости в примечаниях к русскому изданию. Таких новых примечаний в итоге оказалось куда больше, чем ожидалось в начале работы над редактированием перевода (а могло быть и еще больше – автор высказывался только тогда, когда уж совсем не мог молчать). Автора это очень радует, поскольку наглядно иллюстрирует скорость прогресса современной эволюционной биологии. Несколько примечаний относятся скорее к переводу, поясняя те места в тексте, где английскую игру слов не удалось точно передать по-русски. Разумеется, эти примечания не могут претендовать на то, чтобы сделать книгу «вторым изданием», это именно перевод, но все же автор надеется, что эти небольшие дополнения повышают его ценность.

С точки зрения автора, основные идеи книги пока выдерживают проверку временем (пусть коротким в астрономическом исчислении, но не пренебрежимым, учитывая поразительную скорость накопления новых данных); во всяком случае, потребности что-либо радикально пересмотреть до сих пор не возникло. Более того, автору представляется, что прошедшее время только усилило потребность в концептуальном обобщении информации о разнообразии организмов и их геномов и об эволюционных процессах. Новый эволюционный синтез на основе данных геномики и системной биологии кажется важным и актуальным, как никогда раньше. Без такого обобщения как-либо осмыслить море наблюдений становится просто невозможным.

Конечно, важно подчеркнуть, что эта книга ни в коем случае не может претендовать на роль такого нового синтеза. Это всего лишь некий эскиз, попытка угадать контуры будущего здания. Даже оставляя в стороне принципиальную открытость науки и считая, что какие-то этапы завершенности и подведения итогов в ней действительно существуют, по мнению автора, завершение нового синтеза эволюционной биологии – дело как минимум двух научных поколений. Слишком много еще остается неясного, и слишком много надо сделать, чтобы уложить гигантские массивы данных, производимые геномикой и системной биологией, в рамки стройных и обоснованных теорий и концепций. Пожалуй, главной задачей этой книги и было выявить те области эволюционной биологии, где традиционные представления не работают, наметить возможные пути к решениям и только в некоторых случаях предложить сами решения, конечно же предварительные. Насколько все это удалось, судить читателям.

Благодарности учителям, сотрудникам и многочисленным коллегам, с которыми довелось обсуждать рассматриваемые в книге проблемы, приведены в конце книги. Здесь же приятный долг автора – выразить искреннюю благодарность Георгию Юрьевичу Любарскому за идею коллективного перевода и его организацию, всем переводчикам и редакторам издательства за работу над русским вариантом и персонально одному из переводчиков, Валерию Анисимову, за ценные комментарии, в значительной степени учтенные в авторских примечаниях к переводу.

Моим родителям

Введение. На пути к новому синтезу эволюционной биологии[1 - Перевод заглавия этого введения представил серьезные трудности. В английском оригинале было towards a postmodern synthesis. Это конечно же игра слов: с одной стороны, postmodern означает просто «после Modern Synthesis» (то, что в русской литературе обычно называется синтетической теорией эволюции, СТЭ), а с другой – «постмодернистский». Как это передать по-русски, совершенно не очевидно. Хуже того, этот нехитрый каламбур неоднократно обыгрывается в дальнейших главах. Никакого способа справиться с этой трудностью, кроме написания этого примечания, ни переводчикам, ни автору в голову не пришло (примеч. авт. к русскому изданию здесь и далее курсивом).]

Название настоящей работы связано с четырьмя замечательными книгами: романом Пола Остера «Музыка случая» (Auster, 1991), знаменитым трактатом Жака Моно по молекулярной биологии, эволюции и философии «Случай и необходимость» (Monod, 1972), книгой Франсуа Жакоба «Логика жизни» (Jacob, 1993) и, конечно, «Происхождением видов» Чарльза Дарвина (Darwin, 1859). Каждая из этих книг в своем роде затрагивает одну и ту же всеохватную тему: взаимосвязь произвола и порядка, случайности и необходимости в жизни и эволюции.

Лишь после того, как эта работа была завершена и находилась уже на последней стадии редактирования, я узнал o книге Джона Венна, выдающегося логика и философа из Кембриджа, который в 1866 году опубликовал труд «Логика случая: эссе об основах и структуре теории вероятности» (Venn, 1866). В этой работе Венн вводит частотную интерпретацию вероятности, остающуюся основой теории вероятности и статистики по сей день. Более всего Джон Венн известен, естественно, вездесущими диаграммами, им изобретенными. Я смущен тем, что не знал о работе Венна, когда начал эту книгу. С другой стороны, мне трудно представить более достойного предшественника.

Основным толчком к написанию этой книги было мое убеждение в том, что сейчас, через 150 лет после Дарвина и 40 лет после Моно, мы собрали достаточно данных и идей, чтобы выработать более глубокое и, вероятно, более удовлетворительное толкование принципиально важной взаимосвязи между случаем и необходимостью. Мой главный тезис состоит в том, что ограниченная различными факторами случайность лежит в самой основе всей истории жизни.

К работе над этой книгой автора подтолкнуло множество событий. Самым непосредственным стимулом для того, чтобы описать возникающий новый взгляд на эволюцию, была революция в исследовании геномов, которая началась в последней декаде XX века и продолжается по сей день. Возможность сравнивать последовательности нуклеотидов в геномах тысяч организмов самых разнообразных видов качественно изменила ландшафт всей эволюционной биологии. Наши выводы о вымерших, предковых формах жизни – уже не те смутные догадки, какими они были раньше (по крайней мере для организмов, окаменелости которых не были обнаружены). Сравнение геномов выявляет разнообразные гены, сохраненные в основных группах ныне живущих существ (в некоторых случаях, даже во всех или большинстве из них), и таким образом приносит нам невообразимое прежде богатство достоверной информации о предковых формах. К примеру, не будет преувеличением заявить, что у нас есть достаточно полное понимание основного генетического состава последнего общего предка всех бактерий, который, вероятно, жил около 3,5 миллиарда лет назад. Более древние предки видятся менее ясно, но определенные черты расшифрованы даже для них. Геномная революция не просто позволила осуществить уверенную реконструкцию генных наборов древних форм жизни. Еще важнее то, что она буквально перевернула центральную метафору эволюционной биологии (и, возможно, всей биологии) – древо жизни (ДЖ), показав, что эволюционные траектории отдельных генов несовместимо разные. Вопрос о том, должно ли быть ДЖ возрождено и если так, то в каком виде, остается предметом ожесточенных споров, которые являются одной из важных тем этой книги.

Я рассматриваю падение ДЖ как «метареволюцию», крупнейшее изменение всей концептуальной структуры биологии. Явно рискуя вызвать гнев многих за связь с вредоносной культурной тенденцией, я тем не менее называю эту главную перемену переходом к постмодернистскому биологическому взгляду на жизнь[2 - Во многом эти представления опираются на публикации крупнейшего современного эволюциониста Форда Дулитла, которые цитируются в соответствующих главах.]. По существу, этот переход вскрывает множественность паттернов и процессов эволюции, центральную роль непредсказуемых событий в эволюции живых форм [ «эволюция как халтура» (evolution as tinkering)] и, в особенности, крушение панадаптационизма как парадигмы эволюционной биологии. Несмотря на наше непоколебимое восхищение Дарвином, мы должны низвести викторианский взгляд на мир (включая его обновленные версии, процветающие в XX столетии) в почтенные музейные залы, где ему самое место, и исследовать последствия смены парадигмы.

У этого переворота в эволюционной биологии есть еще один план. Сравнительная геномика и эволюционная системная биология (например, сравнительное изучение экспрессии генов, концентрации белка и других молекулярных характеристик фенотипа) выявили несколько общих закономерностей, которые проступают во всех клеточных формах жизни от бактерий до млекопитающих. Существование таких универсальных закономерностей подсказывает, что сравнительно простые молекулярные модели, сходные с теми, что используются в статистической физике, могут объяснить важные аспекты биологической эволюции; некоторые подобные модели, обладающие значительной предсказательной силой, уже существуют. Пресловутая «зависть к физикам», которая, кажется, беспокоит многих биологов (включая меня), может быть утолена недавними и предстоящими теоретическими изысканиями. Взаимодополняющие отношения между всеобщими тенденциями и непредсказуемостью конкретных результатов эволюции являются центральными для биологической эволюции и текущей революции в эволюционной биологии – и это еще одна ключевая тема настоящей книги.

