banner banner banner
Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА
Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА
Оценить:
Рейтинг: 0

Полная версия:

Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА

скачать книгу бесплатно

Ранее считалось, что, обладая огромными вычислительными мощностями, можно предсказать поведение таких процессов. Эта точка зрения была обоснована французским математиком Лапласом. В свете классического детерминизма в этом мире случайностей не существует. Случайность – это наше незнание о процессах.

В начале XX века другой французский математик Пуанкаре опроверг эту точку зрения. Исследования показали – случайность есть объективное свойство природных процессов, и её нельзя устранить, накапливая информацию о системе. Оказалось, что и простые детерминированные системы могут порождать случайность, которую также нельзя устранить, наращивая информацию о них. Такие процессы назвали случайно-подобными. Они определены законами и правилами детерминирующих их изменений, которые не несут никакой случайности. Тем не менее быстрый рост неопределённости не допускает долговременного прогноза.

Необходимо отличать детерминированный хаос от стохастических процессов, связанных с массой действующих факторов. Эти различия, во-первых, заключаются в том, что детерминированные случайно-подобные процессы полностью воспроизводимы на любом этапе их реализации, в отличие от стохастических, которые таким свойством не обладают. Во-вторых, стохастические процессы сохраняют своё устойчивое поведение в противоположность детерминированным хаотическим. Например, представим себе расписание поездов. Воздействие стохастического фактора существенно не изменит структуры расписания, в отличие от случайно-подобного, который полностью его обрушит.

К моделям, порождающим хаотическое поведение, относят перемешивание, и кухонный миксер отлично выполняет эту операцию. Более мощный алгоритм генерации хаоса заключается в растяжении и сжатии траекторий в пространстве. Наглядно этот процесс демонстрирует «операция пекаря». Когда пекарь печёт пироги, для улучшения качества теста он разминает его с помощью скалки, а затем складывает. В результате близкие траектории разбегаются и становятся далёкими, а далёкие сближаются. При добавлении в тесто капли пищевого красителя уже через два десятка операций первоначальное пятно увеличит свою площадь в 20 млн раз, а его толщина сократится до молекулярного слоя. Краска полностью смешается с тестом. Хаос действует таким же образом. Складывание устраняет первоначальную информацию о системе, а растяжение стирает крупномасштабную, лишая нас возможности каких-либо предсказаний о её поведении [12].

И, несмотря на то, что хаос накладывает ограничения на возможность прогнозирования, он предполагает наличие связей там, где их ранее не подозревал никто. Хаос позволяет находить порядок в различных явлениях, таких как атмосферные фронты, капающий кран, физико-химические процессы.

Так что же такое порядок? В отличие от хаоса – это определённость, малая степень энтропии, периодичность, закономерность, наличие устойчивых связей между явлениями. В свете изложенного в самом хаосе есть порядок. Ещё в первой половине XX века английским математиком Рамсеем была доказана теорема, смысл которой стал понятен лишь в настоящее время – полный беспорядок невозможен. Чем больше мощность хаоса, тем больше в нём очагов порядка. Достаточно управляющими сигналами воздействовать на эти очаги, и станет возможно осуществить переход в упорядоченные состояния, чем сегодня и занимается новая наука – теория управляемого хаоса [13].

В настоящее время идёт поиск законов перехода хаоса в порядок. Если такие законы будут открыты, то нас ждёт научная революция, открывающая фантастические технологические возможности, по сравнению с которыми киборг Т-1000 в фильме «Терминатор-2: Судный день» покажется просто детской игрушкой.

Теория катастроф

В обыденной жизни часто происходят ситуации, которые сопровождаются резкими скачкообразными трансформациями, несмотря на привычные плавные движения. Классические методы математического анализа, основа которых была создана ещё Ньютоном и Лейбницем, ориентированные на исследования гладких плавных изменений, не справляются с описанием и прогнозированием подобных процессов.

Теоретические принципы, сформулированные классической наукой, базируются на парадигме того, что протекающие в нашей действительности процессы рассматриваются в виде постоянно меняющихся параметров. Однако большинство совершающихся трансформаций происходят скачкообразно, резкими качественными изменениями объектов и процессов: внезапное разрушение моста, закипание жидкости, возникновение тюремных бунтов, наступление биржевого кризиса или крушение самолётов. И такие кардинальные метаморфозы возникают обычно на фоне предшествующих весьма плавных изменений системы, когда их появлению вроде бы ничего не предвещает. Собственно катастрофой называется скачкообразные внезапные трансформации, возникающие в системе в виде её ответа на предшествующие плавные изменения внешних условий. При этом такие трансформации крайне плохо поддаются предсказаниям [14]. Однако в современной области математических знаний, которая носит название теории катастроф, разработаны методы, позволяющие в определённых условиях производить оценки подобных явлений.

Фазовое пространство Ляпунова. Изменение цвета показывает переход системы от упорядоченного состояния к хаотическому [15]

Французский математик Рене Том предложил называть теорией катастроф топологическую теорию динамических систем, используемую для оценки метаморфоз явлений природы, а также совокупность приложений теории особенностей, указав на наличие в подобных процессах структурной устойчивости. При установленных ограничениях переменных и параметров всё многообразие протекающих процессов можно свести всего к семи (!) классическим топологическим конструктам, к которым и будет стремиться поведение системы [16]. Анализируя топологические портреты, являющиеся особыми зонами в фазовом пространстве состояний, возможно установить границы бифуркационных множеств, при попадании в которые система станет совершать скачкообразные трансформации.

