banner banner banner
Техническая диагностика и аварийность электрооборудования
Техническая диагностика и аварийность электрооборудования
Оценить:
Рейтинг: 0

Полная версия:

Техническая диагностика и аварийность электрооборудования

скачать книгу бесплатно


Рис. 1.22. Повреждение ТТ типа ТФКН-330 кВ подстанции 330 кВ

из-за внутреннего замыкания вследствие старения и износа изоляции.

ПРОИЗОШЛО:

1.Разрушение трансформатора тока фазы "А" ТТ-330кВ типа ТФКН-330, 1976 год изготовления.

2.Повреждение фазы "А" воздушного выключателя В-330кВ типа ВВД-330Б 1976г изготовления.

3.Опорная изоляция Фазы "В" разъединителя 330кВ типа РНДЗ-330 1976 года изготовления.

Другое повреждение ТТ-330 кВ на подстанции 330 кВ типа ТФКН-330 (1977 г. выпуска) произошло из-за старения и износа изоляции. Второй вероятной причиной повреждения являются электродинамические воздействия на первичную обмотку U-образного типа ТТ-330 кВ из-за близких КЗ в период его эксплуатации и последующее нарушение целостности изоляции, приведшее к пробою первичной обмотки на вторичную.

График изменения значения tg d изоляции ТТ-330 кВ на подстанции 330 кВ региона Юга типа ТФКН-330 приведен на рис 1.23.

Рис. 1.23. График изменения значения tg изоляции ТТ-330 кВ на подстанции 330 кВ типа ТФКН-330.

Как видно из графика, значение tg на фазе «А» даже превысило соответствующие величины tg на на фазе «В» (поврежденная) и на фазе «С» (неповрежденная). Видимо, значение tg на поврежденной фазе «В» возрастало в период высоких летних температур более быстрыми темпами чем на соседних фазах с момента последних измерений 27.05.2005 и до момента повреждения 25.07.2005.

Основными причинами повреждения трансформаторов тока данного типа является длительное воздействие высокой температуры на состаренную изоляцию, что может быть обнаружено при измерении tg изоляции под рабочим напряжением, при физико-химическом анализе масла – ухудшение tg масла, появление повышенных концентраций газов при проведении ХАРГ [4, 9, 12-14].

Данные два случая повреждения трансформаторов тока типа ТФКН-330 кВ (ТФУМ) позволяют выработать следующие диагностические мероприятия:

– проведение тепловизионного контроля;

– измерении tg изоляции ТТ под рабочим напряжением;

– физико-химический анализ масла;

– хроматографический анализ масла (ХАРГ);

ТТ проработавшие больше нормативного срока эксплуатации требуется ставить на учащенный контроль с использованием вышеперечисленных четырех методов диагностики.

На примере данного случая актуальным представляется установка датчиков локации электрических разрядов [12- 18].

1.5.3. Повреждение трансформаторов тока типа ТФРМ-330 (ТРН-330 кВ) .

Измерительные трансформаторы тока 330 кВ типа ТФРМ-330 (ТРН-330 кВ) рымовидной конструкции с бумажно-масляной изоляцией конденсаторного типа герметичного исполнения.

На подстанции 330 кВ в аномально холодный зимний период 2006-2007 гг. произошло повреждение фазы «С» ТТ типа ТФРМ-330Б (ТРН-330), находящегося в эксплуатации с 1989 года. Причиной возникновения повреждения стало снижение уровня масла в связи с воздействием низких температур окружающего воздуха. В нижнем баке маслорасширителя произошло снижение уровня масла, при котором оголилась верхняя часть остова ТТ с потенциальной обкладкой и появились воздушные включения. Снижение в этой части электрической прочности бумажно-масляной изоляции конденсаторного типа повлекло к последовательному перекрытию (пробою) 10 изоляционных промежутков от потенциальной обкладки до "0" заземленной обкладки. Развитие процесса произошло быстротечно, с возникновением дуги, накоплением газа, взрывом с разрушением фарфоровой покрышки и выбросом масла, разрыву маслорасширителя в двух местах по сварному шву, трещина на маслоуказателе в верхнем баке маслорасширителя (рис. 1.24).

а)      б)

Рис. 1.24. Повреждение фазы «С» ТТ-330 кВ типа ТФРМ на подстанции 330 кВ.

Недостатком конструкции трансформатора тока тип ТФРМ-330-У1 выпуска 1988 года является отсутствие маслоуказательного стекла на нижнем баке маслорасширителя, что учтено в более поздних выпусках данного типа трансформаторов тока (рис. 1.25).

