banner banner banner
Сотворение мира
Сотворение мира
Оценить:
Рейтинг: 0

Полная версия:

Сотворение мира

скачать книгу бесплатно


Для обоснования логики дальнейшего полагаем, что все биологические формы, проявившиеся в ходе эволюции, имеют право на существование. Их реальное наличие зависит лишь от условий, обеспечивающих их возникновение и существование, а также промежутка времени, на котором эти формы проявляются. Среда меняется как под воздействием физических процессов, происходящих на планете или в Солнечной системе, так и в ходе конкурентной борьбы биологических форм за источники энергии и ресурсы. Избыток энергии и ресурсов порождает структурное совершенствование этих форм. Недостаток – дифференцирует формы до простейших, разваливая их структурные образования.

Структурная идентификация биохимического образования, с одной стороны, придавала ему системную устойчивость к внешним факторам, но, с другой стороны, приводило к своеобразному самоотравлению продуктами синтеза. Если до структурного оформления процесс поддерживался перемешиванием под воздействием среды, то теперь этот механизм исключался. Единственный компенсационный механизм, который мог противостоять такому самоотравлению, заключался в репродуцировании структуры. Самопроизвольное деление на части обеспечивало возможность поддерживать процесс полимеризации по меньшей мере на периферии структурного образования. Да и для мелких периферийных образований была выше вероятность отделиться от конгломерата подобных структур под действием внешних факторов. Таким образом, первые биосистемы, скорее всего, походили на современные раковые опухоли.

Кроме генетического – другое отличие заключалось в том, что прабиологические системы целиком и полностью зависели от наличия во внешней среде в достаточном количестве исходного химико-биологического материала и источников энергии. Поэтому процесс эволюции прабиологических систем и пошел по пути статистической выборки из бесчисленных вариаций формируемых белков тех,

– которые бы обеспечивали энергетическую независимость прабиосистемы от внешних источников энергии;

– которые обладали ферментными свойствами по химическому воспроизведению из элементов внешней среды молекул фосфорной кислоты, сахаров, аминокислот, нуклеозидов и т. д.;

– которые обладали ферментными свойствами разлагать биохимические структуры на составные молекулы, с целью их последующего вовлечения в процесс нового формирования прабиосистемы.

Предположение о статистической выборке на множестве вариаций остается в данной статье открытым, так как непонятен иной механизм закрепления случайно найденного решения в структуре матричной РНК. Полагать, что мутации в структуре РНК могут привести к адекватному решению биологической проблемы бессмысленно в силу бесконечно малой вероятности такого события. Видимо, уже тогда существовал и существует ныне некий механизм вариационного изменения свойств белков под действием внешних условий с обратной транскрипцией в структуру РНК, позволяющий закрепить данное изменение и воспроизводить его в последующих поколениях путем создания матрицы построения нового белка с необходимыми свойствами. Такое предположение делает процесс эволюции биологических систем процессом последовательного приближения к соответствию изменившимся внешним условиям. Что, в общем-то, соответствует реалиям.

Но есть еще один путь.

Выше высказывалось предположение о том, что биологическая жизнь зарождалась как мир РНК. Отсутствие системных источников энергии на этом этапе для поддержания биологических процессов с необходимостью порождало структурирование и дифференциацию активных центров РНК. Такую, которая позволяла бы использовать механические способы их переноса в более благоприятные условия реализации возможностей РНК. По сути, этот прамир РНК быстро превратился в вирусоподобную форму существования биологической жизни. Структурная дифференциация с необходимостью привела к конкурентной борьбе вирусоподобных форм за ареалы обитания. Но конкурентная борьба не обязательно завершается вытеснением менее приспособленных форм. Похоже, даже чаще природа находит компромиссное решение симбиоза этих форм, при котором альтернативные формы объединяют генетический материл (макромолекулы РНК) либо полностью, либо существенными частями. Такая модификация генетической системы приводила и к модификации белкового материала, продуцируемого вирусоподобной частицей. Описанная эволюционная схема представляется более правдоподобной. Тем более что ее истинность теоретически можно подтвердить на основе более полного осмысления результатов расшифровок генной структуры ДНК существующих биологических видов. Ведь если данное предположение верно, то генетический материал любого биологического вида – это, по сути, книга его эволюционного становления из правирусных структур.