Двухмерные образы катастроф. Эллиптическая и параболическая омбилики

При стратификации успеваемости существуют довольно устойчивые группы, соответствующие как максимуму (отличники и близкие к ним студенты), так и слой студентов, соответствующий минимуму – имеющих неудовлетворительную успеваемость и занимающихся по нижней грани оценки удовлетворительно. Они находятся на разных листках топологической поверхности достижений. С точки зрения теории катастроф, в педагогическом процессе основные усилия по контролю знаний и обучению должны быть сконцентрированы на тех студентах, которые находятся в бифуркационной зоне. Так как студенты, имеющие посредственную успеваемость, могут скачком перейти в область хороших и отличных достижений, а хорошо успевающие студенты очень быстро выйти из опасной зоны бифуркации и обрести устойчивый ранг высоких оценок. Располагая данными IQ студентов, параметрами, обеспечивающими качество учебного процесса и используя методы теории катастроф, можно будет прогнозировать, и в определённых пределах более эффективно управлять качеством образования.

Практическое применение теории катастроф заключается в том, что огромное количество явлений, встречающихся в мире, она позволяет свести к очень ограниченному набору стандартных форм, и уже с их помощью провести количественные и качественные оценки динамично изменяющихся феноменов. Так как методы теории катастроф универсальны, они могут использоваться в сфере политики, экономики, управления, медицины, образования и т. п. Таким образом, научное познание получает новые эффективные инструменты для исследования феноменов реальности, до настоящего времени недоступных традиционным методикам и технологиям.

Фракталы в природе и организме человека

Статус математики в отношении природных процессов долгое время был не определён. В действительности нет точек, прямых линий, идеальных кругов и других фигур геометрии Евклида. С точки зрения здравого смысла, математика – это игра разума и задача познания с целью лишь описания явлений и их классификации. Поэтому древнегреческое знание не развило физику и естествознание. Создать физику и другие естественные науки – значит применить к действительности однородные точные математические и геометрические законы.

Только в Новое время Галилей, Ньютон и их последователи смогли обнаружить эти формы в механическом движении и простых механических системах. Тем не менее многие природные системы обладают огромной степенью сложности, несравнимой с использованием простых образов классической геометрии, поэтому их моделирование на такой основе оказывается невозможным. Действительно, как построить модели кроны деревьев, горного хребта, изрезанной береговой линии в объектах евклидовой геометрии? Как смоделировать сложные биологические объекты, обладающие многообразной конфигурацией, такие как нейронная сеть, система кровообращения, ацинусное строение легких, структура почек?

Столь сложной оказывается и динамическое поведение природных процессов, например, турбулентность, ритмы сердца и головного мозга. Для моделирования подобных явлений в конце XX века был создан новый тип геометрии, получившей название фрактальной. Термин фрактал был введён американским математиком Бенуа Мандельбротом в 1983 году, когда вышла его книга «Фрактальная геометрия природы». Фракталы – это, прежде всего, язык геометрии, но они выражаются в алгоритмах, наборах своего рода математических процедур, которые трансформируются в геометрические формы с помощью компьютеров. Основной принцип строения фрактала «всё во всём» или, как отмечают математики, он обладает инвариантной структурой относительно масштабирования. Это значит, что фрактал проявляет одинаковое строение на разных уровнях масштаба и, кроме этого, обладает дробной размерностью, в отличие от линий и площадей, имеющих целостное значение.

Множество Мандельброта. Построено в программе WinSet 3.0

Множество Жюлиа. Построено в программе WinSet 3.0

Существует два типа основных алгоритмов, каждый из которых имеет огромное многообразие комбинаций: линейные и нелинейные. Линейный алгоритм можно представить в виде копировальной машины, способной сжимать, т. е. уменьшать изображение, или увеличивать его. Таким образом, благодаря повторяющимся операциям, формируется образ объекта. Примером работы подобных алгоритмов служит изображение листа папоротника, треугольник Вацлава Серпинского, впервые описавшего этот объект ещё в 1916 году. Треугольник Серпинского обладает самоподобием, выражающемся в том, что каждая его часть, сколь малой она не была бы, воспроизводит структуру всего большого треугольника [17].

Другой тип фрактальных алгоритмов является нелинейным. Для этого используются итерационные циклы, имеющие степенные функции, иногда реализуемые в комплексных числах. Собственно такое изображение было получено Мандельбротом и получило название в его честь.

Несмотря на то, что эти функции достаточно просты, при проведении компьютером огромного количества операций с их помощью удаётся строить модели, в принципе, любых природных и биологических объектов. Поэтому фрактальная геометрия является языком объектов, и сомнения в её применимости к многообразию природы отпадают. Причём это не только просто воспроизведение природных структур, фрактальная геометрия даёт количественные характеристики тех или иных сложных конструктов, выраженные в понятиях фрактальной размерности, например, Хаусдорфа – Безиковича, Минковского и других [18].

Оказалось, что и динамические системы, демонстрирующие сложное хаотическое поведение при их моделировании, воспроизводят фрактальную структуру. К таковым можно отнести аттрактор Лоренца, возникающий в погодных явлениях, универсальность Фейгенбаума в турбулентности и даже в броуновском движении. Если при визуализации тех или иных процессов (для этого используется аппарат построения фазового пространства состояний) возникает фрактал, то, как правило, это след хаоса.

