скачать книгу бесплатно
Операция XOR (исключающее ИЛИ) также является математической операцией, выполняющейся над двоичными числами. Она имеет следующие особенности:
1. XOR для одного бита:
– Если два бита равны, результат XOR будет 0.
– Если два бита различны, результат XOR будет 1.
Например:
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0
2. XOR для нескольких битов:
Операция XOR может выполняться над каждым битом двух двоичных чисел по отдельности. Если двоичные числа имеют одинаковую длину, то результат XOR для каждого соответствующего бита будет образовывать новое двоичное число.
Например:
1010 XOR 1100 = 0110
Операция XOR связана с операцией сложения по модулю 2 следующим образом:
– XOR может использоваться в качестве операции сложения по модулю 2 для двоичных чисел. То есть, результат XOR между двумя битами будет равен результату их сложения по модулю 2.
Например:
0 XOR 0 = 0 (0 +0 ? 0)
0 XOR 1 = 1 (0 +1 ? 1)
1 XOR 0 = 1 (1 +0 ? 1)
1 XOR 1 = 0 (1 +1 ? 0)
Таким образом, операция XOR может использоваться вместо операции сложения по модулю 2 для выполнения побитовых операций над двоичными числами.
– XOR также используется для инвертирования битов. Если бит комбинируется с другим битом с помощью операции XOR, то результат будет инвертированным значением этого бита. Например, a XOR 1 даст инвертированное значение a.
Операция XOR является одной из основных операций в цифровых системах и информатике. Её связь с операцией сложения по модулю 2 и её простота в использовании находят широкое применение в областях, таких как криптография, кодирование, коррекция ошибок и контроль целостности данных.
Примеры применения операции XOR к двум числам
Проиллюстрируем примеры применения операции XOR к двум двоичным числам:
1. Пример 1:
Пусть у нас есть два двоичных числа: 10101 и 11010. Мы применяем операцию XOR для каждого соответствующего бита.
10101 XOR
11010
– — – —
01111
Результатом операции XOR для этих двух чисел будет 01111.
2. Пример 2:
Пусть у нас есть два двоичных числа: 0110 и 1011. Опять же, мы выполним операцию XOR для каждого соответствующего бита.
0110 XOR
1011
– — —
1101
Результат XOR для этих двух чисел будет 1101.
3. Пример 3:
Пусть у нас есть двоичные числа 1001 и 1001. Мы применяем операцию XOR для каждого соответствующего бита.
1001 XOR
1001
– — —
0000
В данном случае, так как все биты равны, результат операции XOR будет 0000.
Операция XOR позволяет нам вычислять различия между двумя двоичными числами, выявлять несовпадающие биты и инвертировать значения битов. Это основное свойство, которое находит широкое применение в различных областях, включая криптографию, кодирование и обнаружение ошибок.
Преобразование входных данных и параметров вращения
Преобразование входных данных и параметров вращения по формуле F (входные данные, параметры вращения) = H^n (входные данные ? параметры вращения) H^n осуществляется следующим образом:
1. Внутреннее преобразование:
Сначала входные данные и параметры вращения объединяются операцией XOR (исключающее ИЛИ). В результате получается новое двоичное число, которое представляет собой комбинацию битов входных данных и параметров вращения.
Например, если у нас есть входные данные 10110 и параметры вращения 01100, то операция XOR будет выглядеть следующим образом:
10110 ?
01100
– — – —
11010
2. Применение оператора Адамара:
Затем полученное число после операции XOR подвергается действию оператора Адамара H^n, где n – количество кубитов. Оператор Адамара преобразует состояния кубитов, создавая суперпозиции и интерференцию состояний.
Продолжая наш пример, если у нас есть 5 кубитов (n = 5), применение оператора Адамара H^5 к числу 11010 будет выглядеть следующим образом:
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: