banner banner banner
Правильный путь
Правильный путь
Оценить:
Рейтинг: 0

Полная версия:

Правильный путь

скачать книгу бесплатно


Первый из этих наиболее значимых вопросов заключается в понимании того, как устроен этот мир, из чего он состоит и какими характерными особенностями был наделен. Понимание этого имеет большое, в решении нашего вопроса, значение, так как мы составная часть этого мира и на нас отражается всё, что имеет к нему отношение, а также нам так или иначе свойственно всё то, что свойственно этому миру в целом.

§ Не бесконечность. Наш мир, который также называют вселенной, то есть местом нашего вселения, состоит из материи, из материальных объектов различных видов: звезд, планет, камней, людей, молекул и так далее. И одной из основных его особенностей, важнейшей для его понимания, является то, что ему не свойственна бесконечность. То есть, другими словами, ничто в нем не является беспредельным и неисчерпаемым.

Проявляется это, в первую очередь, в отношении количества всех, реально существующих в нем, материальных объектов. Оно не является беспредельным. Наличие безмерного, беспредельного количества несовместимо с нашей реальностью. Даже в чисто мысленном восприятии существование подобного количества в отношении чего-либо материального приводит к ряду противоречий.

Одним из этих противоречий, связанных с бесконечностью в материальном мире, является то, что в бесконечности часть перестает быть меньше целого. Для понимания этого можно воспользоваться упрощенной моделью, например, можно представить вселенную, как некий склад, в котором находится реально бесконечное число каких-нибудь элементов только двух видов, например, круглых и квадратных. В данном случае ситуация будет следующей: число круглых элементов будет равно бесконечности и число квадратных также будет равно бесконечности. Кроме того, число круглых элементов будет равно не только числу квадратных, но и числу всех элементов, и круглых, и квадратных вместе взятых. Также как и число квадратных элементов будет одновременно равно и числу круглых и общему числу всех элементов в общем. То есть, части в бесконечности равны общему целому, то есть и количество круглых элементов равно бесконечности, и количество квадратных элементов равно бесконечности, и их общее число также равняется бесконечности.

В такой склад можно добавить бесконечное число элементов треугольных, овальных или сотен других форм, и ситуация не изменится. То есть, при добавлении число элементов остается неизменным. С другой стороны, на такой склад невозможно что-либо добавить в принципе, так как актуальная, то есть, абсолютная, существующая в действительности, бесконечность должна по определению включать в себя абсолютно всё, и поэтому взяться чему-либо еще просто неоткуда.

Даже, если на этом складе будет бесконечное число элементов бесконечного числа различных форм, то есть бесконечность бесконечностей, то и в этом случае количество элементов одной какой-либо формы будет таким же, как и количество всех остальных элементов различных форм вместе взятых. Для материального мира это полнейшая нелепица.

При удалении с такого склада элементов происходит тоже, что и при добавлении. Если удалить только один элемент, то количество элементов не изменится, оно останется бесконечным. То есть, бесконечность минус один равно бесконечность. Если удалить только круглые, количество которых бесконечно, то общее количество элементов все равно останется неизменным. То есть, бесконечность минус бесконечность равно бесконечность. Если из бесконечного количества удалить все элементы кроме одного, то останется один элемент, то есть в итоге получится, что результатом вычитания бесконечности из бесконечности является один. Если удалить абсолютно все элементы, ничего в нем не оставив, то в итоге получается, что бесконечность минус бесконечность равно ноль. То есть, при желании, в операциях с бесконечностью можно получить любой ответ в диапазоне от нуля до бесконечности.

Такие абсурдные нестыковки, демонстрирующие невозможность существования актуальной, то есть, реально существующей в материальной действительности бесконечности, получили название проблем конечного в бесконечном.

Более того, в материальной реальности помимо чисто математических и логических противоречий, наличие бесконечности вызывает множество нестыковок и во многих других областях: физической, астрономической, биологической и так далее. Например, если предположить, что вселенная истинно бесконечна, то соответственно в ней должно присутствовать бесконечное количество частиц и столько же вариантов их комбинаций, в связи с чем, в такой вселенной должна была бы быть, например, точная копия нашей планеты и не одна. Так как атомов бесконечное количество и если они сложились один раз таким образом, то могли и во второй, и в третий. В бесконечной вселенной это не только возможно, но и обязательно должно произойти и при том бесконечное количество раз. То есть, в бесконечной вселенной по идее должно быть бесконечное количество копий нашей планеты. То же самое должно бы быть в отношении и всех остальных объектов вселенной: звезд, планет, камней, людей, молекул и всего остального.

