banner banner banner
Квантовая мозаика: Сборник формул и открытий. Ключи квантового мира: понимание через формулы
Квантовая мозаика: Сборник формул и открытий. Ключи квантового мира: понимание через формулы
Оценить:
Рейтинг: 0

Полная версия:

Квантовая мозаика: Сборник формул и открытий. Ключи квантового мира: понимание через формулы

скачать книгу бесплатно


Формула описывает основное уравнение квантовой механики и является уникальной, поскольку описывает поведение систем на квантовом уровне, где присутствуют явления, которые невозможно объяснить классической физикой

Для описания уникальных свойств квантовых систем используем формулу:

$$

H|\psi\rangle=E|\psi\rangle,

$$

где:

$H$ – оператор Гамильтона, описывающий энергию системы,

$|\psi\rangle$ – квантовое состояние,

$E$ – собственное значение оператора Гамильтона, соответствующее данному состоянию.

Это касается, например, эффекта туннелирования, связанных состояний, квантовой запутанности и т. д.

Для расчета данной формулы нужно выполнить следующие шаги:

1. Определите оператор Гамильтона H, квантовое состояние $|\psi\rangle$ и собственное значение E.

2. Используйте оператор Гамильтона H для действия на квантовое состояние $|\psi\rangle$: H|\psi\rangle.

3. Результат должен быть равен произведению собственного значения E и квантового состояния $|\psi\rangle: E|\psi\rangle$.

Пример:

Допустим, у нас есть следующие значения:

Оператор Гамильтона H = 2 * $I$, где $I$ – единичная матрица размерности 2x2.

Квантовое состояние $|\psi\rangle$ = [1 0] T

Собственное значение E = 3

Тогда расчет будет следующим:

H|\psi\rangle = 2 * $I$ * [1 0] T = 2 * [1 0] T = [2 0] T

E|\psi\rangle = 3 * [1 0] T = [3 0] T

Таким образом, матричный оператор H примененный к квантовому состоянию |$\psi\rangle$ дает результат [2 0] T, и это равно произведению собственного значения E и квантового состояния |$\psi\rangle$, которое также равно [3 0] T.

Формула описывает квантовую систему с неограниченным количеством возможных состояний, где каждое состояние определяется собственным значением и собственным вектором

«Q-система». Она основана на принципах квантовой физики и позволяет создавать системы, имеющие неограниченное количество возможных состояний.

Формула Q-системы:

H = ? (a_n|n??n|)

где:

H – гамильтониан,

a_n – собственные значения,

|n? – собственные векторы.

Для полного расчета формулы H = ? (a_n|n??n|), необходимо знать значения собственных значений a_n и собственных векторов |n? для каждого n.

Предположим, у нас есть набор значений собственных значений a_n = {a_1, a_2, a_3, …} и соответствующих собственных векторов |n? = {|1?, |2?, |3?, …}.

Тогда формула будет иметь следующий вид:

H = a_1 |1??1| + a_2 |2??2| + a_3 |3??3| +…

Символ |n??n| обозначает внешнее произведение собственных векторов |n?. Он представляет собой оператор проекции, который проецирует состояние на подпространство, связанное с собственным значением a_n.

Таким образом, формула гамильтониана H выражается как сумма операторов проекции, взвешенных собственными значениями a_n.

Для полного расчета формулы и определения значения гамильтониана H, необходимо знать конкретные значения собственных значений a_n и собственных векторов |n? для каждого n и конкретной системы. Гамильтониан играет важную роль в квантовой механике, представляя энергию и определяя эволюцию состояний системы со временем.

Преимущества Q-системы заключаются в ее гибкости и способности создавать новые состояния, которые ранее не были известны.

Таким образом, Q-система может быть использована в различных областях науки и технологии, включая квантовые компьютеры, криптографию и телекоммуникации.

Формула позволяет оценить уникальность квантовой системы, учитывая количество ее уровней, степень связи между ними, среднее число состояний системы в единицу времени и время ее жизни в квантовом состоянии

UKP = (KUS * QUS^2) / (SS * TLS)

где:

UKP – уникальный квантовый показатель системы;

KUS – количество уровней в системе;

QUS – степень связи между уровнями, оцененная в единицах информации;

SS – среднее число состояний системы в единицу времени;

TLS – время жизни системы в квантовом состоянии, оцененное в единицах времени.