Акцентирование биосистемы на том или ином из перечисленных выше аспектов определило ее эволюционный путь развития. Процесс биоорганического синтеза необходимых неорганических и органических соединений из элементов внешней среды – энергетически затратный процесс. Источниками энергии на этапе возникновения биоорганической жизни могли быть либо излучение Солнца, либо геотермальное тепло. Большинство реакций биологического синтеза имеют сколь-нибудь значимый выход только при наличии катализаторов. Основными и, пожалуй, единственными катализаторами являлись на тот период ионы металлов. Можно предположить, что ферментная адаптация биосистем пошла по пути встраивания этих катализаторов в синтезируемые белковые цепочки.

Механизм фиксации энергии излучения с последующей его утилизацией в энергию химических связей представляется более сложным, чем использование геотермального тепла для тех же целей. Тем более что геотермальные источники уже предполагают наличие среды, насыщенной солями металлов. Поэтому и первые биоорганические структуры, скорее всего, возникли в этой среде. Реликтами тех первичных структур являются хемолитотрофные организмы, дошедшие до наших дней. И в частности тионовые и серобактерии.

Серобактерии окисляют сероводород до молекулярной серы или до солей серной кислоты.

Тионовые бактерии способны окислять тиосульфаты, сульфиты, сульфиды и молекулярную серу до серной кислоты (часто с существенным понижением pH раствора), процесс окисления отличается от такового у серобактерий (в частности тем, что тионовые бактерии не откладывают внутриклеточной серы). Некоторые представители тионовых бактерий являются экстремальными ацидофилами (способны выживать и размножаться при понижении рН раствора, способны выдерживать высокие концентрации тяжелых металлов и окислять металлическое и двухвалентное железо).

Именно на прототипах таких бактерий природа создавала и совершенствовала структуру клеток. Но запасы сероводорода на Земле достаточно ограниченны, да и геологические процессы, происходящие на Земле, рано или поздно меняли среду. Геотермальные источники исчезали, создавая для популяции хемолитотрофных клеток крайне неблагоприятную среду, включая в таких клетках приспособительные реакции выживания в изменяющейся среде. Одним из эффективных способов выживания клеток стал переход с термальных источников энергии на энергию излучения Солнца. Основой такого перехода послужил белок хлорофилл. Это совершенная структура, созданная природой, по превращению энергии излучения Солнца в биоэнергию белковых тел. Для функционирования молекулы хлорофилла в процессах фотосинтеза существенное значение имеет ее пространственная организация. Магний-порфириновое кольцо молекулы представляет собой почти плоскую пластинку толщиной 0,42 нм и площадью 1 нм

. Эта пластинка и воспринимает кванты света. Ведущую роль при этом в поглощении квантов света играет ион магния. Поглощенный им квант света переводит связанные с ионом электроны на такой энергетический уровень, который позволяет им продвигаться по атомам молекулы и преобразовывать валентные связи ее отдельных атомов таким образом, что они вступают в восстановительную реакцию с водой, высвобождая кислород и поглощая протоны. Часть же возбужденных электронов просто рекомбинирует, выделяя тепловую энергию. В дальнейшем, такая энергетически возбужденная и нагруженная активными протонами молекула хлорофилла вступает в химическое взаимодействие с другим химическими элементами, производя новые химические соединения, требующие энергетических затрат. Но и это не все.

Как правило, молекулы хлорофилла своими длинными алифатическими остатками фитола (2 нм), образующим угол с порфириновым кольцом, прикреплены к мембранам. Выше отмечалось, что такое прикрепление создает участок проводимости в мембране, по другую сторону которой другими ионами металлов создается потенциал, достаточный для продвижения электронов по белковой цепи и выходу их за мембрану, где они используются белковыми структурами для синтеза энергетически-емких соединений- молекул АТФ.

Молекулы АТФ, в свою очередь, являются универсальным источником энергии для работы белковопроизводящих органелл – рибосом.  Таким образом, молекула хлорофилла может выступать не только в роли первичного акцептора электрона, но и в роли его первичного донора.

Из всего сказанного следует, что молекула хлорофилла благодаря структурным и физико-химическим особенностям способна выполнять три важнейшие функции:

1) избирательно поглощать энергию света;

2) запасать ее в виде энергии электронного возбуждения;

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

В эволюционировавших биологических системах молекулы хлорофилла, начиная пусковую стадию фотосинтеза, взаимодействуют со средой не в одиночку, а сгруппировавшись в фотосистемы I и II.

Процесс фотосинтеза высокоэнергетической органики параллельно запустил еще три очень важных механизма.

Первый. Часть поглощенной энергии излучения Солнца в процессе фотосинтеза передавалась природной среде через свободные молекулы кислорода и обеспечивала энергетикой через окислительные реакции другие биологические системы, никак не связанные с преобразователем энергии Солнца.

Второй. Запасенная энергия при фотосинтезе в форме возбужденных и химически присоединенных протонов использовалась для возвращения основного низкоэнергетического отхода биосинтеза – оксида углерода -, в цепочку органического синтеза.

Третий. Оставшаяся избыточная часть поглощенной энергии тратилась на фиксацию атмосферного азота для расширенного воспроизводства биомассы.

Этих трех процессов оказалось вполне достаточно для самопроизвольного непрерывного поддержания биоорганической жизни на планете при сокращающихся источниках геотермального тепла.

Клетки с описанными выше автономными биокомплексами фотохимического синтеза, скорее всего, и явились предшественниками цианобактерий. Последние находки ископаемых клеток указывают на то, что процесс эволюционного совершенствования цианобактерий в основном был завершен примерно 2,5 млрд лет назад. Уже тогда прототипы цианобактерий по сути оказались основной формой биологической жизни на Земле, кардинально изменив состав ее атмосферы, насытив ее кислородом в таком количестве, что окислительной энергии кислорода хватило для процветания остальных форм биологической жизни на планете.

Жизненный цикл цианобактерий скоротечен. Для современных их видов он укладывается в пределы суток. Поэтому при наличии подходящей среды их размножение и освоение ареала происходило довольно стремительно, с вытеснением всех других возможных видов биологических организмов. Столь масштабное и быстрое размножение цианобактерий не могло не привести к огромным отложениям отработавшей биомассы, с учетом того, что альтернативные формы биоорганической жизни, использующей окислительные процессы для разложения этой биомассы, находились, скорее всего, в зачаточном состоянии. Такой вывод можно сделать исходя из того, что окислительные формы жизни никак не могли развиться раньше, чем создались в атмосфере и в водной среде соответствующие условия. Значительное отставание окислительных процессов разложения биоорганики от ее воспроизводства способствовали ее битумизации и развитию анаэробных биоорганических процессов брожения и разложения, с эволюционным их структурированием в форму анаэробных бактерий. При этом анаэробное дыхание – биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в качестве конечного акцептора электронов вместо кислорода других окислителей неорганической или органической природы.

Как и в случае аэробного дыхания, выделяющаяся в ходе окислительной реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтетазой для синтеза АТФ.

Появление свободного кислорода в атмосфере способствовало первоначально эволюции хемолитоавтотрофных организмов, таких, как например, следующие:

железобактерии - окисляющие двухвалентное железо до трёхвалентного;

нитрифицирующие бактерии – окисляющие аммиак, образующийся в процессе гниения органических веществ, до азотистой и азотной кислоты, которые, взаимодействуя с почвенными минералами, образуют в ней нитраты и нитрилы;

водородные бактерии способные окислять молекулярный водород, являясь умеренными термофилами (растут при температуре 50 °C);

метанобразующие архебактерии.

Многовековая деятельность железобактерий привела к глобальному видоизменению химического состава морей и океанов, переведя окислы железа из нее в нерастворимую форму, фактически подготовив эти среды к развитию и процветанию биологической жизни.

Масштабный избыток кислорода не мог не привести к появлению организмов, назовем их бактериями, жизнедеятельность которых основывалась на утилизации энергии, заключенной в свободном кислороде, и включению ее в цепочку химико-биологического синтеза. Универсальным химическим соединением для такой утилизации послужил никотинамидадениндинуклеоти?д (НАД).  НАД состоит из двух нуклеотидов, соединенных фосфатными группами. Один из нуклеотидов в качестве азотистого основания содержит аденин, другой – никотинамид. Никотинамидадениндинуклеоти?д существует в двух формах: окисленной (НАД) и восстановленной (НАДН) в зависимости от рН. Эта особенность сделала НАД универсальным соединением в электронно-транспортной цепи, обеспечивающей передачу энергии внутрь клетки, для поддержания внутри нее метаболических процессов. И еще одна особенность молекул НАД состоит в том, что они, по сути, непроницаемы для мембран. Только посредничество белков обеспечивает их переход внутрь клетки, что систематизирует процесс перетока энергии, распределяя его по времени. Клетка, специализировавшаяся на таком переносе энергии, явилась прототипом клеточных органелл, известных как митохондрии. Суммарная реакция процессов перетока энергии состоит в окислении НАДН кислородом с образованием воды. По сути, это процесс ступенчатого переноса электронов между тремя атомами металлов, присутствующих в простетических группах белковых комплексов, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. Электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. Считается, что по электронно-транспортной цепи для каждой пары электронов перекачивается от трех до шести протонов.

Завершающим этапом функционирования митохондрии является генерация АТФ, осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом. Этот комплекс, называемый АТФ-синтетазой, как раз и катализирует синтез АТФ путем конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ. При переносе электронов в митохондральной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисления на перемещение протонов (положительных зарядов) через мембрану из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране. При этом положительные заряды преобладают в межмембранном пространстве, а отрицательные – со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс и, превращая одну форму энергии в другую образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с фосфолированием АДФ. Пока совершается окисление субстратов, пока осуществляется перекачка протонов через внутреннюю митохондриальную мембрану – идет сопряженный с этим синтез АТФ, т.е. происходит окислительное фосфолирование.

Окислительно-восстановительные реакции, катализируемые оксидоредуктазами, составляют важнейшую часть всех метаболических путей. Однако наиболее значима их роль в процессах, связанных с выделением энергии из таких соединений, как глюкоза и жирные кислоты, которые, окисляясь, выделяют энергию. Эта энергия запасается НАД при его восстановлении до НАДН в ряде реакций окисления жирных кислот гликолиза и цикла трикарбоновых кислот. Электроны, перенесенные на восстановленный НАДH, переносятся в митохондрию для восстановления митохондриальных НАД. НАДН затем окисляется белками по транспортной цепи, которые накачивают протоны в межмембранное пространство из митохондриального матрикса, и благодаря энергии протонов в ходе окислительного фосфолирования синтезируется ATФ.

Митохондрии оказались универсальными клетками, производящими энергоемкое химическое соединение, используемое для катализа белков и нуклеиновых соединений. Это, с одной стороны. С другой стороны – митохондрии могли существовать только в среде клетки-хозяина. Это и обусловило последующий симбиоз клеток и их высокую жизнестойкость. Логично предположить, что митохондриальное сродство с клеткой-хозяином началось у прокариот, типа цианобактерий, как первичного источника окислителя – кислорода.