Еще одна причина появления наброска новой синтетической эволюционной теории, который предлагается в этой книге, специфическая, в какой-то мере личная. Я получил высшее образование и окончил аспирантуру в Московском государственном университете (еще во времена СССР), в области молекулярной вирусологии. Моя кандидатская работа включала экспериментальное изучение репродукции полиовируса и родственных вирусов, крошечный геном которых представлен молекулой РНК. Я никогда не умел как следует работать руками, да и место и время были не лучшими для экспериментов, потому что даже простейшие реагенты было сложно достать. Сразу по завершении моей кандидатской мы с моим коллегой Александром Евгеньевичем Горбаленей принялись за иное направление в исследованиях, которое в то время казалось многим совершенно ненаучным. Это было «разглядывание последовательностей» – попытки предсказать функции белков, закодированных в крошечных геномах вирусов (это были единственные полные геномы, доступные в то время), исходя из последовательности их кирпичиков-аминокислот. Сегодня кто угодно может легко провести такой анализ, используя удобные программные средства, которые можно бесплатно загрузить из Интернета; естественно, осмысленная интерпретация результата все равно потребует обдумывания и навыка (здесь с тех пор ничего особенно не изменилось). В 1985 году, однако, практически не было ни компьютеров, ни программ. И все же с помощью наших коллег-программистов нам удалось разработать несколько довольно полезных программ (мы тогда набивали их на перфокартах). Львиная доля анализа производилась вручную (или, точнее, на глаз). Вопреки всем трудностям и невзирая на некоторые упущенные возможности, наши усилия в последующие пять лет были довольно успешны. Мы смогли превратить функциональные карты тех самых крошечных геномов из большей частью неисследованных территорий в весьма насыщенные геномные карты биологических функций. Большинство предсказаний было впоследствии подтверждено на опыте, хотя некоторые из них до сих пор еще в работе: лабораторные эксперименты занимают куда больше времени, чем компьютерный анализ. Уверен, что нашему успеху послужило раннее осознание очень простого, но удивительно мощного основного принципа эволюционной биологии: если явственно различимый мотив в последовательности белка сохраняется в течение долгой эволюции, то он функционально важен, и чем он консервативнее, тем важнее функция. Этот принцип, в сущности вытекающий из простого здравого смысла, но конечно же строго следующий из молекулярной эволюционной теории, прекрасно служил нашим целям и, уверен, сделал из меня эволюционного биолога до конца моих дней. Я склонен перефразировать известное изречение великого эволюционного генетика Феодосия Добржанского: «Ничто в биологии не имеет смысла, кроме как в свете эволюции» (Dobzhansky, 1973) – еще более прямым образом: биология есть эволюция.

В те ранние дни эволюционной геномики мы с Сашей часто говорили о возможности того, что наши любимые РНК-вирусы являются прямыми потомками древнейших форм жизни. В конце концов, это маленькие и простые генетические системы, использующие только один вид нуклеиновой кислоты, и репликация у них напрямую связана с экспрессией через трансляцию геномной РНК. Конечно, это были вечерние разговоры, вовсе не связанные с нашими дневными попытками картирования функциональных доменов вирусных белков. Сегодня, 25 лет спустя, когда изучены сотни различных геномов вирусов и хозяев, идея того, что вирусы (или сходные с вирусами генетические элементы) могли быть главными на ранних стадиях эволюции жизни, из туманных предположений выросла в концепцию, совместимую с огромным массивом экспериментальных данных. По моему мнению, это наиболее многообещающая линия размышлений и анализа в исследованиях ранних стадий эволюции жизни.

Таковы различные концептуальные линии, которые неожиданно для меня сошлись в растущем осознании того, что наше понимание эволюции, а с ней и самой природы биологии навсегда отошло от взглядов, преобладавших в XX веке, которые на сегодня выглядят скорее наивными и довольно догматичными. В определенный момент желание сплести эти линии в подобие связной картины стало непреодолимым, и отсюда появилась эта книга.

Некоторые стимулы для написания этой книги пришли вовсе не из биологии, а из поразительных достижений современной космологии. Эти открытия не только подняли космологию до уровня настоящей физики, но и полностью перевернули наши представления о мире, и особенно о природе случайности и необходимости. Когда дело доходит до границ биологии, таких как проблема происхождения жизни, этот новый взгляд на мир невозможно не принимать во внимание. Физики и космологи все чаще ставят вопрос, почему в мире существует что-то, а не ничто, – не только как философскую, но и как физическую проблему, и исследуют возможные ответы в форме определенных физических моделей. Трудно не задаться тем же вопросом о биологическом мире, причем на более чем одном уровне: почему существует жизнь, а не просто растворы ионов и маленьких молекул? И коли жизнь существует, почему есть пальмы и бабочки, кошки и летучие мыши, а не только бактерии? Уверен, что эти вопросы могут быть поставлены прямым научным образом, и мне кажется, на них уже появляются правдоподобные, пусть и предварительные, ответы.

Последние достижения в физике высоких энергий и космологии послужили вдохновением для этой книги не только в прямом научном смысле. Многие ведущие теоретические физики и космологи оказались одаренными писателями популярных и научно-популярных книг (что заставляет задуматься о связи между абстрактным мышлением на высочайшем уровне и литературным талантом), которые передают эмоциональный подъем, возникающий в связи с новейшими открытиями о строении Вселенной, с восхитительной ясностью, изяществом и пылом. Современная волна такой литературы, совпадающая с революцией в космологии, началась с классической «Краткой истории времени» Стивена Хокинга (Hawking, 1988). С тех пор появились десятки различных прекрасных книг. Одна из них, сильнее прочих изменившая мой собственный взгляд на мир, – великолепная короткая книга Александра Виленкина «Мир многих миров» (Vilenkin, 2007), но не менее важны были и работы Стивена Вайнберга (Weinberg, 1994), Алана Гута (Guth, 1998a), Леонарда Зюскинда (Susskind, 2006b), Шона Кэрролла (Carroll, 2010) и Ли Смолина (в спорной книге о «космическом естественном отборе»; Smolin, 2010). Эти книги гораздо больше, чем просто великолепные популяризации: каждая из них пытается представить связный, общий взгляд как на фундаментальную природу мира, так и на состояние науки, которая ее исследует. Каждая из этих картин мира уникальна, но во многих аспектах они идут бок о бок и дополняют друг друга. Каждая из них основана на строгой науке, но содержит и элементы экстраполяции и предположения, широких обобщений и, несомненно, противоречий. Чем больше я читал эти книги и размышлял о значении возникающего нового мировоззрения, тем сильнее мне хотелось сделать что-то подобное и в моей собственной области, молекулярной биологии. В какой-то момент, читая книгу Виленкина, я осознал, что, возможно, существует прямая и принципиально важная взаимосвязь между новыми взглядами на вероятность и случай, диктуемыми современной космологией, и происхождением жизни – вернее, происхождением биологической эволюции. Огромная роль случая в возникновении жизни на Земле, присутствующая в этой линии размышления, безусловно, неординарна и непременно многих смутит, но я чувствовал, что она не может быть оставлена без внимания, если мы хотим серьезно подойти к проблеме происхождения жизни.

Эта книга – мой собственный подход к описанию текущего состояния эволюционной биологии с позиций сравнительной геномики и системной биологии; следовательно, она неизбежно включает в себя не только установленные факты и подтвержденные теоретические модели, но и догадки и предположения. В этой книге я пытаюсь провести границу между фактами и догадками настолько четко, насколько возможно. Я хотел написать книгу в стиле вышеупомянутых превосходных научно-популярных книг по физике, но изложение заупрямилось и отказалось быть написанным таким образом. В результате текст получился гораздо более научным, чем это задумывалось поначалу, хотя он большей частью не слишком специализирован и описывает совсем немного методов, притом в весьма упрощенной манере. Одна важная оговорка: хоть книга и посвящена различным аспектам эволюции, она остается сборником глав по выбранным темам и ни в коей мере не претендует быть всеохватывающим трудом. Многие важные и популярные темы, такие как происхождение многоклеточных организмов или эволюция развития животных, совершенно осознанно не затронуты. Насколько возможно, я пытался придерживаться лейтмотива книги: взаимодействия между случаем и упорядоченными процессами. Еще один щекотливый момент связан со ссылками на литературу: попытайся я включить пусть не все, но хотя бы основные источники, библиография составила бы много тысяч ссылок. Я отказался от попытки это сделать с самого начала, и таким образом список литературы в конце книги является лишь небольшой выборкой относящихся к теме работ, и их отбор частично субъективен. Приношу мои искренние извинения коллегам, чья важная работа осталась неупомянутой.

