banner banner banner
Экономика ВИЭ. Издание 2-е, переработанное и дополненное
Экономика ВИЭ. Издание 2-е, переработанное и дополненное
Оценить:
Рейтинг: 4

Полная версия:

Экономика ВИЭ. Издание 2-е, переработанное и дополненное

скачать книгу бесплатно


Одной из задач инженеров-конструкторов ветроагрегатов всегда было нахождение баланса между необходимостью обеспечения равномерности вращения ротора, максимальным использованием энергии воздушного потока при условии соблюдения безопасности эксплуатации ветроагрегата и обеспечением качества электрического тока, выдаваемого в систему. На сегодняшний день в ветроэнергетике используется несколько технологических решений, решающих выше перечисленные задачи.

Системы контроля скорости вращения ротора. Имеются две принципиальных схемы регулирования скоростей вращения ротора в зависимости от скорости воздушного потока: система контроля вращения ротора (stall control) и система управления углом атаки лопастей ротора (pitch control) путем их поворота и «подрулирования». Кроме того, используются механические коробки передач между валом ветроколеса и ротором генератора. Пассивная система контроля вращения ротора предполагает использование такого профиля лопасти ветроагрегата, которая позволяет при достижении воздушным потоком скорости, при котором происходит изменение оптимального режима вращения и выработки энергии, переводить обтекание лопасти потоком в режим срыва этого потока (stall) и, как следствие, ликвидировать подъёмную силу потока до остановки вращения ротора ветроагрегата. Активная система контроля вращения ротора предполагает несколько фиксированных положений лопастей ветроколеса и их угла атаки, поэтому такой механизм использования контроля обеспечивает промежуточное положение между состоянием вращения и полного останова ротора.

Система управления углом атаки лопастей ротора(pitch control) для регулирования вращения вала предполагает постоянное «подруливание» лопастей ветроколеса на основе анализа выработки энергии в интервалах меньше секунды. Последняя уже опробованная технология, когда в головную часть ротора встраивается лазер, «простреливающий» воздушные потоки, набегающие на ветроколесо. На основании полученных характеристик воздушного потока система управления ветроагрегатов поворачивает лопасти заранее с тем углом атаки, который позволит максимально использовать энергию набегающих потоков ветра. Это усовершенствование позволяет увеличить выработку ветрогенератора на 5—6% за счёт более ранней подготовки ветроколеса к особенностям потока ветра по сравнению с традиционными моделями, в которых корректировка угла атаки происходит post factum.

В современных ветроагрегатах начали использовать генераторы с переменной полярностью (зависит от типа соединения магнитов статора), в которых генератор может работать с различным количеством полюсов и, следовательно, с различной скоростью вращения ротора. Также специально созданные для ветроиндустрии большие генераторы могут работать как два в одном: обеспечивая в одном режиме мощность 400 кВт, а в другом – 2000 кВт и работая на двух скоростях вращения ротора соответственно. Этот тип конструкции получает всё большее распространение. Имеются технические решения регулирования не столько скорости вращения ротора, сколько регулирование вырабатываемого тока на основе прямого привода ротора ветроколеса на генератор. В них используется эффект так называемого скольжения асинхронного генератора[35 - Именно асинхронные генераторы используются в большинстве работающих сегодня ветроагрегатов именно из-за свойств этого типа генератора.].

Скорость вращения ротора асинхронного генератора будет меняться от величины крутящего момента, передаваемого с ротора ветроколеса. На практике разница между скоростью вращения при максимальной выработке и скоростью холостого хода генератора будет всего около 1%. Это однопроцентная разница синхронной скорости вращения ротора генератора и называется скольжением генератора. Это означает, что 4-хполюсный генератор будет работать вхолостую при 1500 оборотах в минуту при условии его подключения к сети с частотой тока 50 Гц. Выдавать полную мощность генератор будет уже при скорости вращения 1515 об/мин. Это очень важное и полезное свойство электромеханики генератора, состоящее в чрезвычайно малом изменении скорости вращения вала ротора в зависимости от изменения величины крутящего момента в режиме выработки генератора. Это также означает снижение нагрузки на коробку передач за счёт снижение пикового крутящего момента. Такое свойство асинхронного генератора является одной из главных причин столь их широкого использования в сетевых (т.е., подключенных к сети) ветроагрегатах.

Величина эффекта скольжения генератора является одновременно функцией величины сопротивления постоянного тока (измеряемого в омах) возникающего при вращении ротора генератора: чем выше сопротивление, тем больше величина скольжения генератора. Таким образом, изменяя сопротивление ротора, мы можем регулировать величину скольжения, т.е. зазор разницы скоростей вращения ротора генератора и ветроколеса. Таким образом величину скольжения можно увеличить до, например, 10%. Применительно к моторам, которые, как правило, являются машинами обратного действия по отношению к генераторам, зависимость скорости вращения вала мотора осуществляется включением в цепь обмотки статора силовых резисторов и системы управления ими. Типичным практическим примером такой схемы является работа стиральной машины, скорость вращения вала барабана которой – разная при разных режимах работы, а напряжение и частота потребляемого тока – постоянные.

Генераторы работают по обратной схеме. На их роторы также устанавливают внешние силовые резисторы и систему управления ими. Одной из основных проблем управления такой системой силовой электроники является способ передачи команд по регулированию величины скольжения генератора. Это осуществляется с помощью волоконной оптики, устанавливаемой в генератор и используемой для передачи сигналов управления ротором генератора. Если используется генератор с переменной величиной скольжения, то вы можете начать увеличение этого параметра в случае приближения скорости ветра и выработки к номинальным значениям мощности ветроагрегата. Наиболее популярная схема регулирования, впервые предложенная датскими производителями, предполагает установление половины от максимального значения скольжения генератора ветроагрегата при его работе на скоростях, обеспечивающих выработку, близкую к номинальной мощности агрегата. Когда происходит порыв ветра, то система управления даёт команду на увеличение скольжения генератора, чтобы позволить ротору вращение с большей скоростью, а в это же время механизм регулирования поворота лопастей начинает их поворот под ветер, чтобы лопасти могли справиться с этим порывом ветра тоже.

После того как механизм регулирования поворота лопастей выполнил свою работу, механизм регулирования величины скольжения генератора возвращает его значение к прежнему (например, половина от максимума). Если вдруг ветер падает, то схема работает в обратном порядке. Даже приведенное выше краткое описание используемых механизмов адаптации изменения скоростей ветра и работы генератора показывают, что современные ветроагрегаты могут справляться с переменчивым ветром в достаточно большом диапазоне. Внимательный читатель спросит: «А что если ветер совсем перестанет дуть в некоторый момент?» На такой вопрос мне обычно хочется ответить встречным вопросом: «А что если ваша угольная паровая турбина или её генератор, или система управления, или система подачи топлива (специалисты легко продолжат этот список) выйдет из строя?» Использование более совершенных электрических схем работы и управления ветроагрегатом для гармонизации участия ВЭС в энергосистемах на основе использования в ветроагрегатах прямого привода на вал генератора, групповых, а не индивидуальных инверторов и трансформаторов, тонкая опережающая подстройка углов атаки лопастей под находящий поток и проч. позволяют современным ветроагрегатам вполне комфортно работать в составе энергосистем.

Подтверждением этому служат реальные ситуации, когда вся или львиная доля вырабатываемой электроэнергии в большой энергосистеме обеспечивается ВЭС.[36 - «Ветер в Испании стал в 2013 г. основным источником электрической энергии» – http://www.vetern5.ru/index.php?pid=5] В энергосистемах стран-членов ЕС уже несколько лет действует принцип технологической нейтральности при принятии решений о допуске того или иного генерирующего объекта в систему. На практике это означает, что вне зависимости от используемой технологии производства электроэнергии, агрегат или генерирующий объект должен обеспечивать те же условия и требования по своей надёжной и безопасной работе в системе, что и остальные генерирующие объекты. Целью этих требований, которые обычно включены в так называемые сетевые кодексы стран, является обеспечение бесперебойного функционирования энергосистемы. В случае ветровых технологий эти требования направлены на улучшение и стабилизацию работу ветроагрегатов, снижение объёма потерь ветровой энергии вследствие аварий в системе, и наличие у ветровых электростанций эксплуатационных характеристик, максимально приближенных к характеристикам традиционных электростанций.

Принятые эксплуатационные характеристики ВЭС для современных энергосистем:

• способность поддержания непрерывного энергоснабжения при сбоях (СПН)

• выработка и подача реактивной мощности по команде диспетчеров при сбоях в энергосистеме

• способность регулировать реактивную мощность, уровень мощности и вырабатываемое напряжение

• возможность регулирования активной мощности ВЭС и контроль вырабатываемого напряжения

• регулирование активной мощности по командам диспетчеров

• способность надёжного обмена информацией с СО

• общие требования к защитному оборудованию и настройкам ВЭС

• нормативное регулирование (положение) предоставления системных услуг.

Некоторые специалисты утверждают, что именно это требование является основным препятствием расширения использования китайских ветроагрегатов в Европе и США. Базовые конфигурации этих ветряков стоят много дешевле европейских или американских. Но если заказчик требует дооборудования ветряков до уровня, требуемого безопасностью и надёжностью европейской (американской) энергосистемы, то стоимость такого китайского ветряка уже становится сопоставимой с другими производителями.[37 - См., например: Никишина Ю. Не всё так дёшево и всё сердито.-Энергополис, январь-февраль 2012, стр. 64.]

РАЗВИТИЕ ИСПОЛЬЗОВАНИЯ ТВЁРДОЙ БИОМАССЫ

На первый взгляд (Рис. 10) доля твёрдой биомассы по сравнению с ее потенциалом создает впечатление низкого уровня эффективности, при наличии нескольких исключений (к примеру, Финляндия, Швеция и Голландия).

В то же время следует отметить, что твёрдая биомасса является на сегодняшний день самым большим по объёму источником энергии на основе ВИЭ, но только для тепловой энергии, занимая, тем не менее, около 9% в суммарном глобальном топливном балансе, что превышает долю всех остальных видов ВИЭ вместе взятых за исключением гидроресурсов.

Рисунок 10. Доля биомассы, среднесрочный потенциал и ФТ

(В Голландии предусмотрена надбавка, корректируемая в соответствии с рыночными ценами на электроэнергию.)

Таким образом речь в настоящее время идёт о расширении использования биомассы как источника энергии в её наиболее современных видах и формах, а не только как древесины для отопления.

В то же время сравнительный анализ уровня использования биомассы следует проводить осторожно, т.к. в отличие от других технологий ВИЭ, к примеру, ветровой, технологии с использованием твёрдой биомассы также разнообразны, как и различные формы используемой в качестве топлива биомассы. Кроме того, с технологиями использования биомассы связано несколько проблем экономического характера, которые можно сформулировать в общем как отсутствие корректного «рынка биомассы», который бы обеспечивал необходимые ценовые сигналы для развития технологии.[38 - Например, в России использование отходов лесного и деревообрабатывающего производства часто сталкивается с экономически необоснованным поведением поставщиков отходов по отношению к станциям, использующим его для производства электроэнергии и тепла, если они принадлежат разным собственникам. То, что на исходной стадии процесса считается отходами и приносит их владельцам только дополнительные расходы и штрафы, вдруг становится источником выручки. К тому же иногда станция не может отказаться от покупки своего сырья именно у этого производителя из-за фактора географической близости и трудности с транспортировкой. В этом случае цены на те же отходы часто становятся необоснованно высокими, искажающими реальный рынок и затраты на производство энергии.] К этому следует добавить тот факт, что, как и для любой другой традиционной технологии, генерирующим компаниям, чтобы получить гарантию достаточного количества топлива для генерации энергии по установленной цене, требуется заключение долгосрочных договоров с поставщиками биомассы[39 - К другим важным аспектам относятся: процессы и затраты на поставку биомассы, эффективность при заготовке древесного сырья, водные ресурсы и т. д.]. Эти обстоятельства могут объяснить, почему, несмотря на наличие высоких фиксированных тарифов, во многих странах, к примеру, в Германии и Испании, развитие данной технологии оставалось на достаточно низком уровне вплоть до 2004 г., даже несмотря на заметное улучшение тенденции на протяжении последних нескольких лет.