В человеческом организме много фракталоподобных структур, но чистые фракталы и в природе, и в биологических системах практически не встречаются. Как уже отмечалось, фракталы обладают самоподобием, или как говорят математики, они инвариантны относительно масштабирования, демонстрируя одинаковую структуру на разных уровнях рассмотрения. Фрактальные структуры, как правило, являются следом хаотических процессов. Поэтому динамический детерминированный хаос имеет тесную связь с этими объектами и проявляет себя в фазовом пространстве состояний в виде фрактальных или фракталоподобных структур.

Биологические системы имеют множество фракталоподобных образований [19]. К ним относятся структура кровеносных сосудов, нейронные сети, в том числе коры головного мозга. Фрактальное строение тонкого кишечника заметно увеличивает поверхность всасывания. Наиболее явно демонстрирует фрактальную природу структура дыхательных путей, которая обеспечивает более высокий уровень газообмена. Фракталоподобной структурой обладают сердечные артерии, что повышает устойчивость к повреждающим факторам, которые могут вызвать инфаркт миокарда. Несмотря на то, что анатомические и гистологические фрактальные структуры выполняют разные функции в организме, имеется нечто общее, что их объединяет. А именно, они обеспечивают запас прочности и устойчивости к различным действующим факторам, которые могут иметь и повреждающее воздействие.

Особый интерес представляет физиология и клиническая практика динамической работы сердца. Традиционно в физиологии и медицине сложилось представление о том, что ритм сокращений здорового сердца носит устойчивый регулярный характер, т. е. интервалы между сокращениями (ударами) сердца являются постоянными. Данные записи стандартного ЭКГ подтверждали эту точку зрения. Тем не менее тщательный анализ показал, что даже у здоровых людей ритм подвержен значительным колебаниям. На протяжении почти полувека господствовала концепция гомеостаза, согласно которой физиологические системы стремятся поддерживать постоянство своей среды и функций, возвращаясь, несмотря на флюктуации, к состоянию устойчивого равновесия.

Согласно этой концепции, вариабельность ритма сердца (ВРС) – это просто временные ответные реакции на воздействия внешних факторов. Многообразные влияния на ВРС, включая нейрогуморальные механизмы высших нервных центров, обуславливают нелинейный характер изменений ритма сердца, т. е. в основе феномена ВРС лежат случайные и случайно-подобные процессы, следовательно, наиболее точно и полно отображающими ВРС методами должны служить методы нелинейной динамики. Используя подход к вариабельности ритма сердца как к стохастическому феномену, следует пересмотреть методологию её изучения. В этом случае стандартные математические методы анализа оказываются ограниченными, так как являются неспособными оценивать явления, принципиально отличающиеся от традиционных линейных процессов. Поэтому становится понятным несостоятельность широко применяемых в клинике линейных математических методов и возникает необходимость в разработке новых способов оценки ВРС, которые бы позволили наиболее точно характеризовать это явление [20].

Совсем другая картина обнаруживается, если временная дискретизация ЭКГ в его стандартной форме 0,5–0,25 с заменяется на 1–4 мс. В результате ритм сердца приближается к хаотическому, а его визуализация в фазовом пространстве демонстрирует фрактальную природу. Применение методов оценки фрактальной размерности подобных образов устанавливает прямо противоположную парадигму. Именно здоровое сердце при такой дискретизации сигнала обнаруживает хаотичность своей работы. И наоборот «скатывание» в периодику и регулярность, проявляющееся в виде изменения фрактальных показателей, свидетельствует о надвигающейся катастрофе, что подтверждается в современных клинических исследованиях.

Новая парадигма утверждает, что нерегулярность, непредсказуемость, хаотичность являются характеристиками здоровья, а снижение изменчивости, потеря хаотичности, возникновение выраженной периодичности служат признаками надвигающейся или уже существующей патологии.

Рождение НЕ?ЧТО из НИЧТО?. Как из хаоса возникает порядок

Возможно ли, что дверь в закрытой комнате без внешних воздействий загорится сама собой, или в пирамиде самозаточится лезвие бритвы? Современная наука может утвердительно ответить на эти вопросы.

При комнатной температуре молекулы воздуха (являющиеся метафорически твёрдыми и жёсткими шариками) находятся в беспорядочном движении, и именно поэтому они не оказывают существенного воздействия на объекты, находящиеся в помещении. Их траектории, как утверждает кинетическая теория, носят вероятностный характер, но всё же существует хоть и чудовищно малая возможность, что, когда движение станет упорядоченным и направленным, большая часть молекул (или они все) ринется потоком на дверь, что приведёт к её возгоранию вследствие кинетического удара.

Но как может самозаточиться лезвие в пирамиде, причём известно, что даже колонии микроорганизмов, находящиеся в её центре, практически не размножаются? А если предположить, что именно форма пирамиды при взаимодействии с движущимися частицами индуцирует расслоение хаотического движения и направляет часть этого потока на лезвие, которое затачивается вследствие механического воздействия?

Возникает резонный вопрос, существуют ли способы, позволяющие нарастить минимальные вероятности подобных реализаций, обойдя второй закон термодинамики и открыть условия перехода хаоса в порядок? Ещё в XIX веке были известны явления подобного рода – ячейки Бенара, когда вязкая жидкость под действием небольшого, но строго определённого количества тепла вместо того, чтобы случайным образом распределяться по поверхности, формировала сотовую структуру, обусловленную конвекционными потоками.

Для того чтобы понять всю сложность подобного рода переходов, необходимо напомнить смысл основных понятий, где под хаосом понимается высокая степень энтропии, беспорядочность, неопределённость, случайность и непредсказуемость. Напротив, под порядком понимается малая степень энтропии, определённость, периодичность, предсказуемость, наличие закономерностей.