Невзирая на все эти предостережения, я надеюсь, что обобщения и идеи, представленные здесь, будут интересны многим моим коллегам-ученым и студентам – не только биологам, но и физикам, химикам, геологам и всем интересующимся эволюцией и происхождением жизни.

Глава 1. Основы эволюции: Дарвин и синтетическая теория эволюции

В этой и следующей главах дается краткое описание современного состояния эволюционной биологии, какой она была до 1995 года, когда возникло новое направление науки – сравнительная геномика. Мягко говоря, это сложная задача – спрессовать полтора века исследований в области эволюции в две кратких главы. Тем не менее я полагаю, что мы можем начать с прямого вопроса «Какой же итог всех этих десятилетий научной работы?». Мы можем коротко и осмысленно сформулировать выводы синтетической теории до возникновения геномики, пусть и опуская большую часть подробностей.

В этих двух главах я попытался объединить историю и логику, однако мне, естественно, не удалось избежать некоторого произвола. В этой главе я прослежу развитие основ эволюционной биологии от «Происхождения видов…» Чарльза Дарвина до сформулированной в 1950-х годах синтетической теории эволюции (СТЭ). Во второй главе речь пойдет об идеях и открытиях, которые оказали влияние на понимание эволюции после окончательного оформления синтетической теории эволюции и до революции в геномике 1990-х.

Дарвин и первая синтетическая теория: величие замысла, ограничения и проблемы

Довольно странно думать о том, что мы только что отметили 150-летие со дня первой публикации «Происхождения видов…» (Darwin, 1859) и 200-летний юбилей самого Дарвина. Учитывая, какой глубокий и неизгладимый след оставило «Происхождение…» в науке, философии и человеческой мысли в целом (далеко за пределами только биологии), кажется, что 150 лет прошли очень быстро.

Что же такого исключительного и важного в том изменении миропонимания, которое вызвал труд Дарвина? Дарвин не открыл эволюцию (как иногда заявляют или чаще подразумевают, особенно в массовом сознании и публичных обсуждениях). Многие ученые до него, включая светил науки своего времени, были убеждены, что организмы изменяются во времени и эти изменения не случайны. Если не считать великих (и в некоторой степени легендарных) древнегреческих философов Эмпедокла, Парменида и Гераклита и их индийских современников, обсуждавших поразительные пророческие идеи (хоть и странным для нас образом совмещенные с мифологией) о процессах изменения в природе, у Дарвина было много предшественников в XVIII и начале XIX века. В последующих изданиях «Происхождения…» Дарвин с присущими ему непредвзятостью и великодушием признал их вклад. Его дед, Эразм Дарвин, и знаменитый французский ботаник и зоолог Жан-Батист Ламарк (Lamarck, 1809) написали толстые фолианты об эволюции[3 - По иронии судьбы, magnum opus Ламарка «Философия зоологии» был напечатан в год рождения Дарвина.]. Ламарк даже предложил ясное объяснение действия механизма, который, как он считал, закрепляет эволюционные изменения. Более того, знаменитый учитель и друг Дарвина, великий геолог Чарльз Лайель, писал о «борьбе за выживание», в которой всегда выигрывает более плодовитый. И конечно, общеизвестно, что в то же самое время молодой современник Дарвина, Альфред Рассел Уоллес, предложил в целом идентичную концепцию эволюции и ее механизма.

Однако, несмотря на достижения всех эволюционистов более раннего периода, именно Дарвин в «Происхождении…» заложил основу современной биологии и навсегда изменил научное представление о мире. Что же определило уникальность и исключительную значимость работы Дарвина? Рассматривая его достижение спустя 150 лет, мы можем выделить три крупных обобщения:

• Дарвин представил свой взгляд на эволюцию исключительно с позиции натуралиста и рационалиста, не привлекая к объяснению никакие телеологические силы или стремление к совершенствованию (или прямо указывая на некоего создателя), как обычно поступали теоретики того времени.

• Дарвин предложил конкретный, прямой и доходчивый механизм эволюции, представляющий собой взаимодействие между наследственной изменчивостью и естественным отбором, в целом описываемое как выживание наиболее приспособленных.

• Дарвин смело расширил идеи эволюции на всю историю земной жизни, которая, как он полагал, может быть представлена величественным древом (знаменитая единственная иллюстрация в «Происхождении…»), и даже утверждал, что все существующие формы жизни происходят от единого общего предка.

Общая и обладающая огромной предсказательной силой модель эволюции, предложенная Дарвином, явилась резким контрастом к эволюционным идеям его предшественников, особенно Ламарка и Лайеля, которые рассматривали преимущественно или даже исключительно внутривидовые эволюционные изменения. Четвертое значительное достижение Дарвина связано не столько с научным содержанием его работы, сколько с формой ее изложения. Главным образом в связи с вполне понятной срочностью, вызванной соперничеством с Уоллесом, Дарвин представил свой труд в виде небольшой и легко читаемой даже для неспециалиста книги, которая, несмотря на это, содержала скрупулезно и тщательно собранные доводы. Благодаря этим принципиальным достижениям, Дарвин не просто опубликовал очередную книгу об эволюции, но полностью изменил лицо науки. Сразу же после публикации «Происхождения…» большинство биологов и даже просто образованная часть общества признали эту работу как заслуживающее доверие естественно-научное объяснение возникновения многообразия форм жизни, и это послужило динамичной основой для дальнейших теоретических построений[4 - Удивительно точное и глубокое описание непосредственного воздействия и публичного признания книги Дарвина можно найти в романе Джона Фаулза «Любовница французского лейтенанта».].

Рассматривая труд Дарвина с более отвлеченной позиции, которая является основной в этой книге, необходимо особо отметить, что Дарвин, похоже, первым обнаружил определяющее взаимодействие между случаем и направленностью (неизбежностью) в эволюции. В соответствии с идеей Дарвина, изменчивость почти полностью случайна, в то время как отбор является направленным и создает сложность. В этом Дарвин полностью противоположен Ламарку, который, в сущности, изгнал случайность из своей картины мира. В данной книге мы будем периодически возвращаться к этому ключевому конфликту мировоззрений.

Конечно, надо отдать должное предшественникам Дарвина – геологам и эволюционным биологам, однако Дарвин, несомненно, был первым ученым, который включил возможность эволюционных изменений (и, косвенно, происхождение) всей Вселенной в сферу явлений природы, подлежащих рациональному изучению. Другими словами, Дарвин положил начало научному изучению стрелы времени – то есть асимметричных во времени, необратимых процессов. Таким образом, он подготовил почву не только для развития биологии, но также для создания современной физики. Я полагаю, что знаменитый физик Людвиг Больцман, основатель статистической термодинамики и автор современной концепции энтропии, имел все основания назвать Дарвина «великим физиком», что может показаться парадоксальным, учитывая, что Дарвин крайне мало знал физику и математику. Пожалуй, и наш современник, философ Дэниел Деннет не так уж преувеличил, утверждая, что дарвиновская идея естественного отбора – величайшая идея в истории человечества (Dennett, 1996).

Конечно, эволюционное учение Дарвина со времени публикации «Происхождения…» и по меньшей мере до конца XIX века сталкивалось с острыми проблемами, всерьез беспокоившими Дарвина и на тот момент казавшимися непреодолимыми большинству ученых. Во-первых, значительную трудность представляло собой определение возраста Земли, который во времена Дарвина был существенно занижен. Даже не принимая во внимание религиозные мифы о сотворении мира, наиболее точно возраст Земли, по мнению физиков XIX века (в частности, лорда Кельвина), оценивался в 100 миллионов лет. Такого промежутка времени было явно недостаточно для эволюции жизни в том виде, в каком ее представил Дарвин, то есть путем постепенного накопления небольших изменений. В целом, действительно, 100 миллионов лет очень мало для эволюции жизни в ее нынешнем многообразии, хотя никто в XIX веке не мог количественно оценить скорость дарвиновской эволюции. Эта проблема разрешилась спустя 20 лет после смерти Дарвина. После открытия радиоактивности в начале XX века ученые подсчитали, что охлаждение Земли от первичного раскаленного состояния заняло миллиарды лет, то есть примерно столько, сколько, по предположению Дарвина, требовалось для эволюции с помощью естественного отбора.