Два исключения в использовании биомассы – Финляндия и Швеция: в обоих случаях механизмы поддержки стимулируют развитие рентабельных проектов (освобождение от налогообложения в Финляндии, «зелёные» сертификаты в Швеции), и рынок демонстрирует соответствующую реакцию на данные сигналы.

Любопытно отметить, что в период с 1994 по 2008 гг. импорт вторичных древесных ресурсов, т.е. по сути древесных отходов, увеличился с 2,4 до 6 млрд. долл. или на 150%[40 - Рассчитано по: UN International Merchandise Trade Statistics / 2008 International Trade Statistics Yearbook, Volume II – Trade by commodity. – Geneva, 2008. – URL: http://comtrade.un.org/pb/], что с очевидностью свидетельствует и о расширении вовлечения в оборот этого вида ресурса, и о росте цен на них, превращении отходов в обычный сырьевой товар. Также заслуживает внимания тот факт, что активными импортёрами этого ресурса кроме Японии (около 50% импорта, что легко объяснимо скромностью собственных лесных ресурсов) стали как раз страны, сами располагающие существенными лесными ресурсами и активно их использующими в деревообработке. Это уже упоминавшиеся Финляндия, Швеция и Канада, США, что, с нашей точки зрения, позволяет говорить уже об эффекте расширенного саморазвития отрасли древесного биотоплива, начиная с определённой ступени, когда крупным производителям изделий из древесины настолько выгодно становится перерабатывать его отходы в условиях сложившейся системы поддержки, что они готовы их импортировать дополнительно к собственным объёмам.

Особое место в составе задачи расширения использования твёрдой биомассы занимают твёрдые бытовые отходы (ТБО). Процессы его использования состоят из нескольких взаимосвязанных ступеней, отличающихся степенью эффективного использования либо с точки зрения повторного использования, либо с точки зрения производства энергии из него.

Первой ступенью является наиболее простой и дешевый, но и наиболее экологически и социально опасный метод захоронения отходов на полигонах. Данный метод используется в России для, примерно 97% всего производимого мусора, столь широкое распространение в России получил ввиду его дешевизны – около 15 евро за захоронение 1 тонны ТБО против около 1000 евро за тонну в странах Западной Европы.

Второй ступенью иерархии методов утилизации бытовых отходов после захоронения мусора на полигонах является его использование в качестве топлива. Для этого проектируются специальные ТЭЦ на базе мусоросжигательных заводов (МСЗ), к которым предъявляются требования, отличные от ТЭЦ на традиционном топливе. Мусор, используемый для этих целей, проходит специальную подготовку – сортировку, позволяющую избавить его от негорючих включений, а также полимеров, выделяющих при горении опасные вещества.

Следующие ступени – это переработка, компостирование и вторичное использование переработанного мусора. Данные методы являются наиболее экологически выгодными, однако для их реализации необходим мусор, разделенный на основные составляющие фракции – органика, стекло, бумага, пластик и т.д., что приводит к потребности в его раздельном сборе, либо сортировке, ввиду чего данный метод наиболее затратен. Обойтись только сортировкой и переработкой мусора пока, к сожалению, невозможно и поэтому в развитых странах активно развивается строительство генерирующих мощностей на основе термической обработки части ТБО.

На данный момент в США насчитывается 460 ТЭЦ на базе МСЗ[41 - По данным сайта http://globalenergyobservatory.org/list.php?db=PowerPlants&type=Waste] мощностью от 1,5 до 715 МВт. Структура установленной мощности этих станций следующая:

• станции мощностью до 5 МВт – 156

• станции мощностью от 5 до 25 МВт – 148

• станции мощностью свыше 25 МВт – 156

с разбивкой по установленной мощности, как показано на Рисунке 11. При этом в США насчитывается 21 станция мощностью более 100 МВт.