Каким же образом первое способно перейти во второе? Системный подход, исследующий эту проблему, сформировался в науке в конце XX века, что привело к возникновению новой области междисциплинарных исследований, получившей название синергетики. Творцами этой науки являются И.Р. Пригожин и Г. Хакен, установившие некоторые условия таких переходов: наличие открытых систем, осуществляющих обмен информацией, веществом, энергией с внешней средой и имеющих избыток энергии в самой системе. Следует отметить приоритет отечественных учёных Б.П. Белоусова и А.М. Жаботинского, открывших периодические реакции в химических процессах, считавшиеся невозможными с точки зрения официальной науки 50-х годов XX века, поскольку постулировалось, что химические взаимодействия между молекулами носят беспорядочный характер [21]. И только когда Жаботинский построил математическую модель брюсселятора, соответствующую этой химической реакции, пришло признание существования не только периодических автоколебательных процессов, но и возникновения упорядоченных структур и спиральных волн в химии.

Возникшие теория динамических систем и её часть – нелинейная динамика (физика хаоса), установили наличие частичной расчётности в хаотических явлениях. Прежде всего, речь идёт о детерминированном хаосе, особых явлениях, вызываемых жёсткими определёнными факторами, самими по себе не несущими никакой случайности, тем не менее под воздействием которых, системы демонстрировали хаотическое поведение. Используя математический аппарат фазового пространства, удалось визуализировать поведение динамической системы, что привело к открытию странных аттракторов – зон, в которых осуществляется реализация хаотических процессов.

Аттракторы – это участки фазового пространства, куда стремятся траектории процессов. Странные аттракторы отвечают за поведение хаотических систем и имеют необычную геометрию. Они относятся к фракталам, демонстрирующим одинаковое строение на разных уровнях масштаба, и в перспективе способным послужить основой для исследования управления перехода от хаоса к порядку.

3D визуализация множества Мандельброта, одного из самых сложных объектов фрактальной геометрии. Построено в программе WinSet 3.0 [22]

Особо следует отметить работу английского математика Рамсея, доказавшего теорему, согласно которой даже в хаосе есть порядок, и хотя он очень «хрупок», но он существует и чем больше мощность хаоса, тем больше в нём элементов порядка [23]. Наши древние предки распознали в созвездиях образы животных и людей, так появились знаки Зодиака. Современный человек видит в созвездиях правильные геометрические фигуры, которые в принципе не могли бы возникнуть, так как распределение звёзд в Галактике имеет случайный характер. Данные формы и представляют собой следствие теоремы Рамсея, поскольку количество звёзд, находящихся в случайном движении составляет огромное множество (по некоторым оценкам 200 млрд). Этого вполне достаточно для возникновения элементов порядка, чем и являются на самом деле данные структуры. Следствие теоремы Рамсея может послужить основой для наращивания порядка не только в детерминированном хаосе, но и в стохастических системах, где действует огромное количество факторов.

А что же происходит в космосе? Почему-то никто не обращает внимание на то, что термоядерные процессы, протекающие в звёздах, приводят к усложнениям. Ведь в звёздах из простейшего атома водорода синтезируются все сложные элементы периодической системы. Жизнь и человечество являются продуктами жизнедеятельности этих объектов, если бы их не было, то не было бы атомов, сложных соединений, в том числе органических, из которых состоит белковая жизнь. До сих пор современной науке не понятен феномен возникновения живой системы, являющейся сверхупорядоченной, устойчивой, самоорганизующейся и самовоспроизводящейся. Остаётся только надеяться, что наука ближайшего будущего будет способна ответить на эти вопросы.

Возникновение НИЧТО? из НЕ?ЧТО. Переход от периодических и упорядоченных процессов к хаосу

В нашем мире присутствует как хаос, так и порядок. Значительная часть действительности во Вселенной представлена периодическими и квазипериодическими (сложными периодическими) процессами. Вопрос, насколько они обладают устойчивостью в различные моменты времени, имеет далеко нетривиальное значение.

Взять хотя бы Солнечную систему. Планеты движутся вокруг нашей звезды по орбитам близким к круговым, их положение в каждый момент времени расчётно и периодично. Несмотря на достижения небесной механики, существующей более двухсот лет, вопрос об устойчивости Солнечной системы всё ещё не решён. Останется ли наша планета Земля на своей орбите или упадёт на Солнце, улетит в дальний космос, столкнётся с другими планетами, не имеет ясности до сих пор. Отсутствует однозначное понимание и механизмов образования Солнечной системы. Так, согласно одной из моделей, она сразу в момент своего возникновения была таковой. Другой подход делает акцент на сложную эволюцию этой системы, и он, конечно, является более предпочтительным.

Возможны ли переходы от периодичности к хаотичности, существуют ли механизмы, обеспечивающие такую трансформацию? Возникшая в конце века новая область научного знания, получившая название нелинейной динамики, установила три основных сценария перехода к хаосу.

Первый, это последовательный каскад бифуркаций (изменение, раздвоение, удвоение) периода цикла (сценарий Фейгенбаума), возникающий под действием параметра, превышающего критическое значение [24]. В результате последовательности бифуркаций происходит мягкое возникновение хаотических траекторий, наряду с которыми существуют и окна периодичности. Было доказано, что из существования отображения в фазовом пространстве состояний (визуализаций) цикла периода 3 возникает хаотическая последовательность. Поэтому Т. Ли и Дж. Йорк назвали свою работу «Период три рождает хаос» [25]. Однако ни в работах Шарковского, установившего упорядоченные циклы (порядок Шарковского), ни в работах Ли-Йорка ничего не говорится об устойчивости циклов и размеров окон периодичности. Реализация сценария Фейгенбаума, благодаря своей универсальности, наблюдается во многих процессах от конвекции жидкости, находящейся в тепловом потоке переходящим в состояние турбулентности, до колебаний цен акций фондового рынка.