Во-вторых, еще больше вопросов вызывали механизмы наследственности и так называемый кошмар Дженкина. Так как во времена Дарвина еще не существовало теории дискретных наследственных детерминант (кроме малоизвестных статей Менделя), то было неясно, каким образом полезное благоприобретение может сохраниться в поколениях и закрепиться в эволюционирующей популяции, не растворяясь и не теряясь. Очевидно, сам Дарвин не обратил внимания на эту проблему в своей теории, когда писал «Происхождение…», однако о ней сообщил Дарвину необычайно критичный читатель его работы, инженер Дженкин. Оглядываясь назад, трудно понять, почему Дарвин (или Дженкин, или Гексли) не принял в расчет решение, предлагаемое Менделем. Вместо этого Дарвин выдвинул куда более странное объяснение, так называемую теорию пангенеза, которую даже он сам, по-видимому, не принимал всерьез. Противоречие было устранено с рождением (или, вернее, повторным рождением) генетики, хотя поначалу ее значение для дарвинизма[5 - Естественно, сам Дарвин не использовал термин «дарвинизм»; этот не очень удачный и едва ли дальновидный неологизм введен последователем и защитником Дарвина, Томасом Генри Гексли, в отзыве на «Происхождение…» (Huxley, T. H. 1860. Darwin on the origin of Species. Westminster Review: 541–570). Это слово имеет некоторый оттенок догматичности, если не псевдонаучности, по созвучию с другими хорошо известными «-измами», например марксизмом, или фрейдизмом, или даже лысенкоизмом (по-русски – лысенковщиной; о лысенковщине см. гл. 9). Естественно, что никто не говорит о ньютонизме или эйнштейнизме, а слово «менделизм» (обычно в составе сложных слов «менделизм-вейсманизм» или «менделизм-морганизм») употреблялось исключительно в негативном контексте антинаучно мыслящими последователями Лысенко в Советском Союзе. Тем не менее термин, предложенный Гексли, твердо прижился и даже привлекает своей емкостью. В этой книге я использую его исключительно для описания «первой синтетической теории эволюции», которая была разработана Дарвином в «Происхождении…», а затем усовершенствована в последующих работах Гексли, Уоллеса, Вейсмана, Геккеля и других ранних последователей Дарвина.] было неочевидным (см. следующую главу).

Третья проблема, которую Дарвин полностью осознавал и блестяще исследовал, – это эволюция сложных структур (органов, по терминологии Дарвина), для работы которых необходимо соединение множества частей. Такие сложные органы представляли собой классическую головоломку для эволюционной биологии, которая в XX веке была выразительно названа неупрощаемой сложностью[6 - Выражение «неупрощаемая сложность» было придумано Майклом Бихи, одним из основных сторонников антиэволюционной гипотезы разумного замысла (РЗ), в его (печально) известной книге «Черный ящик Дарвина» (Behe, M. J. 2006. Darwin’s Black Box: The Biochemical Challenge to Evolution. New York: Free Press). Для Бихи и других сторонников РЗ «неупрощаемость» сложных биологических структур является будто бы подтверждением (даже доказательством) неизбежности РЗ. Конечно же РЗ – это злостная чушь, но термин «неупрощаемая сложность» вполне выразителен, хотя эволюционные биологи предпочли бы говорить о «видимой» или «кажущейся» неупрощаемости сложных структур.]. Конечно, сразу непонятно, как может происходить эволюция таких органов путем естественного отбора, если считать, что отдельные части органа или «частично укомплектованный» орган не функциональны. Дарвин решительно обратился к этой проблеме в одном из самых известных отрывков «Происхождения…», сценарии эволюции глаза. Он предложил логически безупречное, убедительное и неординарное решение: Дарвин предположил, что эволюция сложных органов идет через серию промежуточных стадий, каждая из которых частично выполняет функцию развивающегося сложного органа. Таким образом, эволюция глаза, по Дарвину, начинается с простого светочувствительного участка, через примитивные постепенно усложняющиеся структуры, подобные глазу, к полноценным, функциональным сложным глазам членистоногих и позвоночных. Необходимо отметить, что примитивные светочувствительные структуры, похожие на те, существование которых предположил Дарвин исходя из общих предположений, были впоследствии обнаружены, что по крайней мере частично подтверждает его сценарий и показывает, что в этом случае неупрощаемость сложной структуры иллюзорна. Однако, несмотря на убедительность схемы, предложенной Дарвином, к ней следует относиться трезво, как к частично подтверждаемому, но все же гипотетическому сценарию эволюции одного конкретного органа. Предположение Дарвина показало одну из возможных траекторий эволюции сложной структуры, но не решило главную проблему в целом. Эволюция сложных структур на разных уровнях является центральным вопросом биологии, поэтому мы будем возвращаться к нему много раз в этой книге.

Четвертый сложный вопрос дарвинизма является и самым глубоким. Эта главная проблема имеет непосредственное отношение к названию книги Дарвина и к подразумеваемой основной ее теме, то есть к происхождению видов, и, в общем смысле, к крупным эволюционным событиям, которые в настоящее время носят собирательное название макроэволюция. В значительном отрыве от названия книги те неоспоримые примеры эволюции, которые представил Дарвин, относились к возникновению новых внутривидовых различий, а не новых видов, не говоря уже о новых таксонах более высокого уровня. Эта проблема сохранялась долго после смерти Дарвина и существует даже сейчас, хотя частично она была решена сначала прогрессом палеонтологии, затем развитием теории видообразования при поддержке биогеографических данных, а затем, наиболее убедительно, сравнительной геномикой (см. гл. 2 и 3). К чести Дарвина и в отличие от критиков эволюции по сей день, он твердо стоял на своем перед лицом всех трудностей, благодаря своей непоколебимой вере в то, что, несмотря на возможные пробелы в его теории, ей нет никакой разумной альтернативы. Единственным слабым местом Дарвина оказалось включение неправдоподобной модели пангенеза в последующие издания «Происхождения…» как заплатки для маскировки кошмара Дженкина.

Генетика и «черный день» дарвинизма

Существует легенда, что Дарвин прочитал работу Менделя, но не нашел ее интересной (возможно, из-за ограниченного знания немецкого языка). Сложно предположить, насколько изменилась бы история биологии, если бы Дарвин использовал идеи Менделя, которые теперь нам кажутся предельно простыми. Однако этого не произошло.

Еще удивительнее, что сам Мендель, очевидно хорошо знакомый с «Происхождением…»[7 - Посетитель музея Менделя в Брно имеет возможность рассматривать экземпляр немецкого перевода «Происхождения видов…», густо испещренный пометками Менделя. Автор был там уже после публикации английского оригинала этой книги и остался под сильным впечатлением.], не рассматривал свое открытие в контексте теории Дарвина. Ожидать установления этой жизненно важной связи пришлось не только до возрождения генетики на заре XX века, но также до появления популяционной генетики в 1920-х годах. Повторное открытие механизма наследования и рождение генетики дало мощный толчок развитию дарвинизма, так как выявление дискретных носителей наследственности устраняло кошмар Дженкина. В связи с этим совершенно парадоксален тот факт, что первой реакцией большинства биологов на открытие генов было мнение, что генетика опровергает теорию Дарвина, хотя при этом никто из серьезных ученых не отвергал реальность эволюции. Основной причиной кажущейся несовместимости дарвинизма и генетики было то, что основатели генетики, в частности Хуго де Фриз, наиболее плодотворный ученый из трех биологов, переоткрывших законы Менделя, рассматривали мутации генов как прерывистые, скачкообразные наследственные изменения, противоречащие постепенной эволюции в теории Дарвина. Мутации с малым фенотипическим эффектом считались неотъемлемой чертой дарвинизма, в полном соответствии с «Происхождением…». Поэтому де Фриз полагал, что его теория мутаций «антидарвинистская». Таким образом, столетний юбилей Дарвина, а также 50-летие публикации «Происхождения…» в 1909 году были далеко не триумфальными, даже на фоне резкого роста генетических исследований и введения термина «ген» Вильгельмом Йогансеном в том же году.

Популяционная генетика, теорема Фишера, адаптивные ландшафты, генетический дрейф и «эволюционная тяга»

Основы крайне важного синтеза дарвинизма и генетики были заложены в конце 1920-х – начале 1930-х годов тремя выдающимися генетиками-теоретиками – Рональдом Фишером, Сьюэлом Райтом и Дж. Б. С. Холдейном. Основываясь на точных математических и статистических расчетах, они создали идеализированную модель эволюции в биологической популяции. Вероятно, великий ученый-статистик Фишер первым обратил внимание, что генетика никоим образом не противоречит дарвинизму, а, напротив, предоставляет естественный и твердый фундамент для теории дарвиновской эволюции. Фишер обобщил свои выводы в исторической работе 1930 года «Генетическая теория естественного отбора» (Fisher, 1930), пожалуй, втором по значимости для эволюционной биологии труде после дарвиновского «Происхождения…»[8 - Сэр Рональд Фишер был настоящим гением. (Fisher Box, J. 1978. R. A. Fisher: The Life of a Scientist. New York: Wiley.) Он был фактическим основателем не только популяционной генетики, но и, во многом, современной статистики и ввел математическое определение информации задолго до Клода Шеннона. В эту книгу мы включили также другие примеры его замечательных научных предвидений. В то же время сэр Рональд посвятил большую часть своей карьеры делу евгеники, области исследования, которая в настоящее время рассматривается как псевдонаука и граничит с преступлением. Следует избегать суждения о великих умах даже относительно недавнего прошлого по сегодняшним меркам.]. Это стало началом блистательного возрождения дарвинизма, позже получившего название современный синтез (термин, используемый преимущественно в США), или неодарвинизм (в британской и европейских традициях)[9 - В русской литературе используется термин «синтетическая теория эволюции» (СТЭ), который и употребляется далее в этой книге.].

Нет ни надобности, ни практической возможности излагать здесь основы популяционной генетики[10 - Это уже сделано во многих различного уровня учебниках и монографиях, как обзорных, так и глубоко специализированных. Взвешенное, умеренно специализированное представление данной темы можно найти в издании D. L. Hartl and A. G. Clark (2006). Principles of Population Genetics, Sunderland, MA: Sinauer Associates.]. Можно, однако, лаконично представить некоторые обобщения, имеющие отношение к остальной части обсуждения современной эволюционной биологии. Пусть и поверхностное, но такое резюме здесь будет существенно. По сути, основатели популяционной генетики осознали простой факт, что эволюция не действует на изолированные организмы или абстрактные виды, а направлена на конкретные группы скрещивающихся особей, называемые популяциями. Размер и структура эволюционирующей популяции в большой степени определяют направление и результат эволюции. В частности, Фишер сформулировал и доказал фундаментальную теорему естественного отбора (известную как теорема Фишера), в которой утверждается, что интенсивность отбора (и, следовательно, скорость эволюции путем отбора) пропорциональна величине генетической дисперсии по приспособленности эволюционирующей популяции, которая, в свою очередь, пропорциональна эффективному размеру популяции.

В табл. 1–1 собраны основные определения и уравнения, описывающие эффекты мутаций и давления отбора на устранение или закрепление мутантных аллелей в зависимости от эффективного размера популяции. Качественная суть этих уравнений в том, что при одинаковой скорости мутаций в популяции большего эффективного размера отбор более интенсивный. В таких популяциях даже мутации с небольшим положительным коэффициентом отбора («слегка» благоприятные мутации) закрепляются быстро. С другой стороны, мутации даже с очень маленьким отрицательным коэффициентом селекции («слегка» вредные мутации) быстро устраняются. Данный эффект был строго сформулирован в теореме Фишера.

Таблица 1–1. Фундаментальное соотношение, описывающее роль отбора и генетический дрейф в эволюции популяции

Из теоремы Фишера следует, что при эволюции, направляемой только естественным отбором, средняя приспособленность популяции не может уменьшаться (если, конечно, популяция собирается выжить). Пожалуй, наилучшим образом это можно представить с помощью образа «адаптивного ландшафта», который впервые был предложен другим отцом-основателем популяционной генетики, Сьюэлом Райтом. Райт создал этот чрезвычайно удачный образ в ответ на просьбу своего научного руководителя представить результаты математического анализа отбора в приемлемой для биологов форме. Благодаря своей простоте и изяществу это представление адаптивной эволюции сохраняет свою ценность по сей день и стимулировало многочисленные исследования, в результате которых появились более сложные и менее интуитивно понятные адаптивные ландшафты, в том числе и многомерные (Gavrilets, 2004)[11 - В принципе если адаптивный ландшафт строится для гена, то число измерений будет равняться количеству нуклеотидных сайтов. Взаимодействие между сайтами (эпистаз) уменьшает размерность.]. В соответствии с теоремой Фишера популяция, эволюция которой идет только за счет отбора (строго говоря, популяция бесконечного размера – такие популяции, естественно, не существуют, но являются удобной абстракцией, часто используемой в популяционной генетике), никогда не будет двигаться вниз по адаптивному ландшафту (см. рис. 1–1). Легко представить, что адаптивный ландшафт, как и обычный ландшафт, может иметь самую различную форму. При определенных обстоятельствах ландшафт может быть очень гладким, с единственным пиком, соответствующим глобальному адаптивному максимуму (иногда такой ландшафт образно называют «гора Фудзияма» (см. рис. 1–1а). Реальный ландшафт, однако, неровный и содержит многочисленные пики различной высоты, разделенные долинами (см. рис. 1–1б). Формально, согласно теореме Фишера (и в целом, в соответствии с теорией Дарвина), популяция, эволюционирующая с помощью отбора, может только подниматься вверх и, таким образом, достигнуть только локального пика, даже если его высота значительно меньше, чем высота глобального пика (см. рис. 1–1а). Теория Дарвина и СТЭ утверждают, что движение популяции через долины запрещено, так как неизбежно подразумевает фазу спуска. Однако развитие популяционной генетики и ее применение к эволюционным процессам изменило эту упорядоченную картину, привнеся в нее понятие «дрейфа генов», ключевую идею эволюционной биологии, которую также предложил Райт.

Рис. 1–1. Адаптивные ландшафты: а – «гора Фудзияма» с единственным (глобальным) пиком; б – «пересеченная местность» неровного адаптивного ландшафта

Как подчеркивалось ранее, Дарвин признавал важную роль случайности в эволюции, но эта роль была ограничена только одной частью эволюционного процесса: появлением изменений (в современной терминологии – мутаций). В остальном эволюция рассматривалась как строго детерминистский процесс, где отбором закрепляются выгодные мутации, а все прочие мутации устраняются без какого-либо вреда для дальнейшего существования популяции. Однако при рассмотрении популяции в динамике картина значительно меняется. Основатели количественной популяционной генетики отразили в простых формулах зависимость интенсивности отбора от размера популяции и частоты мутаций (см. табл. 1–1 и рис. 1–2). Отбор эффективен в большой популяции, и мутация, несущая незначительное преимущество, почти наверняка закрепится (в популяции бесконечного размера закрепляется мутация с бесконечно малым положительным коэффициентом отбора). Райт понял, что в малой популяции, особенно при низкой частоте мутаций, эволюционный процесс идет по-другому. В такой популяции решающую роль играет дрейф генов, с помощью которого случайным образом часто закрепляются нейтральные и даже вредные (но, конечно, не летальные) мутации. Очевидно, с помощью генетического дрейфа эволюционирующая популяция может избежать однонаправленного подъема по адаптивному ландшафту и может спускаться (см. рис. 1–2)[12 - Формально теорема Фишера не запрещает всё нисходящее движение, потому что она касается только той части адаптивных изменений, которые обусловлены отбором. Фишер, однако, считал, что на практике большинство, если не все популяции слишком велики, чтобы то явление, которое Райт обозначил как дрейф, могло иметь какое-либо влияние на них. Это было предметом ожесточенных споров между Фишером и Райтом. Окончательным победителем оказался, конечно, Райт.]. Преимущественно это выражается в движении вниз и последующем вымирании, однако если долина, отделяющая один локальный пик от другого, возможно даже более высокого, достаточно узкая, становится возможным переход через нее и последующее восхождение на более высокую вершину (см. рис. 1–2). Введение понятия генетического дрейфа в изучение эволюции является центральным в моем рассказе. Это новый уровень проявления случая. Хотя Дарвин и его ближайшие последователи видели роль случая в появлении наследуемых изменений (мутаций), дрейф вводит случайность на следующей стадии, то есть при закреплении этих изменений, забирая у отбора часть ответственности. В этой книге я исследую, насколько значимой может быть роль дрейфа в различных ситуациях в ходе эволюции.