Рисунок 11. Структура установленной мощности станций на базе МСЗ в США

Источник:http://globalenergyobservatory.org/

Ситуация со строительством и эксплуатацией электростанций на основе МСЗ в европейских странах – различная. Лидер – Дания, которая сжигает свой мусор уже примерно 150 лет (Рисунок 12).

Рисунок 12. Утилизация мусора в европейских странах

Источник: по данным Eurostat2010 и CEWEP

В странах Европы по данным на 2012 год насчитывалось 452 ТЭЦ на базе МСЗ[42 - По данным: Cooperation of European Waste-to-Energy Plants http://cewep.eu/m_1026]. Лидерами по количеству таких станций в Европе являются: Франция, Германия, Италия, Швеция и Дания. Европейские страны планируют и далее наращивать объёмы производства энергии на станциях на основе МСЗ, доведя её объёмы к 2020 г. до 134 млрд кВт•ч.

Доля между объёмами тепла и электроэнергии на этих станциях в сумме распределяется, примерно, как 2:1. Поэтому такое значение имеет политика государств по отношению к развитию генерации на ТЭЦ наряду с политикой в сфере сбора и утилизации мусора. Утилизация мусора в т.ч. путём его частичного сжигания предполагает наличие нескольких источников выручки (компенсации затрат):

• плата жителей за сбор и утилизацию мусора домохозяйств,

• плата за приём мусора от собирающих компаний на ТЭЦ МСЗ,

• стоимость проданной электроэнергии,

• стоимость проданного тепла,

• выручка от продажи и (или) повторного использования вторичного сырья из ТБО.

Выводом из этого перечня является необходимость довольно «тонкой» настройки всей этой системы тарифов и цен.

БИОГАЗ

Ситуация с использованием имеющегося потенциала биогаза в Европе подобна ситуации с биомассой, но в меньшем масштабе, что можно увидеть на Рисунке 13.

Развитие технологии с использованием биогаза значительно зависит от схем стимулирования не только на национальном уровне, но и на уровне регионов и отдельных муниципалитетов, т.к. часто генерация на основе этой технологии – местная, небольшая, являющаяся частью сугубо муниципальной энергетики и теплоснабжения. Эта ситуация стала источником дополнительных трудностей для анализа, и в ней не просто разобраться.

Две страны ЕС-28 с самым высоким уровнем развития использования биогаза в настоящее время – это Германия и Великобритания, и в обоих случаях свалочный газ является доминирующей технологией, стимулируемой при помощи дополнительных схем на муниципальном уровне. Эта ситуация может объяснить отличие от соответствующего развития технологии в Испании: в последнем случае испанское правительство обеспечило в самом начале определённые низкие фиксированные тарифы, не ставшие достаточным стимулом для необходимого технологического развития. А, например, в Польше сейчас нет ни одной свалки, которая не была бы занята под производство свалочного газа, после того, как в стране была принята адекватная система поддержки, все свалки «разобрали». Для многих стран отсутствие детальной информации об опыте поддержки на местном и национальном уровне не позволяет оценить реализуемые стратегии.

Остановимся на биогазе, получаем на свалках, так называемом, свалочном газе. Свалочный газ – конечный продукт микробиологического разложения определённых фракций отходов, захороненных на мусорном полигоне. К ним относятся: растительные и животные остатки, бумага и древесина. Скорости, с которой эти материалы подвергаются биоконверсии, а также выход свалочного газа, существенно различны и зависят, в первую очередь от вида отходов (т.н. «морфологии» отходов), а также от физико-химических условий в теле свалки (влажность, температура, кислотность, доступ воздуха и т.д.). Проблема утилизации свалочного газа стоит достаточно остро, ввиду того, что метан, составляющий от 40 до 70% единицы объёма свалочного газа (остальные составляющие СГ – СО


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)