Также всё это должно было в итоге привести к существованию объектов бесконечного количества различных видов и форм. Например, не только шарообразных звезд и планет, но и квадратных, и треугольных и любых других. Так как в бесконечном мире возможно все что угодно. При этом количество объектов каждого вида, также должно было быть бесконечным. То есть, при бесконечности в любом случае должна быть бесконечность бесконечностей. Все это противоречит какой-либо логике и здравому смыслу и не наблюдается в реальности, что, в свою очередь, указывает на то, что не только количество, но и разнообразие, а, следовательно, и параметры всех реально существующих объектов также не могут быть бесконечными.

Говоря о бесконечности, мы имеем в виду актуальную бесконечность. Актуальная значит реально существующая, проявляющаяся в действительности, которая является завершенным целым, содержащим бесконечное количество реально существующих объектов. Но помимо актуальной существует еще и открытая бесконечность. Такой ее вид представляет собой, последовательность целых чисел 1, 2, 3, 4, 5… и так далее без остановочно, то есть это последовательность, не имеющая конца. Ее существование возможно благодаря тому, что в мысленной реальности, в ее математическом аспекте, нет каких-либо ограничений для операций сложения и поэтому даже к сколь угодно большому числу можно прибавить еще одно, например, единицу, и получить еще большее. То есть, в открытой бесконечности, для любого числа, которое будет признано самым большим, у нас всегда есть возможность получить следующее, еще большее, число путем добавления единицы (+1).

Открытая бесконечность – это по сути неостановимый процесс увеличения чего-либо. В следствие чего она не является подлинной, так как она, если брать ее целиком, существует, как бесконечность только в возможности, в отличие от актуальной бесконечности, которая является реально существующей величиной, не имеющей конечной меры.

Выводом, вытекающим из этого является то, что для нас нет настоящей бесконечности не только в реальном мире, но даже в математической сфере. Ряд чисел 1, 2, 3, 4, 5, … и так далее, из-за того, что даже к самому большому числу можно прибавить единицу и получить еще большее число, является не истинно бесконечным, а потенциально бесконечным, то есть достигающим бесконечности только на абстрактном уровне, но не в действительности.

Помимо сверхбольших есть и сверхмалые числа. Для их получения используется деление. Например, можно взять любой отрезок определенной длины, например, в 1 см, и разделить его. Если разделить его на десять частей, то в итоге мы получим отрезки по 0,1 см, если разделить его на тысячу частей, то получим отрезки по 0,001 см, если разделить на миллиард частей, то получим миллиард отрезков по 0,000000001 см каждый. И так можно продолжать деление такого отрезка столько, сколько заблагорассудится. Этим делением мы будем пытаться достигнуть бесконечности в отношении сверхмалых чисел. И есть ошибочное мнение, что отрезок определенной длины, например, в 1 см, в силу того, что именно его мы изначально и делим на части, состоит из реально бесконечного количество сверхмалых частей. Это мнение ошибочно, так как бесконечность и в этом случае будет для нас лишь условным пределом. На сколько бы частей мы ни раздели этот отрезок, бесконечность, как в отношении количества отрезков, так и в отношении минимальности длины каждой части, так никогда и не будет нами достигнута. И причина этого в том, что после каждого деления можно будет осуществить еще одно и получить еще меньшее значение длины и еще большее количество частей первоначального отрезка. То есть, бесконечность для нас недостижима ни в отношении сверхбольших ни в отношении сверхмалых чисел.

Актуальная бесконечность является абсолютным понятием. Наряду с бесконечностью, абсолютностью также является ноль. Ноль – это пустое множество. Такое множество по определению ничего не содержит. Понятием ноль обозначают полное отсутствие чего-либо, то есть ничто. «Ничто» определяет отсутствие не только материи, но и пространства, и отсутствие вообще всего. Если точнее, то отсутствие абсолютно всего. Сложность осмысления «ничто» в том, что описание отсутствия должно опираться на какие-то признаки, а наличие хоть каких-то признаков, само по себе обуславливает наличие хоть какого-то объекта описания.