Рис. 1–2. Эволюционные траектории на неровном адаптивном ландшафте. Пунктирной линией обозначается эволюционная траектория при высоком значении эффективного размера популяции. Сплошной линией обозначается эволюционная траектория при низком значении эффективного размера популяции.

Джон Мейнард Смит и, позднее, Джон Гиллеспи разработали теорию и компьютерные модели для демонстрации существования особого режима нейтральной эволюции, который слабо зависит от эффективного размера популяции и актуален даже в популяции бесконечного размера с сильным отбором. Этот способ нейтрального закрепления мутаций стал известен как «генетическая тяга» и относится к ситуациям, в которых одна или несколько нейтральных или даже умеренно вредных мутаций распространяются в популяции и в конечном итоге закрепляются, будучи связанными с полезной мутацией. Иными словами, нейтральные или вредные аллели «двигаются в одной повозке» вместе с полезным аллелем (Barton, 2000). Похоже, что некоторые данные и модели популяционной генетики свидетельствуют, что «движение в одной повозке» даже важнее для эволюции популяции с половым размножением, чем дрейф. Очевидно, что эффект «езды в одной повозке» обусловлен совокупным воздействием естественного отбора и нейтральной изменчивостью в различных участках генома и, в отличие от дрейфа, может происходить даже в популяции бесконечно большого эффективного размера (Gillespie, 2000).

За счет эффекта «движения в одной повозке» даже в больших популяциях могут закрепляться умеренно вредные мутации, что, соответственно, дает этой популяции возможность пересекать долины адаптивного ландшафта.

Положительный и очищающий (отрицательный) отбор: классификация форм отбора

Дарвин думал о естественном отборе в первую очередь с точки зрения закрепления благоприятных изменений. Он понимал, что эволюцией отсеиваются вредные изменения, но не интерпретировал эту ликвидацию в одной плоскости с естественным отбором. С развитием СТЭ понятие отбора было расширено за счет включения «очищающего» (отрицательного) отбора, который в некоторых фазах эволюции оказывается более распространенным (на самом деле на порядок более распространенным), чем «дарвиновский» положительный отбор. По сути, очищающий отбор – это просто элиминация неприспособленных особей. Тем не менее выделение этого процесса в особую форму отбора представляется оправданным и важным, потому что оно подчеркивает ключевую роль элиминации в формировании (сдерживании) биологического разнообразия на всех уровнях. Проще говоря, изменение допускается, только если оно не наносит существенного вреда никаким из выживающих особей. Интересен и открыт вопрос, до какой степени эти ограничения фактически сужают пространство, доступное для эволюции, и я коснусь этого вопроса позднее (см., в частности, гл. 3, 8 и 9).

Тонкая, но важная разница существует между очищающим отбором и стабилизирующим отбором, который является еще одной из форм отбора, которая действует на распределение частот отличительных признаков. Таким образом, выделяются следующие формы отбора: стабилизирующий отбор, основанный в первую очередь на очищающем отборе, движущий отбор, обусловленный положительным (дарвиновским) отбором, и более экзотические режимы дизруптивного и балансирующего отбора, которые являются результатом сочетания многочисленных ограничений (см. рис. 1–3).

Рис. 1–3. Четыре различные формы отбора в эволюционирующей популяции: а — стабилизирующий отбор (адаптивный ландшафт представлен сплошной линией); б — движущий отбор (адаптивный ландшафт представлен сплошной линией); в — дизруптивный отбор (адаптивный ландшафт представлен сплошной линией); г — балансирующий отбор (адаптивный ландшафт периодически меняется, переключаясь между двумя пунктирными линиями)

Синтетическая теория эволюции

Объединение дарвиновской теории эволюции и генетики, состоявшееся в основополагающих исследованиях Фишера, Райта и Холдейна, подготовило почву для рождения синтетической теории эволюционной биологии. Само название идет от одноименной книги, опубликованной Джулианом Хаксли в 1942 году (Huxley, 2010), однако концептуальная структура СТЭ полностью сформировалась только в 1959 году в ходе мероприятий, посвященных 100-летнему юбилею «Происхождения…». Новая синтетическая теория стала результатом работы многих выдающихся ученых. Можно утверждать, что главными архитекторами СТЭ были экспериментальный генетик Феодосий Добржанский, зоолог Эрнст Майр и палеонтолог Джордж Гейлорд Симпсон. Экспериментальные и полевые работы Добржанского с плодовой мушкой Drosophila melanogaster принесли насущные фактические свидетельства в поддержку теории популяционной генетики и стали первой крупномасштабной экспериментальной проверкой идеи естественного отбора. Книга Добржанского «Генетика и происхождение видов» (Dobzhansky, 1951) явилась основным программным документом СТЭ, в котором он сузил понятие эволюции до «изменения частоты аллеля в генетическом пуле». Знаменита также крылатая фраза Добржанского о том, что «ничто в биологии не имеет смысла, кроме как в свете эволюции»[13 - Эта знаменитая фраза Добржанского является названием его эссе, опубликованного в журнале «Американский учитель биологии» (Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution // The American Biology Teacher 35: 125–129). В целом это поразительный текст. Хотя большая часть эссе удивительно ясно объясняет идею эволюции, заключительные абзацы посвящены выразительной пропаганде совместимости эволюции и христианства, и трудно избавиться от впечатления, что именно это и было главной целью автора. Добржанский, как истинный прихожанин Русской православной церкви, верил, что Бог осуществил свой план сотворения мира как развертывающийся сценарий эволюции жизни. Более того, Добржанский изобретательно клеймит отрицание эволюции как кощунство, так как данная позиция подразумевает, что Бог – мошенник, который намеренно вводит человечество в заблуждение, предоставляя многочисленные доказательства эволюции. Я подозреваю, что не каждый, кто цитирует это изречение Добржанского в дискуссиях о преподавании эволюции, действительно читал это эссе.] (см. больше о «смысле» в прил. I). Заслугой Эрнста Майра, как никакого другого ученого, является серьезная, крайне влиятельная попытка теоретического решения принципиальной проблемы, поставленной Дарвином, – происхождения видов. Майр сформулировал так называемую биологическую концепцию вида, согласно которой видообразование происходит, когда две популяции (размножающиеся половым путем) изолированы друг от друга достаточно долго, чтобы обеспечить необратимую генетическую несовместимость (Mayr, 1963).

Симпсон реконструировал наиболее полную (на тот момент) картину эволюции жизни на основании палеонтологической летописи (Simpson, 1983). Замечательно, что Симпсон осознал стазис (отсутствие существенных изменений) в эволюции большинства видов и резкую смену доминантных видов. Он ввел понятие квантовой эволюции, которое предвосхитило теорию прерывистого равновесия, предложенную Стивеном Джеем Гулдом и Нильсом Элдриджем (см. гл. 2).

Консолидация СТЭ в 1950-х годах была довольно странным процессом, сопровождавшимся странным «затвердеванием» (выражение Гулда) основных идей Дарвина (Gould, 2002). Так, доктрина СТЭ фактически отбросила идею Райта о случайном дрейфе генов и его эволюционной важности и стала бескомпромиссно панадаптационистской. Более того, сам Симпсон отказался от идеи квантовой эволюции, так что градуализм продолжал оставаться одним из неоспоримых столпов СТЭ. Такое «затвердевание» сделало СТЭ относительно узкой, в некотором смысле даже догматичной, системой.