Второй – является жёстким переходом к хаосу всего через одну бифуркацию (сценарий Помо-Манневиля) [26]. Данный скачок сопровождается явлениями перемежаемости, заключающейся в том, что происходит чередование почти регулярных колебаний с зонами хаотического поведения. Это имеет огромное значение в понимании природных процессов, связанных с возникновением турбулентности. Происходит качественная перестройка в фазовом пространстве состояний, получившая название кризисов, в результате чего возникает хаос.

Третий – включает переходы к хаосу через различные квазипериодические процессы (сценарий Рюэля-Такенса) [27]. Согласно этому сценарию, переход к хаотическому поведению совершается после появления третьей частоты в двухчастотном квазипериодическом процессе. Тем не менее возможно возникновение хаоса и в двухчастотном режиме через разрушение квазипериодичности.

Необходимо отметить, что допустимы сложные комбинации представленных сценариев. Особый вариант возникновения хаоса осуществляется через явление резонанса, для которого характерно совпадение частот взаимодействующих процессов. Параметрический резонанс, как правило, приводит к резкому усилению колебаний, и при определённых условиях возможна их трансформация в хаотические и непредсказуемые состояния. Можно привести пример флаттера, резонансного воздействия в авиастроении, когда авиация вышла на субзвуковые скорости, а также разрушение ракетоносителя Королевской техники в результате резонанса колебаний работающих двигателей.

Возникшая в конце XX века теория катастроф, смогла объяснить и рассчитать скачкообразные переходы или метаморфозы как в природе, так и в любых сферах бытия, связанных с потерей устойчивости и упорядоченности. Действительно, внезапно закипает вода, вспыхивают бунты в тюрьмах, разрушается кристаллическая решетка вещества, а лишняя соломинка ломает спину верблюда. Причём никаким резким воздействиям эти объекты не подвергались. Их состояния плавно менялись, как и в предшествующие моменты времени, и ничто не предвещало катастрофу – резкое изменение в структуре или поведении системы. Основоположники теории катастроф Том, Зиман и Уитни выделили семь типов топологических конструктов или фазовых портретов, попадая в которые и пересекая бифуркационные зоны, система теряет устойчивость и разрушается. В результате возникает неупорядоченность вплоть до хаоса [28].

Возможен и обратный процесс, и это получило название бимодальности, где всё зависит от истории изменения. Установлено, что если количество воздействующих параметров не превышает пять, а переменных изменений два, то существует семь типов бифуркационных множеств, вычислив которые, и имея мониторинг движения, можно управлять состоянием системы, не допуская катастрофических явлений. Математика универсальна, и в настоящее время методы теории катастроф применяются уже практически во всех сферах реальности от физики твёрдого тела до психологии, экономики и политтехнологий.

Что первично хаос или порядок? Миры, где есть только что-то одно

Если рассматривать нашу Вселенную, то можно констатировать, что в этом мире преобладает случайность. Действительно, распределение звёзд в галактиках, расположение самих галактик, пылевых облаков, строение нейронной сети головного мозга, в чём-то напоминающее галактические распределения, всё это согласуется со вторым законом термодинамики, который утверждает возрастание энтропии как меры беспорядка, становящейся максимальной при равновероятностных состояниях. Хаос доминирует в нашем мире.

Тем не менее во Вселенной существуют и обратные процессы, стремящиеся к упорядоченности и усложнению. В звёздах протекают термоядерные реакции, в результате которых из простого элемента – водорода синтезируются все сложные атомы. Планеты вращаются вокруг звёзд, которые в свою очередь вращаются вокруг галактических ядер. К примеру, для нашего Солнца вместе с планетной системой такой цикл по разным оценкам составляет 220–240 млн лет и называется галактическим годом. Даже в химических реакциях присутствуют периодические и автоколебательные процессы, возникают явления самоорганизации. Наконец биологическая жизнь есть мощное антиэнтропийное явление, само возникновение которой с точки зрения современной науки имеет почти нулевую вероятность (единица, делённая на 20

). Но вопреки этому она существует и, согласно некоторым гипотезам, достаточно распространена во Вселенной [29].

В нашем мире присутствуют как случайность, беспорядочность, так и упорядоченность, и усложнение. Так что же первично, хаос или порядок? Для ответа на этот вопрос, необходимо выяснить в каком виде существует первичная реальность, и от какого критерия зависит наличие в ней либо хаоса, либо порядка.

Развитие топологии (науки о пространстве) позволило установить глобальный параметр, определяющий характер этих процессов в действительности – размерность пространства. Пространство может иметь любую размерность вплоть до N. И это ни метафора, и ни выверт математической мысли. Так, пространство нашей Вселенной имеет девять измерений, шесть из которых свёрнуты и образуют сложный топологический конструкт [30]. Они обнаруживают себя на планковском уровне масштаба, составляющим 10

м, в то время как трёхмерное пространство в момент Большого взрыва претерпело инфляцию (раздувание) и продолжает расширяться, это макро- и мегамир, в котором мы живём. Топологией установлено, что если размерность пространства меньше 3, например, 2 (плоскость) или 1 (линия), то в этих мирах хаос невозможен и случайностей не существует. Тогда как в пространстве размерности 3 присутствует и хаос, и порядок. Но, если пространство во Вселенной имеет больше трёх размерностей, например, 4, 5…N, то в этих Вселенных царит хаос, а периодика невозможна, впрочем, как и усложнение. Даже атомы здесь отсутствуют, это миры элементарных частиц и случайностей.