В достижении бесконечности в отношении сверхмалых чисел, мы по сути движемся к нулю. В процессе достижения нуля мы также, как и в процессе достижения бесконечности, оказываемся в области потенциальной бесконечности – нескончаемого процесса, только в этот раз не увеличения, а уменьшения объекта. И с помощью простой арифметики мы можем получить как сколь угодно большие, так и сколь угодно малые числа, но совершить «действие» по составлению этого бесконечного множества невозможно.

Числа в математике, в области мысленного, могут быть сколь угодно маленькими и сколь угодно большими, но в реальном мире существуют материальные объекты, а не числа. Поэтому указывая на то, что мы разделили отрезок определенной длины на какое-то сверх огромное количество частей, имеющих сверх малый размер, мы должны внести ясность – частей какого размера. То есть, указать конкретный размер, выраженный конкретным числом, каким бы маленьким оно ни было.

Есть и другая ситуация – мы можем указать, что размер не сверхмалый, а бесконечно малый. Это будет означать, что размер равен нулю. В этом случае, действительно количество частей будет равно бесконечному количеству. В данном случае проявляется взаимосвязь абсолютностей – нуля и бесконечности. Суть этой взаимосвязи проста – абсолютно одно, абсолютно всё.

Ноль и бесконечность, являющиеся абсолютностями, связаны между собой и определяют существование друг друга, а то, что является материальным остается в рамках конечного и не способно достигнуть их, то есть не способно достигнуть абсолютности. Например, если длина какого-либо материального объекта по мере уменьшения в какой-то момент достигает нуля, то и все остальные параметры масса, объем, плотность, температура также обращаются в ноль. Так как по факту такой объект прекращает свое существование.

Абсолютные понятия, то есть абсолютности, такие как ноль и бесконечность, одно из которых подразумевает абсолютно всё, а другое определяет абсолютно ничего, не свойственны нашему материальному миру. Это с одной стороны – создает трудности для их осмысления и представления того, чем они, а, следовательно, и объекты, наделенные подобными свойствами, в действительности являются. А с другой – указывает на то, что в материальном мире нет объектов, с абсолютными параметрами, то есть равными нулю или бесконечности, а также, что, если что-либо достигнет в нем абсолютного значения нуля или бесконечности в каком-либо из своих параметров, то оно обретет абсолютные, то есть запредельные для нашего мира, параметры и во всем остальном, то есть перестанет быть материальным.

В связи с этим, например, для реально существующих материальных объектов недостижим на практике абсолютный ноль температуры. Данная температура определяется как 0 Кельвин, по Цельсию, наиболее привычному для нас в повседневной жизни определению температуры, это равно -273,15

. При такой температуре прекратится движение даже на самом глубоком уровне и тела полностью перестанут испускать любое излучение. К данному состоянию невозможно прийти в реальности, из чего следует, что абсолютно холодных тел среди материальных объектов не существует. Также не существует и абсолютно черных тел, которые по идее должны поглощать всё падающее на них излучение и ничего не отражать, и абсолютно горячих, имеющих температуру равную бесконечности, абсолютно больших, маленьких, быстрых и так далее.

Всё это в конечном итоге указывает на то, что количество всего материального в мире выражается конкретным числом, а значит является конечным, имеющим предел, границу и конец, а, следовательно, что в нем не может существовать абсолютно всё, что угодно и при этом в неограниченных количествах.

§ Упорядоченность. Следующая наиболее важная, для понимания нашего мира, особенность заключается в том, что он представляет собой гигантскую конструкцию, с четко систематизированной структурой. В которую в качестве составных элементов, идущих в определенном порядке с определенным взаиморасположением и взаимосвязями, входят все существующие материальные объекты.

Мы находимся на одном из элементов этой конструкции, называемым Солнечной системой. Данный элемент представляет собой структуру, в центре которой находится звезда – Солнце, вокруг которой расположены на разных расстояниях 8 планет. Солнце вращается вокруг своей оси. Планеты вращаются вокруг своей оси и вокруг Солнца. Большинство планет имеет меньшие по размеру, чем они сами планеты-спутники, находящиеся от своей основной планеты на определенном расстоянии. Планеты-спутники также вращаются вокруг своей оси и движутся вокруг своей центральной планеты.

Вся эта система, как и все остальные системы подобного рода, не имеет каких-либо внешних границ, а все объекты, находящиеся в ее составе, в том числе и планета Земля, на которой мы все непосредственно находимся, удерживаются силами гравитации.