Рис. 1.25. Различные конструкции нижнего бака маслорасширителя ТТ-330 кВ типа ТФРМ: а) Тип 1 – “мешок” из фторолоновой лакоткани в металлическом баке; б) Тип 2 – “мембрана” (диафрагма) из фторолоновой лакоткани или литой резины на масле; в), г) Тип 3 – резиновая диафрагма между металлическими баками, масло под и над диафрагмой сообщается через патрубки или отверстия (данный тип используется в этом случае).

Следует отметить, что в период эксплуатации в АО-энерго не проводилось измерение сопротивления изоляции первичных и вторичных обмоток ТТ, химические анализы масла выполнялись в неполном объеме, не контролировалось влагосодержание и тангенс диэлектрических потерь масла, тангенс угла диэлектрических потерь изоляции (tg ) и емкость (С) ТТ также не измерялись.

Следующее технологическое нарушение – это повреждение ТТ 330 кВ типа ТФРМ-330-У1 (ТРН-330) фазы "С" на ПС 750 кВ, которое произошло в летний период 2006 года с разрушением фазы "С" ТТ-330 кВ и с возгоранием и фазы "С" выключателя. При этом отключились 2 воздушных линии. Через 1,5 секунды продуктами возгорания фазы "С" ТТ выключателя перекрыло фазу "А" ошиновки воздушной линии, находящейся в непосредственной близости. При этом от действия дифференциальной защиты отключилась фаза "А" с неуспешным ОАПВ и затем фазы "В" и "С" с запретом ТАПВ. Погашений электроснабжения потребителей не было (рис.1.26, 1.27).

а) б)

Рис.1.26.Повреждение и пожар на ТТ 330 кВ типа ТФРМ-330 (ТРН-330) фазы "С" на ПС 750 кВ.

а) б)

Рис. 1.27.Повреждение воздушного выключателя (а) и разъединителя (б) вблизи ТТ 330 кВ типа ТФРМ-330 (ТРН-330).

В результате произошло:

1.Разрушение фазы "С" ТТ-330 кВ, на фазе "В" на фарфоровой покрышке имеются сколы. ТТ-330 кВ 1976 года изготовления и ввода в эксплуатацию.

2.Повреждение фазы "С" воздушного выключателя типа ВВД-330Б, изготовленного и введенного в эксплуатацию в 1976 г.

3.Повреждение опорной изоляции двух соседних разъединителей 1976 г. изготовления и ввода в эксплуатацию.

Причиной возникновения нарушения на ПС 750 кВ явились развитие локальных очагов развивающегося теплового пробоя основной изоляции ТТ-330 кВ при высоких температурах окружающего воздуха и, соответственно, высокой температуры изоляции ТТ, а также большие перепады температур днем и ночью. Как следствие, более высокое поверхностное увлажнение твердой изоляции в утренние часы привело к электрическому пробою основной изоляции ТТ с корпуса расширителя (потенциал ВН) на заземленные элементы конструкции в зоне "тройника". В результате действия дугового разряда произошло разрушение ТТ.

Причиной разрушения фазы "С" воздушного выключателя явилось динамическое действие спуска ошиновки при падении трансформатора тока, что привело к падению фазы "С" выключателя на землю.

Для трансформаторов тока типа ТФРМ-330-У1 (ТРН-330) можно рекомендовать следующие диагностические измерения:

проведение тепловизионного контроля;

измерении tg изоляции ТТ под рабочим напряжением;

физико-химический анализ масла;

хроматографический анализ масла (ХАРГ);

– мониторинг интенсивности частичных разрядов в изоляции [5- 22].

1.5.4. Повреждение трансформатора напряжения типа НКФ-110 кВ..

Трансформатор напряжения типа НКФ-110 кВ электромагнитного типа, блок 110 кВ является главным элементом для всех каскадов ТН классов напряжения 220 кВ и выше.

На подстанции северо-западного региона произошло разрушение ТН типа НКФ-110 при подаче на него рабочего напряжения после нахождения под воздействием процесса феррорезонанса при неполнофазном режиме питания (рис. 1.28).

а) б)

Рис. 1.28. Разрушение ТН типа НКФ-110 при подаче на него рабочего напряжения после нахождения под воздействием процесса феррорезонанса: а) обмотки ТН, б) следы пожара после замены ТН на новые.

Причины возникновения и развития технологического нарушения

1.Причиной возникновения нарушения явилось разрушение трансформатора напряжения ТН-110 кВ при подаче на него рабочего напряжения после нахождения его под воздействием процесса феррорезонанса при неполнофазном режиме питания 1 СШ-110 кВ со стороны линии 110 кВ после отключения масляного выключателя МШВ-110 кВ.