Идеи голографической и Мультивселенной, в частности: работы Бома, Малдасены, Хоофта предполагают, что наш мир является проекцией голографической двухмерной параллельной Вселенной, где существуют только квазипериодические процессы, а случайностей и хаоса не существует. Они возникают в результате трансляции этой голографической основы в нашу девятимерную Вселенную. Следовательно, первичная реальность носит квазипериодический характер и существует в виде голографической целостности.

Таким образом, порядок первичен, поэтому и реализуются антиэнтропийные процессы, базирующиеся на первичной основе параллельной реальности. И, несмотря на глобальную тенденцию энтропийной направленности, в нашей Вселенной присутствует локальная негэнтропийная реализация. Открытие условий, законов и механизмов этих процессов может реализовать фантастический вариант входа в первичную реальность, позволит научиться управлять её основой, что может изменить мир нашей Вселенной и нас самих.

Поразительно, но, по оценкам космологов, количество параллельных Вселенных может составлять огромное число – 10

. Однако, вероятно, только некоторые из них, могут оказывать на нас существенное влияние, а в настоящее время речь идёт о воздействии лишь одной – голографической Вселенной.

Жизнь как неслучайное явление. Информационный подход

Энтропийные явления царствуют в нашем мире. Информация в термодинамике определяется как обратная энтропия, т. е. выступает как мера упорядоченности. Если взглянуть на нашу земную форму жизни с точки зрения этого подхода, поражает огромная информационная ёмкость живой системы. Ведь даже самый простой микроорганизм на Земле имеет почти нулевую вероятность возникновения (1:20

). Каким образом в нашей Вселенной могла возникнуть и существовать такая сложнейшая система?

Возможно, решение этого вопроса заключается в единообразной трактовке самого понятия информации. Между тем общей теории информации не существует, это дело ближайшего будущего, на данный момент имеется несколько принципиально разных концепций, трактующих данный феномен. Наибольшее распространение получил вероятностный подход, сформулированный Хартли и Шенноном. С их точки зрения информация выступает как мера уменьшения неопределённости в наступлении статистических событий. Подход Шеннона является более широким по сравнению с Хартли, так как включает разновероятностные события. Он может быть использован для выяснения разницы мер структур, имеющих вероятностные характеристики, и определения меры детерминированности, следовательно, апостериорной (полученной в результате опыта) информации. В качестве эталона выступает полный беспорядок, для которого характерна предельно высокая степень энтропии.

Существуют также трактовки информации как разности мер структур, но не имеющих вероятностную природу, а задаваемых в различных алгебрах [31].

В рамках шенноновского понимания информации Винером была заложена основа кибернетического подхода, наиболее близкая к пониманию функционирования живой материи. Им было сформулировано два важных положения: первое, информация не существует без своего носителя, по отношению к которому она инвариантна, и второе, она представлена в сигнальной форме и имеет кодовый характер. Иными словами, информация есть выражение порядка организованных сигналов, являющихся отображением источника. Отсюда пришла идея генетического кода как основы биологических процессов. Был открыт универсальный носитель генетической информации – ДНК, а также РНК, которая содержится в некоторых вирусах. Именно эта концепция лежит в основе понимания сущности живого.

Имеется и другой подход, рассматривающий информацию как меру комплексности (сложности) объектов. В рамках идей конструктивной математики, согласно которой все объекты являются построенными (сконструированными), возникла алгоритмическая концепция, сформулированная отечественным учёным А.Н. Колмогоровым. В ней информация определяется как минимальная длина компьютерной программы, с помощью которой этот объект был построен. Например, если мы возьмём числовой ряд 1.2.3.4.5…N, то для построения любого члена ряда нам понадобится всего один оператор, так как следующий член ряда возникает после прибавления к предыдущему единицы. Иначе говоря, есть одна формула, с помощью которой он строится и, следовательно, такой ряд как математический объект обладает малой информационной ёмкостью. А вот если взять набор случайных чисел, которые не имеют компактного алгоритма описания, то тогда, сколько имеется этих чисел, столько и потребуется операторов для их представления, и информационное содержание такого объекта будет громадно, а он сам сверхсложен.

Некоторые учёные рассматривают хаос как сверхпорядок, поскольку он является сверхсложным. Наверное, неслучайно хаотические структуры, являющиеся фракталами, буквально пронизывают ткани живых организмов, вырастая из хаосогенных механизмов. И это требует переоценки даже основных понятий нормы и патологии в таких, казалось бы, классических науках, как биология и медицина.

Особый подход к пониманию информации был сформулирован отечественным учёным К.А. Валиевым, где информация определяется как изменение состояний системы. Он является более универсальным, поскольку количество состояний определяет информационную ёмкость, а их изменения – переработку информации. Тогда получают своё логическое объяснения такие объекты, как прионы, не имеющие ДНК и РНК, а также нанобактерии, представляющие собой кристаллическую форму жизни. Возможно, мы просто не там ищем жизнь в космосе. Иные её формы могут находиться у нас на Земле буквально под ногами. В принципе, на возникновение жизни в космосе могло сказаться и влияние параллельной голографической Вселенной. Ведь в этой Вселенной, имеющей двухмерные пространственные параметры, не существует случайностей, есть лишь сложные периодические процессы, а жизнь тоже по-своему периодична.

Глава 2

Мир космоса и Мультивселенной

Существует ли жизнь в звёздах? Какая она тогда

Ещё несколько десятилетий назад человека, задающего такой вопрос, сочли бы сумасшедшим. Конечно, белковая жизнь, какой мы её знаем на нашей планете, невозможна в условиях звёзд, где царят чудовищное давление и температура в десятки миллионов градусов в центральных зонах. Достаточно констатировать, что на поверхности нашего светила температура составляет 5600 °C, и основным состоянием вещества является плазма, представляющая собой ионизированный газ, по сути, находящийся в хаотическом состоянии. Казалось бы, какая «живая» система в этих условиях может вообще возникнуть и существовать? Тем не менее прогресс научного познания открыл новые аспекты этой проблемы.

В настоящее время даже специалисты, работающие в областях исследований происхождения и специфики живых систем, отказались от обсуждения вопроса, чем отличается живое от неживого, и сконцентрировались на изучении механизмов его функционирования. Поскольку оказалось, что надёжных критериев их различий не существует. Традиционные представления, характеризующие живые системы, такие как обмен веществ, рост, размножение, эволюция и другие, оказались несостоятельными. Выяснилось, что и неживые системы обладают такими же свойствами при определённых условиях. Эти условия и механизмы переходов в настоящее время тщательно исследуются синергетикой. В частности, поразительные эффекты были установлены космонавтами при изучении свойств плазмы на Международной космической станции. В условиях невесомости возникли усложнения плазменных структур, плазма свернулась в двойную спираль, напоминающую по своей форме молекулу ДНК.

В звёздах имеется огромный источник энергии в виде термоядерных реакций, осуществляется синтез более сложных атомов, чем водород, который представлял основной элемент родившейся Вселенной, где ни углерода, ни кислорода, ни других элементов на тот момент не существовало. Белковая жизнь является продуктом жизнедеятельности звёзд, и, если бы их не было в нашей Вселенной, не было бы и живой материи. Это указывает на связь функционирования звёзд с возникновением и развитием жизни.

Возникает вопрос, а не имеется ли самостоятельное существование «живой» системы на плазменной основе? Косвенным подтверждением этой идеи является наличие плазмоидов в земных условиях, в частности, шаровой молнии, демонстрирующей довольно странное поведение. Природа этих явлений до сих пор остаётся невыясненной.

Особенностью живых систем является то, что их информационный объём колоссально избыточен. Как известно, во-первых, информация не зависит от своего носителя, следовательно, неважно на какой материальной основе она существует, лишь бы носитель выражал состояния системы. В принципе, компьютерная модель искусственного интеллекта возможна и на плазменной основе. В настоящее время весьма перспективным является разработка квантовых компьютеров именно на фотонной базе [32]. В таком направлении, как трансгуманизм высказывалась идея, и велись разработки, направленные на перенесение даже человеческого сознания на фотонный носитель. Собственно об этом писал ещё К.Э. Циолковский, который считал, что человечество в результате своего технического развития станет лучистой энергий, но именно звёзды и являются источником такой энергии [33]. Возможно, всё и вернётся к началу своих прародителей – звёздам.

Во-вторых, и в неживых системах осуществляется сохранение и переработка информации, связанной с изменением их состояний. Так может и в звёздах способны реализоваться подобные условия для существования информационной реальности достаточной степени сложности, что можно говорить о неком или неких организмах, отличных от кибернетических систем на химической основе, которыми является белковая жизнь.

Со спутников, находящихся рядом с Солнцем, регистрировались странные явления: одни объекты проходили звезду насквозь, другие погружались в неё, а некоторые, напротив, вылетали из светила. Учёные отказываются комментировать данные явления, считая их либо дефектами изображений, либо фантазиями комментаторов. Тем не менее, опираясь на представления такой области исследований, как SETI, занимающейся поиском внеземных цивилизаций и их оценкам, можно предположить, что сверхцивилизации используют звёзды, погружаясь в них для забора плазменных структур, как это показано в романе А. Кларка «Свидание с Рамой», а возможно, и живут непосредственно в звёздах, потребляя их огромный и практически неиссякаемый источник энергии.

И всё же остаётся вопрос, могут ли существовать, эволюционировать и даже достигать цивилизационных форм плазменные структуры, как это описано в фантастическом романе Сергея Лукьяненко «Звёзды – холодные игрушки. Звёздная Тень»? Некоторые предположения писателей-фантастов оказались пророческими, достаточно вспомнить Жюля Верна, а может быть действительность окажется гораздо фантастичнее, чем их предположения?

Так всё же, кто или что живёт в звёздах, или этот вопрос мифологичен?

Рождение Вселенной

Человечество на протяжении многих веков смотрело в ночное небо и задумывалось, откуда же взялся этот сияющий звёздный мир, и что будет с ним дальше? Как отмечал немецкий философ Иммануил Кант, две вещи поражают в этом мире: звёздное небо над головой и моральный закон внутри нас. Ему принадлежит гипотеза о происхождении Солнечной системы, а также предположение о существовании огромных звёздных островов, которые он назвал галактиками.

Тем не менее на протяжении трёх столетий после возникновения классической механики и работ Ньютона в области астрономии имелись весьма поверхностные представления о крупномасштабной структуре нашего мира. Даже в начале XX века многие были убеждены в том, что гигантская звёздная система нашей Галактики является уникальной и единственной в своём роде. Лишь в 1928 году, когда двухметровое зеркало американского телескопа разложила на звёзды ближайшую к нам «соседку», Туманность Андромеды, которая оказалась галактикой в полтора раза превышающей нашу, наступила новая эра [34].

Между тем мало кто сомневался, что вся наша Вселенная с её миллиардами галактик находится в статическом состоянии. Развитие науки XX века позволило рассматривать звёзды как огромные плазменные шары, в недрах которых протекают термоядерные реакции. Как оказалось, звёзды не вечны, была понята их эволюция, заканчивающаяся разными финальными состояниями этого процесса от белых карликов и нейтронных звёзд до чёрных дыр. Выяснилось, что абсолютно все атомы в нашей Вселенной синтезированы исключительно звёздами, причём тяжёлые элементы, находящиеся в периодической системе за железом, такие как платина, золото и другие, возникают во взрывных процессах, называемых вспышками сверхновых массивных звёзд, гораздо больших нашего Солнца. Идеи однородной, изотропной, бесконечной и существующей вечно Вселенной стали вступать в противоречие с наблюдательной астрономией, приводя к парадоксам.

Одним из них является фотометрический парадокс или, как его ещё называют, парадокс Ольберса. Вдали от Млечного Пути ночное небо выглядит поразительно тёмным. Но, если Вселенная бесконечна, соответствует евклидовой геометрии (кривизна пространства равна нулю) и существует вечно при достаточно равномерном распределении звёзд, то из любой точки пространства за бесконечное время должен прийти свет от далёких звёзд и заставить сиять небеса.

Другой парадокс связан с наличием радиоактивного вещества. Если Вселенная существует вечно, то всё радиоактивное вещество давно бы распалось. Между тем, общеизвестно, что это не так, и данный факт свидетельствует о вполне определённом времени существования нашей Вселенной.

Первоначально Альберт Эйнштейн находился в плену представлений о стационарности Вселенной. Фотометрический парадокс он разрешил, предположив, что пространство Вселенной замкнуто, т. е. обладает положительный кривизной, а, следовательно, имеет ограниченное количество звёзд. Вселенная, по его предположению, должна оказаться замкнутой трёхмерной сферой с определённым радиусом. В сферическом мире Эйнштейна насчитывалось бы 1000 млрд галактик, а кругосветное путешествие светового луча продолжалось бы 70 млрд лет. Легендарный физик построил статическую модель путём введения в неё сил гравитации, особой геометрии пространства с положительной кривизной, а также сил отталкивания. Эта модель позволила соотнести полученные результаты с данными наблюдательной астрономии. Радиус Вселенной оказался равным 10

сантиметра, а плотность составила 10

г/см

.

Концепция стационарной Вселенной не предполагала эволюционного развития, более того, она была крайне неустойчивой, на что и обратил внимание А.А. Фридман. Интересно, что Эйнштейн признал работу Фридмана только после его соответствующих разъяснений. Эдвин Хаббл в 1929 году установил факт расширения пространства. А это означает, что когда-то вещество было сжато до немыслимо малых масштабов. Таким образом, была доказана глобальная эволюция Вселенной, но до триумфа этих представлений было ещё далеко.

Самое убедительное доказательство взрывного начала всего сущего было получено в 1965 году радиоастрономами Арно Пензиасом и Робертом Вильсоном в результате ряда измерений радиотелескопом радиошума, оставшегося от фазы горячей Вселенной на раннем этапе её развития. С этого времени идея взрывного начала, получившая название теории Большого взрыва, брала неизменно верх над всеми другими представлениями [35].

Тем не менее и она не была лишена недостатков, поскольку постулировала сингулярность, бесконечную плотность материи в начальный момент расширения и бесконечную температуру. И что очень важно, теория Большого взрыва не отвечала на вопрос, почему наше пространство трёхмерное. Наука не может работать с такими эмпирическими показателями, поэтому в конце XX века она была дополнена концепцией раздувающейся Вселенной, но для этого необходимо было обратиться к физике элементарных частиц, и, в частности, к теории Великого Объединения, описывающей единообразно гравитационные, слабые и сильные виды ядерных взаимодействий, а также электромагнитизм.

Откуда и почему произошёл Большой взрыв? Как из Ничто возникла огромная Вселенная во всём своём последующем многообразии? Для обыденного сознания такое не просто понять. Воспользуемся аналогией из нашего макромира. Откуда и почему рождается живописное полотно у художника? По сути краски, кисти и холст – это всего лишь инструменты для будущего творения. Необходимо определиться с выбором сюжета, формы, цветовой гаммы и т. д. Как возникают мысли в мозге? Несомненно, субстратом их продуцирующим, является нейронная сеть, но почему и как рождается конкретная идея? Иногда совершенно пустая, а порой гениальная. Люди как творчества, так науки чаще всего объясняют это озарением, прозрением, инсайтом, возникающим «из ничего».

В физике элементарных частиц возникновение Нечто из Ничто не является чем-то необычным. При крайне высоких значениях напряжённости электрического поля спонтанно, «из ничего», рождаются электроны и позитроны. Вблизи чёрных дыр из-за колоссальной гравитации вакуум постоянно испускает вновь рождённые элементарные частицы. Это излучение чёрных дыр было открыто знаменитым физиком Стивеном Хокингом. Поэтому само происхождение Большого взрыва не должно ассоциироваться с кроликом, появляющимся из шляпы, когда зрители в зале прекрасно понимают, что их обманывают. А вот вопрос, что же происходило дальше, является как раз краеугольным камнем в космологии.