Чтобы продолжить обсуждение эволюции эволюционной биологии и ее преображение в век геномики, представляется необходимым кратко резюмировать основные принципы эволюции, впервые сформулированные Дарвином, затем усовершенствованные первым поколением биологов-эволюционистов и, наконец, кодифицированные в СТЭ. Мы будем возвращаться к каждому из этих ключевых моментов на протяжении всей книги.

1. Ненаправленное случайное изменение – это главный процесс, обеспечивающий материал для эволюции. Дарвин впервые показал, что случайность является основным фактором в истории жизни, и это, несомненно, было одной из его наиболее важных идей. Дарвин также признавал роль направленной, ламарковской изменчивости и в последующих изданиях «Происхождения…» склонялся даже к более весомой роли этого механизма эволюции. Однако СТЭ твердо настаивает на том, что случайные мутации являются единственным источником эволюционно значимой изменчивости.

2. Действие эволюции заключается в фиксации редких выгодных изменений и элиминации вредных изменений. Согласно Дарвину и СТЭ, в этом состоит процесс естественного отбора, который, наряду со случайной изменчивостью, является основной движущей силой эволюции. Естественный отбор, очевидно сходный и навеянный «невидимой рукой» рынка, которая, по теории Адама Смита, управляет экономикой, был первым из когда-либо предложенных механизмов эволюции, который был прост и правдоподобен и не требовал изначально мистического подхода. Таким образом, это вторая ключевая идея Дарвина. Сьюэл Райт подчеркивал, что случайность может играть вспомогательную роль не только в возникновении, но также и в закреплении изменений в ходе эволюции с помощью дрейфа генов, в результате которого случайно сохраняются нейтральные или умеренно вредные изменения. Согласно теории популяционной генетики, дрейф генов особенно значим в небольших популяциях, проходящих через «бутылочное горлышко». «Генетическая тяга», или «езда в одной повозке», – это другая форма случайного закрепления невыгодных мутаций. Однако СТЭ в ее догматизированной форме фактически отрицает стохастические процессы в эволюции, кроме возникновения изменений, и придерживается полностью адаптационистского (панадаптационистского) взгляда на эволюцию. Такая модель неизбежно приводит к концепции «прогресса», постепенного улучшения «органов» в ходе эволюции. Дарвин поддерживал эту идею как основное направление развития, несмотря на четкое понимание, что организмы все еще далеки от совершенства в плане адаптивности, как можно прекрасно увидеть на примере рудиментарных органов, и несмотря на свое резко отрицательное отношение к любым формам ламарковского внутреннего стремления к совершенству. СТЭ уходит от прогресса как антропоморфной идеи, но тем не менее поддерживает общую концепцию эволюции от простых форм к сложным.

3. Полезные изменения, закрепляемые естественным отбором, бесконечно малы (в современной терминологии, эволюционно значимые мутации обладают бесконечно малым влиянием на приспособленность), поэтому эволюция происходит путем постепенного накопления этих слабых изменений. Дарвин был убежден, что в основе его теории лежит строгий градуализм: «Естественный отбор действует только путем сохранения и кумулирования малых наследственных модификаций, каждая из которых выгодна для сохраняемого существа… Если бы возможно было показать, что существует сложный орган, который не мог образоваться путем многочисленных последовательных слабых модификаций, моя теория потерпела бы полное крушение» («Происхождение видов…», гл. 6 [цит. по: Дарвин Ч. Сочинения. Т. 3 / Пер. с англ. К. А. Тимирязева, С. Л. Соболя. M.: Изд-во АН СССР, 1939]). Даже некоторые современники Дарвина полагали, что это излишняя, искусственная строгость теории. В частности, хорошо известны заблаговременные возражения со стороны Томаса Гексли. Еще до публикации «Происхождения…» Гексли написал Дарвину: «Вы взяли на себя ненужный груз безоговорочного следования принципу Natura non facit saltum» (http://aleph0.clarku.edu/huxley/). Несмотря на эти своевременные предостережения и даже на идею Симпсона о квантовом характере эволюции, СТЭ бескомпромиссно настаивает на градуализме.

4. Униформизм (термин был заимствован Дарвином из геологии Лайеля) – это один из аспектов классической эволюционной биологии, который связан, но в то же время отличается от принципиального градуализма. Это убеждение, что эволюционные процессы не изменялись по существу на всем протяжении истории жизни.

5. Следующий ключевой принцип логически связан с градуализмом и униформизмом: макроэволюция (происхождение видов и высших таксонов) управляется теми же механизмами, что и микроэволюция (эволюция внутри вида). Главным апологетом данного принципа был Добржанский, определивший эволюцию как изменение частоты аллелей в популяциях. Дарвин не пользовался терминами микроэволюция и макроэволюция; тем не менее достаточность внутривидовых процессов для объяснения происхождения видов и, в более широком плане, всей эволюции жизни можно считать центральной аксиомой Дарвина (или, возможно, фундаментальной теоремой, такой, однако, для которой у Дарвина не было даже и намека на доказательство). Представляется разумным говорить о данном принципе как об «универсальном униформизме»: эволюционные процессы одинаковы не только на протяжении всей истории жизни, но и на разных уровнях эволюционных изменений, включая крупные преобразования. Загадка взаимосвязи между микроэволюцией и макроэволюцией является в некотором смысле осью эволюционной биологии, поэтому мы будем постоянно возвращаться к ней в этой книге.

6. Эволюцию жизни можно адекватно представить в виде «огромного дерева», что и подчеркнуто единственной иллюстрацией в «Происхождении…» (в гл. 4). Дарвин представил древо жизни только как общую идею и не пытался исследовать фактический порядок ветвления. Древо было заселено реальными формами жизни, насколько они были известны в то время, одним из главных последователей Дарвина, знаменитым немецким биологом Эрнстом Геккелем. Основатели СТЭ не проявляли большого интереса к древу жизни, но они, несомненно, включали его в теорию как описание эволюции животных и растений, убедительно поддержанное палеонтологической летописью в XX веке. Однако микробы, определяющее значение которых в глобальной экологии становилось все более очевидным, фактически остались за пределами эволюционной биологии.

7. Концепция единого древа жизни имеет следствие, которое заслуживает статуса отдельного принципа: существующее в настоящее время разнообразие форм жизни произошло от общего предка (или нескольких форм-предшественников, в соответствии с осторожной формулировкой Дарвина в главе 14 «Происхождения…», см. Darwin, 1859). Спустя много лет он был назван «последним универсальным клеточным предком» (Last Universal Cellular Ancestor, LUCA[14 - Иногда та же самая аббревиатура расшифровывается как Last Universal Common Ancestor (последний универсальный общий предок). Однако представляется полезным подчеркнуть, что речь идет именно об общем предке всех клеточных форм жизни. Мы вернемся к этой теме в главе об эволюции вирусов.]). Для создателей СТЭ существование LUCA не вызывало сомнений, но они, по-видимому, не считали реалистичной или научно важной целью прояснение его природы.

Краткий обзор главы

В своей книге «Происхождение видов…» Чарльз Дарвин тщательно собрал доказательства изменений во времени, которые охватывают мир живых существ, и впервые предложил убедительный механизм эволюции: естественный отбор. Эволюция путем естественного отбора, безусловно, является одной из самых существенных концепций, когда-либо разработанных учеными, и даже была объявлена самой важной идеей в истории человечества (Dennett, 1996). В свете этого может показаться парадоксальным, что понятие естественного отбора нередко считают простой тавтологией. Если рассуждать с точки зрения выживания наиболее приспособленных, видно, что для этого взгляда есть основания. Однако, если рассматривать весь дарвиновский сценарий эволюции в целом, его решительно не тавтологические и не тривиальные аспекты становятся очевидными. В действительности Дарвин предложил механизм преобразования случайных изменений в отнюдь не случайные адаптации, вплоть до сложнейших приспособлений, исполняющих узкоспециализированные функции и тем самым повышающих приспособленность их носителей. Если рассматривать этот процесс в терминах физики и несколько вольно следовать идеям знаменитой книги Эрвина Шредингера, дарвиновская эволюция является машиной для создания отрицательной энтропии, другими словами, порядка из беспорядка. На мой взгляд, самым главным прозрением Дарвина было осознание того, что простой механизм, лишенный какого-либо телеологического содержания, вероятно, мог только благодаря случайным изменениям привести к появлению удивительного разнообразия форм жизни, каждая из которых в совершенстве приспособлена к условиям среды своего обитания. С этой точки зрения, «невидимая рука» естественного отбора кажется почти чудесно всесильной, и нельзя не задаваться вопросом, действительно ли этого достаточно, чтобы объяснить историю жизни. Этот вопрос неоднократно использовался в качестве риторического приема креационистами всех мастей, но он также всерьез поднимался биологами-эволюционистами. В остальной части этой книги мы увидим, что разные ученые дают на него разные ответы, которые зависят от того, о каких именно ситуациях и этапах эволюции жизни идет речь.