2. Из-за возникших значительных перенапряжений в момент короткого замыкания на шинах 110 кВ при разрушении ТН-110 кВ произошло разрушение фазы «В» ограничителя перенапряжений ОПН-110 кВ 1 СШ-110 кВ.

3. Причиной излишнего отключения трансформаторной группы ГТ-4 от действия защиты нулевой последовательности явилось непереключение реле положения разъединителя (РПР) из-за механического дефекта в блок-контактах привода шинного разъединителя 2ШР ГТ-4. В результате чего цепи напряжения ГТ-4 питались от резервного источника ТН-110 кВ 1СШ, который находился в неполнофазном режиме.

4. Повреждение секционного разъединителя CF-110 кВ (излом опорной изоляции одной колонки из-за дефекта фарфора в армировочном шве) не позволило обеспечить оперативное восстановление электроснабжения потребителей от 2-й секции 2СШ-110 кВ.

Описание повреждений оборудования

Разрушены все три фазы ТН-110 кВ типа НКФ-110 1СШ-110 кВ, поврежден разъединитель 110 кВ ТН-110, повреждены опорные изоляторы 1 СШ-110 кВ (25 штук), поврежден ОПН-110 кВ фаза "В" 1 СШ-110 кВ, произошёл излом опорного изолятора СР-110кВ 2СШ-110кВ по армировочному шву, повреждены проходные вводы типа ГТПА-2-90-110/2000 (3 штуки).

Основные мероприятия по предотвращению подобных нарушений:

– замена отработавших установленный НТД ресурс трансформаторов напряжения на феррорезонансностойкие типа НАМИ или других типов;

– проанализировать схемы подстанций с целью выявления возможных феррорезонансных перенапряжений и разработки специальных мероприятий но их предотвращению;

– принять дополнительные меры, повышающие надёжность и безопасность эксплуатации оборудования, отработавшего установленный НТД ресурс (расширение объёма контроля параметров технического состояния согласно [1- 3] и т.д.);

– дополнительный мониторинг интенсивности ЧР в изоляции с предварительной установкой датчиков ЧР [13-22].

Выводы к главе 1.      

1. Тепловизионный контроль стал важным инструментом для обследования состояния различного электротехнического оборудования энергосистемы: трансформаторов тока и напряжения, разъединителей, вентильных разрядников, высоковольтных вводов, силовых трансформаторов, масляных выключателей, качества пайки обмоток статора турбогенераторов при ремонтных работах, электродвигателей, дымовых труб и газоходов и др.

2. Проблема обеспечения используемыми технологиями качества пайки соединительных головок статорных обмоток ТГ при проведении ремонтных работ на сегодняшний день достаточно актуальна. Необходима проверка качества пайки с помощью последовательного тепловизионного контроля и измерения сопротивления постоянному току обмоток статора ТГ.

3. Средства инфракрасной диагностики выявляют такие дефекты, как перегрев контактных соединений, локальные нагревы на стенке бака высоковольтного маслонаполненного ЭО, связанные с дефектами обмоток встроенных ТТ или плохими контактами внутри масляных выключателей, которые скрыты толщей масла и трудно поддаются интерпретации.

4. Рассмотрены примеры обнаружения дефектов ОПН: уменьшение сопротивления изоляции ОПН-330, увлажнение и попадание влаги внутрь ОПН.

5. Тепловидение позволяет выявлять дефекты измерительных трансформаторов тока на ранней стадии развития, приблизительно за 8-12 месяцев до повреждения оборудования.

6.      Рассмотрены примеры обнаружения дефектов ТТ 110 и 330 кВ, ТТ-330 кВ с предельным по норме tgб =1,0%, расчетное значение tgб расч. = 2,6% при ?T=2,2C и ухудшенными показателями по ХАРГ, ТТ-110 кВ с обнаруженным за 6 месяцев до взрыва перегревом величиной ?T=0,8C, дефектный ТТ 110 кВ с разомкнутой вторичной обмоткой.

7.      Основной причиной повреждения трансформаторов тока типа ТФКН-330 кВ (ТФУМ) является длительное воздействие высокой температуры на состаренную изоляцию.

8.      Второй вероятной причиной повреждения являются электродинамические воздействия на первичную обмотку U-образного типа ТТ-330 кВ из-за близких КЗ в период его эксплуатации и последующее нарушение целостности изоляции, приведшее к пробою первичной обмотки на вторичную.

9. Анализ повреждений ТТ типа ТФКН-330 кВ (ТФУМ) и типа ТФРМ-330 (ТРН-330) позволяет выработать следующие диагностические мероприятия:

– проведение тепловизионного контроля;

– измерении tg? изоляции ТТ под рабочим напряжением;

– физико-химический анализ масла;

– хроматографический анализ масла (ХАРГ);

– ТТ проработавшие больше нормативного срока эксплуатации требуется ставить на учащенный контроль с использованием вышеперечисленных четырех методов диагностики;

– установка датчиков локации электрических разрядов.

10. Для трансформаторов напряжения ТН-110 кВ типа НКФ-110 может быть рекомендована замена отработавших установленный НТД ресурс трансформаторов напряжения на феррорезонансностойкие, анализ схем подстанций с целью выявления возможных феррорезонансных перенапряжений и разработки специальных мероприятий по их предотвращению, выполнение в полном объеме испытаний согласно ОНИЭ.

Контрольные вопросы

1. Какие виды электрооборудования диагностируются с помощью средств инфракрасной диагностики (ИК)?

2. Какова эффективность выявления дефектов средствами ИК?

3. Какие из вышерассмотренных методов внесены в «Объемы и нормы испытаний электрооборудования»?

4. Назовите основные причины повреждений трансформаторов тока (ТТ) типа ТФКН-330 кВ (ТФУМ)?

5. Какие методы выявления дефектов на ранней стадии возникновения могут применяться для ТТ типа ТФКН-330 кВ (ТФУМ)?

6. В чем причины повреждаемости и каковы методы выявления дефектов на ранней стадии возникновения для ТТ типа ТФРМ-330 (ТРН-330), ТРН-750?

7. Назовите причины и мероприятия по предотвращению возникновения феррорезонанса трансформаторов напряжения ТН-110 кВ типа НКФ-110?

8. Какие виды испытаний, измерений и физико-химических анализов масла необходимо выполнить для оценки состояния измерительных трансформаторов тока и напряжения кроме измерения tg? изоляции и показателей горючих газов ХАРГ?

Список тем для рефератов и докладов

1. Метод тепловизионного контроля с помощью средств инфракрасной диагностики для оценки теплового состояния электрооборудования подстанций.

2. Инфракрасная диагностика теплового состояния высоковольтного маслонаполненного оборудования.

3. Инфракрасная диагностика ограничителей перенапряжений (ОПН).

4. Тепловизионный контроль как средство оценки состояния статорных обмоток турбогенераторов электростанций.

5. Оценка состояния измерительных трансформаторов тока и напряжения: диагностика, испытания, измерения, физико-химический и хроматографический анализ масла.

6. Воздействие процесса феррорезонанса на повреждаемость трансформаторов напряжения электромагнитного типа, меры по исключению феррорезонанса.

Глава 2. МОНИТОРИНГ ТЕХНИЧЕСКОГО СОСТОЯНИЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ

2.1. НАЗНАЧЕНИЕ СИСТЕМ МОНИТОРИНГА

Системы мониторинга технического состояния электрооборудования характеризуются рядом технико-экономических показателей: техническое состояние электрооборудования, надежность работы системы мониторинга, эффективность и достоверность при постановке диагноза дефекта или повреждения, количество датчиков и других устройств, устанавливаемых на электрооборудование, трудоёмкость и стоимость установки и монтажа, способность к самодиагностике системы мониторинга и самовосстановлению её работы, надёжность работы каналов связи между компонентами системы мониторинга на самом электрооборудовании и автоматизированным рабочим местом (АРМ) эксперта-диагноста, оперативного персонала или начальника подстанции [7-12, 15-18, 22- 25].

Таким образом, сформулируем основные задачи перспективного развития систем мониторинга технического состояния электрооборудования:

– Повышение управляемости и надежности эксплуатации электрооборудования за счёт установки систем мониторинга,

– Снижение различных рисков, сопутствующих основной деятельности электросетевых компаний (аварийное отключение оборудования из-за скрытого или развившегося дефекта, обесточения ответственных потребителей электроэнергии, значительные финансовые затраты на внеплановый ремонт или замену электрооборудования) за счет применения для этой цели различных систем предупредительной диагностики и мониторинга и их комбинаций,

– Максимальное использование диагностических параметров всех элементов существующей системы мониторинга для обеспечения возможности выявления различных дефектов (изоляции, механического состояния обмоток, наличия заземления, дефектов высоковольтных вводов и т.д.) на ранней стадии их появления, а также для надёжной и достоверной постановки диагноза дефекта,