Bayesian Networks. An Introduction (Koski Timo) - скачать книгу в FB2, EPUB, PDF на Bookz
bannerbanner
Bayesian Networks. An Introduction (Koski Timo)
Bayesian Networks. An Introduction
Оценить:

5

Поделиться

Bayesian Networks. An Introduction (Koski Timo)

Автор: Koski Timo
Язык: Английский
Размер: 385662 Кб
ISBN: 9780470684030
Бесплатный фрагмент: fb2.ziptxttxt.ziprtf.zipa4.pdfa6.pdfepubfb3

Полная версия:

Описание книги:

Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree methods. A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.

Bayesian Networks. An Introduction

Читать онлайн:

Спасибо за оценку! Будем признательны, если Вы оставите комментарий о данном произведении.

Добавить отзыв:

Новый отзыв
img
Позвоните дереву
Интересный взгляд на мир растений. С одной стороны - нельзя пускать процесс на самотек и надо облад…
В тренде
img
АсфальтЕвгений Гришковец
«…Я знаю так много умных, сильных, трудолюбивых людей, которые очень сложно живут, которые страдают …
bannerbanner