Конечно, дарвинизм в его изначальном виде столкнулся с более значительными и непосредственными проблемами, чем вопрос о достаточности естественного отбора: Дарвин и его ранние последователи не имели представления о механизмах наследования и о том, будут ли когда-либо открыты механизмы, согласующиеся со сценарием Дарвина. В этом смысле здание теории Дарвина висело в воздухе. Повторное открытие законов генетики в начале XX века и последующее развитие теоретической и экспериментальной популяционной генетики обеспечило твердое основание для дарвиновской теории эволюции. Было показано, что, без сомнения, популяции эволюционируют посредством процесса, в котором дарвиновский естественный отбор играет важнейшую роль. СТЭ в эволюционной биологии явилась завершением работы Дарвина, последовательно объединив дарвинизм и генетику. По мере развития СТЭ заметно «окостенела», настаивая на градуализме, униформизме и, что наиболее важно, монополии естественного отбора как единственном пути эволюции. В соответствии с СТЭ все изменения, закрепляемые в ходе эволюции, являются адаптивными, по крайней мере изначально. При всех своих выдающихся достоинствах СТЭ представляет собой довольно догматичную и удручающе незаконченную теорию. Назовем три наиболее бросающиеся в глаза проблемы: СТЭ совершенно бездоказательно распространяет механизмы и закономерности, принятые в микроэволюции, на макроэволюционные процессы; она ничего не говорит об эволюции микробов, являющихся наиболее широко распространенными и многообразными формами жизни на Земле; и она даже не пытается обратиться к вопросу о происхождении жизни.

Рекомендуемая дополнительная литература

Futuyma, Douglas. (2009) Evolution, 2d edition. Sunderland, MA: Sinauer Associates.

Возможно, лучший из учебников по эволюционной биологии для студентов.

Gould, Stephen Jay. (2002) The Structure of Evolutionary Theory. Cambridge, MA: Harvard University Press.

Почти 1500-страничный том, очевидно, не для слабых духом, и не многие прочитают его полностью. Тем не менее по крайней мере первая часть ценна своим четким и точным описанием истории эволюционной биологии и острой критикой СТЭ.

Hartl, Daniel L., and Andrew G. Clark. (2006) Principles of Population Genetics, 4th edition. Sunderland, MA: Sinauer Associates.

Превосходный, достаточно серьезный, но доступный для понимания учебник по популяционной генетике.

Mayr, Ernst. (2002) What Evolution Is. New York: Basic Books.

Упрощенное, но ясное и полезное представление классической эволюционной биологии одним из основателей СТЭ.

Schroedinger, Erwin. (1992) What Is Life?: With «Mind and Matter» and «Autobiographical Sketches». Cambridge, MA: Cambridge University Press. (Перевод: Шредингер Э. Что такое жизнь? Физический аспект живой клетки / Пер. с англ. 3-е изд. Ижевск: РХД, 2002.)

Первое издание этой блестящей книги вышло в 1944 году на основе лекций Шредингера (одного из основателей квантовой механики), прочитанных им в Эдинбурге, где он жил во время Второй мировой войны. Эта очевидно устаревшая, однако удивительно доходчивая, пророческая книга все еще важна для обсуждения роли энтропии и информации в биологии.

Глава 2. От синтетической теории эволюции к эволюционной геномике: различные механизмы и пути эволюции

В этой главе мы продолжим обсуждение эволюционной биологии в период до появления геномики. Многие из обсуждаемых направлений развития не являлись предшественниками синтетической теории эволюции (СТЭ). На самом деле они возникали параллельно с развитием СТЭ, но были отвергнуты «каноном» вследствие «ужесточения» СТЭ. Достижения, которые обсуждаются в этой главе, относятся к интервалу между 1930 (публикация книги Рональда Фишера, которая ознаменовала вторую, зрелую стадию развития эволюционной биологии) и 1995 годами (первые сравнения полных геномов клеточных форм жизни). Моя цель здесь – вкратце обрисовать сложную сеть эволюционных идей, теорий и наблюдений, которые дополнили достаточно жесткую структуру СТЭ и стали пусковой площадкой для нового, «геномного» подхода к изучению эволюции.

Репликация цифровых носителей информации: центральный принцип биологии и необходимое и достаточное условие эволюции

Модель структуры ДНК, представленная Джеймсом Уотсоном и Фрэнсисом Криком (очевидно, основанная на рентгеновских структурах, полученных Розалинд Франклин и другими), несомненно, является одним из главных открытий не только биологии XX века, но и всей истории биологии (Watson and Crick, 1953b). Однако этот прорыв не всегда упоминается в связи с принципами биологической эволюции.

С моей точки зрения, структура ДНК и модель ее репликации, которую Уотсон и Крик описали в своей второй классической статье как непосредственное следствие структуры (Watson and Crick, 1953a), являются важнейшим фундаментальным открытием в изучении эволюции со времени публикации «Происхождения видов…». По сути, Уотсон и Крик вывели из структуры ДНК биологическое воплощение общего принципа цифрового хранения, кодирования и передачи информации. Система биологической передачи информации, которую выявили их исследования, может рассматриваться как расширение принципа машины Тьюринга, сначала через правила комплементарности нуклеотидных оснований (в процессах репликации и транскрипции), a затем в процессе трансляции, через генетический код (см. рис. 2–1). По сути, пусть и не в историческом смысле, эти открытия вытеснили концепцию Дарвина, в том смысле, что вся дарвиновская схема эволюции является прямым следствием механизма репликации ДНК. Для всех известных форм жизни биологическая передача цифровой информации влечет за собой исполнение следующих простых фундаментальных принципов[15 - Сами по себе эти принципы описываются в элементарных учебниках, но рассматриваемый здесь информационно-теоретический подход уже не так тривиален, так что я счел необходимым явно перечислить эти принципы.].

Генетический материал любого организма состоит из линейной последовательности символов, четырех оснований нуклеиновых кислот, которая, прямо или косвенно, кодирует всю информацию, необходимую для построения организма[16 - Этот принцип может быть подвергнут достаточно обоснованному сомнению в свете открытия разнообразных явлений эпигенетической наследственности (в гл. 9 мы коснемся этих явлений, хотя и слишком кратко). В данной формулировке вся эпигенетика спрятана в слове «косвенно», но автор отдает себе отчет в спорности такого подхода.].

Репликация генетического материала, являющегося механической основой наследственности, осуществляется на основе принципа однозначного комплементарного соответствия между A и T(U), и G и С. (Так называемые правила Чаргафа, по имени их первооткрывателя, австрийского, a затем американского химика Эрвина Чаргаффа[17 - Чаргафф не оценил вовремя исключительной важности своего открытия, и тот факт, что двум высокомерным молодым людям, не знавшим химии, удалось открыть тайну жизни, которой он, эксперт-химик, не понял, исполнил Чаргаффа горечи до конца его долгой жизни, вдохновляя его едкие, чтобы не сказать язвительные, книги. (Chargaff E. Heraclitean Fire: Sketches from a Life Before Nature. New York: Rockefeller University Press, 1978.)].)

Рис. 2–1. Передача информации в биологических системах и превращение естественного отбора и генетического дрейфа в эпифеномены репликации. Белые круги на схеме обозначают изменения относительно оригинальной последовательности.

Уотсон и Крик описали эти ключевые принципы генетических систем в двух своих статьях, вышедших в 1953 году. Дальнейшие исследования добавили два очень важных аспекта: