скачать книгу бесплатно
) выручку:
ТП
=К
х Ц
;
ТП
= К
х Ц
.
2. Определим выручку условную (ТП
):
ТП
= К
х Ц
.
3. Рассчитаем отклонение фактической выручки от плановой (?ТП
).
?ТП
= ТП
– ТП
.
4. Рассчитаем изменение выручки за счет:
• изменения количества проданной продукции (?ТП
):
?ТП
= ТП
– ТП
• изменения цены реализации (?ТП
):
?ТП
= ТП
– ТП
.
5. Проверим правильность алгебраических расчетов: алгебраическая сумма влияния факторов должна быть равна общему приросту результативного показателя:
ТП
+ ?ТП
= ?ТП
.
Используя способ цепной подстановки, необходимо выполнить ряд правил:
• в первую очередь учитывается изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и качественных факторов, то сначала следует изменить факторы первого уровня подчинения, а потом второго;
• в расчетах количественного влияния факторов на результат обязательно используется условный показатель;
• фактические данные сравниваются с плановыми (или данные отчетного периода с базисными показателями).
Способ абсолютных разниц используется только в мультипликативных и смешанных моделях. При его использовании величина влияния факторов рассчитывается умножением абсолютного прироста исследуемого фактора на плановую (базовую) величину факторов, которые находятся справа от него, и на фактическую (отчетную) величину факторов, расположенных слева от него в модели.
Алгоритм, расчета:
1. Рассчитаем абсолютное изменение:
• объема реализации (?К):
?К = К
– К
;
• цены (?Ц):
2. Рассчитаем изменение выручки за счет:
• изменения количества проданной продукции (?ТП
):
?ТП
= ?К х Ц
;
• изменения цены реализации (?ТП
):
?ТП
= К
х ?Ц.
3. Проверка расчетов:
?ТП
+ ?ТП
= ?ТП
Способ относительных разниц применяется в тех же моделях, что и при использовании метода абсолютных разниц. Он значительно проще цепных подстановок, что делает его более эффективным, особенно когда требуется рассчитать влияние более 8 факторов.
Алгоритм расчета:
1. Для расчета влияния первого фактора необходимо плановую (базисную) величину результативного показателя умножить на относительный прирост первого фактора, выраженного в процентах, и результат разделить на 100 %.
Изменение выручки за счет количества проданной продукции (ДТПк):
?ТП
= (ТП
х ?К%)/100 %;
?К% = (К
– К
)/К
х 100 %.
2. Чтобы рассчитать влияние второго фактора, необходимо к плановой величине результативного фактора прибавить изменение результативного показателя за счет первого фактора и затем полученную сумму умножить на относительный прирост второго фактора в процентах и результат разделить на 100 %.
Изменение выручки за счет цены реализации (?ТП
):
?ТП
= (ТП
+ ?ТП
) х ?Ц%/100 %;
?Ц% = (Ц
-Ц
)/Ц
х100 %.
3. Влияние третьего, четвертого и т. д. факторов (при их наличии) определяется аналогично второму этапу с добавлением в сумму изменения результата за счет влияния второго, третьего и т. д. факторов.
4. Проверка расчетов:
?ТП
+ ?ТП
= ?ТП
Недостаток предыдущих методов состоит в том, что научно-технические факторы интенсификации производства не могут быть включены в модель прямых связей, а следовательно, их недоучет приведет к занижению или завышению отдельных результатов.
Вторым недостатком является зависимость результатов расчетов от того, насколько логически и экономически правильно составлена формула и, следовательно, могут быть сформулированы различные выводы.
Поэтому, прежде чем приступить к расчетам, необходимо:
• выявить четкую взаимосвязь между изучаемыми показателями (явлениями);
• разграничить количественные и качественные показатели;
• правильно определить последовательность подстановок в тех случаях, когда имеется несколько количественных и качественных показателей.
Интегральный метод имеет преимущества, заключающиеся в получении более точных результатов расчета влияния факторов по сравнению с другими методами и исключения неоднородной оценки влияния факторов. Это является следствием того, что результаты расчетов не зависят от местоположения факторов в модели, а дополнительный прирост результативного показателя, который образовался от взаимодействия факторов, раскладывается между ними пропорционально изолированному их воздействию на результативный показатель.
Интегральный метод применяется в мультипликативных, кратных и смешанных моделях с использованием для каждой из них определенных формул.