Полный расчет этой формулы.

Для начала, возведем QUS в квадрат:

QUS^2 = QUS * QUS

Теперь, подставим это значение в исходную формулу:

UKP = (KUS * QUS * QUS) / (SS * TLS)

Мы также можем переставить множители без изменения результата:

UKP = (KUS * QUS^2) / (SS * TLS)

Таким образом, мы получаем выражение для уникального квантового показателя системы UKP в зависимости от заданных значений KUS, QUS, SS и TLS. Для полного расчета необходимо знать эти значения.

Таким образом, получив значение UKP для конкретной системы, можно сравнить ее с другими квантовыми системами и определить ее уникальность и потенциал для применения в различных областях науки и технологий.

Формула позволяет более точно определять изменения волновой функции на крайне малых интервалах. Она идеально подходит для исследования нано масштабных явлений и поведения квантовых систем

F (x) = lim ?x ? 0 [(? (x+?x) – ? (x)) / ?x]

Где:

– F (x) – уникальная функция, определяющая предел изменения волновой функции на бесконечно малом интервале;

– ? (x) – волновая функция в точке х.

рассчитать значение F (x) используя данную формулу.

Раскроем разность ? (x+?x) – ? (x):

? (x+?x) – ? (x) = ? (x) + ?x * d?/dx + (?x^2) /2 * d^2?/dx^2 +…

Теперь, подставим это выражение в формулу:

F (x) = lim ?x ? 0 [(? (x) + ?x * d?/dx + (?x^2) /2 * d^2?/dx^2 + …) / ?x]

Упростим выражение:

F (x) = lim ?x ? 0 [? (x) / ?x + d?/dx + (?x/2) * d^2?/dx^2 + …]

Заметим, что ? (x) / ?x при ?x ? 0 стремится к нулю, так как ?x является бесконечно малым интервалом.

Таким образом, остаются только первые два слагаемых:

F (x) = lim ?x ? 0 [d?/dx + (?x/2) * d^2?/dx^2]

Поскольку ?x приближается к нулю, мы можем опустить второе слагаемое:

F (x) = d?/dx

Таким образом, значение F (x) равно производной от волновой функции по координате x, то есть d?/dx.

ФОРМУЛА ПОЗВОЛЯЕТ БОЛЕЕ ТОЧНО ОПРЕДЕЛЯТЬ ИЗМЕНЕНИЯ ВОЛНОВОЙ ФУНКЦИИ НА КРАЙНЕ МАЛЫХ ИНТЕРВАЛАХ, ЧТО МОЖЕТ БЫТЬ ПОЛЕЗНО В РАЗЛИЧНЫХ ОБЛАСТЯХ НАУКИ, ВКЛЮЧАЯ ФИЗИКУ, ХИМИЮ И МАТЕМАТИКУ

Формула отражает основные характеристики квантовых систем и позволяет вычислить их уникальный квантовый показатель

УКПС = (КУ – 1) * ЛС * (СС +1) / ТЖ

где:

УКПС – уникальный квантовый показатель системы;

КУ – количество уровней в системе;

ЛС – степень связи между уровнями, оцененная в единицах информации;

СС – константа, равная энергии основного состояния системы, выраженной в единицах информации;

ТЖ – время жизни системы в квантовом состоянии, оцененное в единицах времени.

Полный расчет этой формулы.

Для начала, выполним операцию в скобках (СС +1):

(СС +1) = СС +1

Теперь, заменим (КУ – 1) * ЛС * (СС +1) в формуле:

УКПС = (КУ – 1) * ЛС * (СС +1) / ТЖ

УКПС = (КУ – 1) * ЛС * (СС +1) / ТЖ

Теперь, у нас осталось произведение трех переменных (КУ – 1) * ЛС * (СС +1), которое делим на ТЖ.

Таким образом, значение уникального квантового показателя системы УКПС равно произведению (КУ – 1) * ЛС * (СС +1), деленному на ТЖ.

Он зависит от количества уровней в системе, степени связи между ними, времени жизни системы и константы, связанной с энергией основного состояния.