Солнечная система находится в составе объекта, называемого галактикой. Конструкция любого из подобных объектов, в том числе и того, в котором находится наша Солнечная система, представляет собой структуру, в центре которой находится ядро, вокруг которого все объекты, входящие в ее состав, вращаются с различной скоростью. К числу таких объектов, как правило, относятся одиночные звезды, звездные скопления, космические лучи, межзвездный газ и планетные системы. Солнце вместе со всеми объектами Солнечной системы тоже вращается вокруг такого ядра.

Галактики бывают множества различных форм и размеров. Среди них имеются спиральные, эллиптические, шаровые, с перемычкой, линзовидные, карликовые, неправильные и многих других форм. Масса большинства из них варьирует в пределах от 10

до 10

масс Солнца, при диаметре в сотни миллиардов км. Все объекты, находящиеся в их составе, также удерживаются силами гравитации.

Во вселенной существуют миллиарды галактик и практически все они входят в состав еще более масштабных систем – кремастронов. Кремастроны – это крупномасштабные сложноустроенные соединения. В их конструкции может быть от нескольких десятков до нескольких тысяч галактик. Характерные размеры кремастронов составляют десятки триллионов км в диаметре, а масса варьирует от 10

до 10

масс Солнца. Формы кремастронов также варьируют в широком диапазоне от неопределенной до правильной сферической формы, в которой имеется четко выраженная центральная часть. Самыми маленькими и самыми распространенными из них, являются те, что состоят из нескольких десятков галактик. В строении многих из них доминирует одна массивная эллиптическая или спиральная галактика, вокруг которой вращаются галактики гораздо меньших размеров.

Кремастроны и отдельные галактики являются составными элементами галактических стен. Стены являются гигантскими объектами, толщиной около 100 триллионов, а в длину около 2 тысяч триллионов километров.

Пересекающиеся друг с другом стены образуют своеобразную трехмерную сетку. В следствие чего, конструкция вселенной во всеохватном масштабе выглядит, как сложная трехмерная сеть, которую образуют пересекающиеся друг с другом стены, находящиеся в особой субстанции, называемой вакуумом.

То есть, все объекты, входящие в состав нашей вселенной на ее самом крупномасштабном, или другими словами на космическом уровне, являются структурными элементами взаимоформирующих систем и сгруппированы в единую трехмерную сетчатую конструкцию.

Все эти объекты, то есть все объекты, являющиеся структурными элементами вселенной, состоят из разнообразных веществ. Каждое вещество, вне зависимости от того частью какого космического объекта оно является, состоит из множества разнообразных частиц. Мельчайшими частицами любого вещества, имеющими все основные химические свойства этого вещества, являются молекулы.

Молекулы представляют собой конструкции, состоящие из атомов. Молекула каждого отдельновзятого вещества имеет собственную структуру. Каждая разновидность молекул состоит из определенного количества атомов определенных химических элементов, упорядоченных особым образом, то есть каждый из них находится на своем строго определенном месте. Например, 1 молекула такого вещества как вода, состоит из 2 атомов водорода и 1 атома кислорода, находящихся на строго определенных местах друг относительно друга, молекула ДНК первой хромосомы человека состоит примерно из 10 миллиардов атомов, где каждый атом также находится на своем строго определенном месте. Точность имеет огромное значение, так как на строгом количественном соотношении атомов конкретных химических элементов и точности их взаимного расположения основываются свойства самих молекул.

Атомы, являющиеся структурными элементами молекул, тоже являются сложноустроенными системами. Они состоят из элементарных частиц, объединенных особым образом в единую структуру. Конструкция любого атома представляет собой систему, в центре которой находится ядро, окруженное облаком легких электронов, движущихся вокруг него. Ядро состоит из элементарных частиц двух типов электрически нейтральных нейтронов и электрически заряженных протонов. Основное отличие атома одного химического элемента от атома другого химического элемента заключается в количестве элементарных частиц, входящих в его состав.

Атом любого химического элемента представляет собой объект, не поддающийся дальнейшему химическому разложению. Если из любого атома извлечь любую из его составляющих, он перестанет обладать теми химическими свойствами, которыми обладал. Атом углерода, например, в такой ситуации, перестает обладать свойствами углерода, свинец – свойствами свинца и так в отношении любого другого химического элемента. То есть, структура атома, а именно соотношение количества элементарных частиц, из которых он состоит, определяет свойства этого атома, как химического элемента.

Соединение атомов внутри молекул базируется на совместном владении двумя соседними атомами одной, двумя или тремя парами электронов, образующих общее электронное облако. Соответственно, молекулы состоят из атомов, точнее из атомных ядер, расположенных в определенных местах и окруженных электронами, с помощью которых образованы связи между ними. При этом ядра атомов находятся не только в определенных местах в молекуле, но и на строго определенном расстоянии друг от друга. Атомы в молекуле не могут находится дальше друг от друга, так как тогда не смогло бы осуществиться взаимодействие между ними, и не могут быть на более близком расстоянии, из-за невозможности совмещения их внутренних электронных оболочек и отталкивания их ядер, состоящих из положительно заряженных протонов.

Все это имеет место быть, благодаря особенностям, которыми были наделены элементарные частицы. К самым базовым из них относятся протон, электрон и электронное нейтрино. Все они являются материей на ее самом глубоком уровне. Они представляют собой мельчайшие неделимые материальные объекты, которые не являются конструкциями из каких-либо еще более мелких элементов.

Таким образом, в отношении устройства нашего мира мы имеем следующее: наш мир или вселенная – это конструкция, которая состоит из огромного количества объектов, упорядоченных особым образом: на самом глубоком ее уровне находятся элементарные частицы, такие как протоны и нейтроны, из которых сформированы ядра атомов. Ядра и мерцающие вокруг них электроны образуют атомы. Атомы, скомбинированные в молекулы, образуют все материальные объекты вокруг, в том числе планеты, звезды и другие космические тела. Планеты, вращающиеся вокруг звезд, образуют планетные системы. Планетные системы, звездные скопления и одиночные звезды объединены в галактики и вращаются вокруг ядер галактик. Сами галактики входят в состав кремастронов. Кремастроны и одиночные галактики находятся в составе галактических стен, а галактические стены образуют общую сетчатую структуру вселенной.

Главной особенностью всей этой конструкции является то, что каждый из объектов, входящих в ее состав, представляет собой систему, которая состоит из взаимодействующих друг с другом и также упорядоченных особым образом объектов более мелких размеров, каждый из которых, в свою очередь, также является системой, состоящей из упорядоченных объектов еще меньших размеров и так далее. То есть, взаимодействующие друг с другом элементы одного уровня, образуют системы более высокого уровня, но при этом каждый из них сам является системой, состоящей из элементов более низкого уровня. Так, например, взаимодействующие друг с другом атомы, образуют молекулы, но при этом сами атомы, состоят из взаимодействующих друг с другом элементарных частиц. Галактики входят в состав кремастронов, и в тоже время сами состоят из множества взаимодействующих друг с другом объектов – звездных скоплений, планетных систем, газопылевых облаков и так далее.

Свойством, определяющим наличие некоторого количества объектов взаимосвязанных между собой в единую конструкцию, и существующих как некая целостность, является комплексность. Соответственно, вселенной, в силу ее систематизированности, свойственна многоуровневая комплексность, когда каждый из объектов, входящих в конструкцию, сам представляет собой конструкцию, состоящую из некоторого количества более мелких объектов, также взаимосвязанных между собой в единое целое. Наличие комплексности, а уж тем более многоуровневой комплексности, в структуре объекта является отражением сложности его конструкции. То есть, еще одним из свойств вселенной является сложность строения. Каждый из объектов будучи одновременно и системой, состоящей из элементов предыдущего уровня, и элементом системы более высокого уровня, выполняет определенные функции. Соответственно всему во вселенной, а, следовательно, и вселенной в целом свойственна еще и специализированность, то есть соответствие строения для выполнение определенных задач. Во всеохватном масштабе все вещество во вселенной, помимо того, что сгруппировано в различные системы, еще и распределено равномерно. В среднем, в любом месте вселенной, вещество имеет одинаковую плотность с точностью до тысячных долей. То есть, в ней не существуют какие-либо особые области или направления, которые бы сильно отличались по плотности или распределению вещества. Соответственно, еще одной особенностью вселенной является однородность, проявлением которой является то, что всё в ней состоит из одного и того же и имеет одинаковые физические свойства во всех точках и в любой ее области практически всё одно и то же.

Систематизированность, комплексность, равномерность, сложность и специализированность указывают на, очевидно, одно из главнейших свойств нашего мира, на его всеобщую упорядоченность, то есть на то, что в нем нет бардака, нет хаоса и беспорядка, а есть строгость, четкость и структурированность строения.

Трехмерность. Еще одна из особенностей нашего мира заключается в том, что все материальные объекты, входящие в его состав, имеют определенные пространственные размеры. При этом все они имеют не одну, а сразу три пространственные характеристики – высоту, длину и ширину, то есть все они являются трехмерными.

Все пространственные характеристики равноправны и независимы друг от друга, то есть каждый из трех параметров не зависит от двух других. Например, высота объекта не зависит от его длины и ширины, длина от ширины и высоты, а ширина, соответственно, от высоты и длины.

Ни одна из пространственных характеристик ни длина, ни ширина, ни высота не является в нашем материальном мире чем-то самостоятельным, они являются всего лишь характеристиками материальных объектов, и поэтому не могут существовать сами по себе без материи.

Все материальные объекты вселенной находятся в пространстве самой вселенной. Пространство – это то, что характеризует протяженность чего-либо. Через пространство вселенной определяется месторасположение объектов, их движение и перемещение. Во всеохватном масштабе оно определяется вакуумом. То есть, той черной субстанцией, которую мы, глядя в ночное небо, видим между звезд.

Людьми вакуум ошибочно воспринимается, как абсолютное ничто, как некоторого рода пустое «вместилище», которое служит только местом расположения различных объектов: звезд, планет, атомов, электронов и так далее. Но вакуум вселенной не ничто, он материален и представляет собой особую форму материи, которая в отличие от обычной материи, существует в виде сплошной непрерывной среды. Эта среда не заполняет пространство вселенной, она и есть то, что мы называем пространством вселенной.

Также, как и объекты обычной материи, вакуум имеет определенную температуру. Ее значение равно 3 Кельвинам, или минус 270

по Цельсию. Данное значение температуры одинаково для вакуума во всей вселенной, с точностью до десятитысячных долей в любых ее точках.

Каждая точка во вселенной описывается, как набор из трех самостоятельных величин – координат, в связи с этим можно утверждать, что вселенная во всеохватном масштабе, а, следовательно, что и вакуум, также как и объекты обычной материи, тоже является трехмерным.

Вакуум является составной и неотъемлемой частью нашего мира. Он взаимосвязан со всеми остальными объектами, входящими в его состав. Благодаря тому, что он наделен определенными свойствами, в том числе и трехмерностью, все остальные объекты, по сути находящиеся в нем, имеют тот вид, который они имеют в действительности, и имеют возможность осуществлять именно то движение и взаимодействие между собой, и именно в таком виде, в котором они его и осуществляют. В их числе, например, возможность одних элементарных частиц, преобразовываться в другие. Так, например, фотоны при столкновении в вакууме превращаются в электрон и позитрон. Многие физические законы, например, законы обратных квадратов, также связаны именно с особенностями пространства вселенной, в частности его трехмерностью.

Пространство, как таковое, не является чем-то материальным, поэтому потенциально оно может быть сколь угодно большим и иметь сколь угодное количество измерений. Вакуум же в свою очередь является именно материальным и в связи с этим, он, как и всё материальное, не может является бесконечным, то есть он не может быть абсолютно всем. Соответственно, как и вся вселенная в целом. По причине своей материальности вакуум, не может быть и абсолютно ничем. Даже когда в нем ничего нет, он не является абсолютно ничем. Во вселенной в принципе ничто не может быть абсолютным. И вакуум не исключение. Он не является ни нулем – абсолютно ничем, ни актуально бесконечным – абсолютно всем, а, следовательно, и пространство вселенной не является не нулевым по своим размерам, ни актуально бесконечным.

Многим людям тяжело это осознать, они задаются вопросами, суть которых в том, что, если пространство вселенной не бесконечно, то, что тогда является границами вселенной, что-то вещественное, типа кирпичной стены, или еще чего-то в этом роде, и что находится за пределами пространства вселенной, и что будет, если, выражаясь образно, приблизившись к границам вселенной, высунуться за эти пределы. В действительности вселенную не ограничивает что-то вещественное. Также, как например, у капли воды, находящейся в воздухе, в невесомости, нет ни кирпичной стены, ни чего-то еще, что ограничивало бы ее от всего остального. Но при этом мы всё же в состоянии воспринимать каплю, как отдельно взятый объект. Каплю ничего не ограничивает, а за ней, а точнее вне ее, просто другая среда. И говорить о том, что будет, если высунуться за пределы вселенной, бессмысленно, так как, то, что является частью вселенной, то что является частицей материального мира и, соответственно, само является материальным, не может высунуться за ее пределы и оказаться в нематериальной среде, в запредельной реальности. Так же как, например, ни один из придуманных писателем-фантастом персонажей не может выйти за пределы сознания писателя и оказаться в запредельной для себя реальности, среди клеток его мозга. Так как это просто разные реальности.

То есть, в итоге, мы имеем то, что наша вселенная имеет вполне конкретные, а не беспредельные пространственные размеры, а, следовательно, и многие другие характеристики, в числе которых и строго определенное количество измерений, а значит и то, что существует она, как единый цельный объект.

Взаимодействия. К числу характерных особенностей нашего мира, весьма важных в его понимании, также относится и то, что вся находящаяся в нем материя наделена способностью к взаимодействию.

Взаимодействием называется процесс воздействия объектов друг на друга. Благодаря этой характерной особенности все объекты вселенной, от элементарных частиц до галактик, с момента своего появления, оказывают постоянное влияние друг на друга.

Способность к взаимодействию, обусловлена наличием энергии. А точнее, определенных энергетических полей у материальных объектов. Поля имеют волновую природу и представляют собой непрерывные и безграничные объекты, которые пронизывают всё пространство вселенной.

Показателем существования поля у материального объекта является свойство материи, которое называется заряд. Каждый материальный объект является обладателем нескольких видов зарядов. Каждый из видов заряда является показателем соответствующего поля, а также является количественной характеристикой, показывающей степень возможного участия объекта в том или ином взаимодействии. Например, наличие электрического заряда у материального объекта указывает на возможность электромагнитного взаимодействия с другими объектами, обладающими электрическим зарядом и то насколько интенсивным будет это взаимодействие.

Существует множество различных видов взаимодействий, но все они в конечном итоге сводятся к четырем базовым видам, происходящих с объектами всех уровней вселенной. К числу этих базовых взаимодействий относятся: сильное, электромагнитное, гравитационное и слабое.

Все эти взаимодействия осуществляются одновременно, но каждое из них играет главную роль только на определенном уровне в структуре нашего мира. Так, на уровне ядер атомов главным является сильное взаимодействие. Оно обуславливает существование и целостность ядер атомов, путем соединения протонов и нейтронов в составе единой структуры. А также делает возможным протекание процессов внутри ядер атомов, которые могут сопровождаться выделением огромных энергий. Сильное взаимодействие осуществляется только между нейтронами и протонами. Каждый из них наделен сильным ядерным полем, благодаря которому он соединен в атоме с другими нейтронами и протонами. Сильное взаимодействие гораздо сильнее всех остальных взаимодействий, но за пределами ядра атома, на расстоянии больше, чем одна десяти-триллионная (1\10

) мм от него, притяжение сильного взаимодействия не ощущается. Радиус действия сильного взаимодействия меньше размера атома примерно в 100 тысяч раз и на таком расстоянии оно превышает в 1000 раз электромагнитное отталкивание, действующее между заряженными частицами, а именно между протонами.

На следующем уровне главную роль играет электромагнитное взаимодействие. Через него происходит объединение электронов с ядрами атомов, что лежит в основе образования атомов, формирования из атомов молекул, а из молекул крупных молекулярных комплексов. Соответственно, оно обуславливает существование структур атомов, структур молекул, а также комплексов молекул.

Электромагнитное взаимодействие, основано на электричестве и магнетизме, между которыми существует глубокая взаимосвязь. Происходит оно только между частицами, имеющими электрический заряд. Вокруг таких материальных объектов существует электромагнитное поле, через которое частица взаимодействует с другими материальными объектами тоже носителями электрических зарядов, притягивая или отталкивая их в зависимости от знака последних.

Электромагнитное взаимодействие в отличие от сильного является дальнодействующим. Сила, с которой два неподвижных объекта, имеющих противоположные заряды притягиваются друг к другу, а имеющих одноименные заряды отталкиваются друг от друга, уменьшается с увеличением расстояния между ними по закону обратных квадратов. То есть, если расстояние увеличилось в 2 раза, то сила уменьшилась в 4.

По причине дальнодействия электромагнитное взаимодействие проявляется не только на микроскопическом уровне, но и на уровне макрообъектов. На этом уровне электромагнитное поле во вселенной является основным переносчиком энергии и информации. Большинство физических свойств макроскопических объектов, к числу которых относятся твердость, упругость, электропроводность, теплопроводность, пластичность, цвет, вязкость, плотность, и так далее, а также их изменение обеспечивается именно этим взаимодействием.

Обеспечивая целостность молекулярных и атомных систем, электромагнитное взаимодействие также лежит в основе химических превращений веществ. Новые химические вещества образуются при перераспределении электронов и ядер одного или нескольких исходных веществ, причем ядра атомов в этом процессе не меняются.

Существование различных структур на еще большем, на космическом уровне, обусловлено следующим гравитационным взаимодействием. Благодаря этому взаимодействию планеты находятся в планетных системах на околозвездных орбитах, звезды притягиваются к центрам галактик, галактики находятся в составе кремастронов.

Все материальные объекты нашего мира участвуют в гравитационном взаимодействии, всё имеющее массу притягивается друг к другу. Каждая частица испытывает на себе действие гравитации, и сама является источником гравитации. Сила, с которой два материальных объекта притягиваются друг к другу, прямо пропорциональна обеим массам и обратна пропорциональна квадрату расстояния между ними. То есть, чем больше масса этих объектов и меньше расстояние между ними, тем сильнее они притягиваются. То есть, в отношении гравитации, также как и в отношении электромагнетизма, распространение происходит по закону обратных квадратов. При этом, если расстояние равно бесконечности, то сила гравитационного притяжения соответственно будет равна нулю. И в силу того, что вселенная не является бесконечной, то, соответственно, гравитация существует везде во вселенной.

Гравитация играет значимую роль только в больших масштабах. Сила гравитации в 10

слабее электромагнетизма. Например, если взять 2 протона и разнести их на расстояние одного метра друг от друга, то электромагнитное отталкивание между ними будет в 10

раз сильнее, чем гравитационное притяжение. То есть, нужно увеличить силу гравитации в 10.000.000.000.000.000.000.000.000.000.000.000.000.000 раз, чтобы она сравнялась с электромагнетизмом. И чтобы протоны преодолели электромагнитное отталкивание, нужно собрать вместе, как минимум 10

протонов. Только оказавшись вместе, как единое целое, они смогут преодолеть электромагнетизм. Масса 10

протонов – это минимально возможная масса звезды.

Следующее, так называемое слабое взаимодействие, также как и все остальные базовые взаимодействия, представляет собой превращение одних объектов в другие, но которое происходит не в результате соединения, а в результате распада материальных объектов, а именно элементарных частиц.

Благодаря наличию слабого взаимодействия происходит бета-распад радиоактивных ядер. В результате этого процесса некоторые из нейтронов, находящихся в ядре, превращаются в протон, электрон и антинейтрино или в протон, позитрон и нейтрино. Последние два и в том и другом случае покидают ядро. Бета-распад, обусловленный слабым взаимодействием, приводит к изменению количества протонов, а, следовательно, и зарядового числа атомных ядер на единицу. Заряд ядра является определяющим в структуре электронной оболочки атома и соответственно в его химических свойствах.

Помимо нейтронов, находящихся в составе ядер атомов, слабому распаду подвержены мюоны, пи-мезоны, свободные нейтроны и другие виды частиц. Свободные нейтроны благодаря наличию слабого взаимодействия также распадаются на протон, электрон и нейтрино. То есть, одна частица исчезает, три другие появляются.

Также слабое взаимодействие обуславливает наличие термоядерных реакций внутри звезд. В результате этих реакций при последовательном соединении 4 протонов происходит возникновение гелия-4 с испусканием двух позитронов и двух нейтрино.

Кроме того, слабое взаимодействие играет значимую роль на последней стадии существования звезд, в процессе взрыва сверхновых. Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвездное пространство, а из оставшейся части вещества ядра, взорвавшейся звезды, как правило образуется компактная нейтронная звезда. Выбрасываемое в ходе взрыва вещество в значительной части содержит элементы, образовавшиеся в ходе термоядерного синтеза, происходившего на протяжении всего времени существования звезды.

Таким образом, у нас есть четыре базовых взаимодействия, посредством которых происходит возникновение одних объектов из других. Все эти взаимодействия являются фундаментальными, то есть, они существуют с самого начала, с момента возникновения вселенной, и лежат в основе всех ее систем и событий, происходящих с ними. Благодаря их особенностям имеется возможность существования всех этих различных систем на различных структурных уровнях вселенной, при этом каждое из них играет главную роль на своем уровне, а также дополняет и уравновешивает все остальные. Так, благодаря сильному взаимодействию, протоны и нейтроны образуют ядра атомов, благодаря гравитации существуют космические системы, электромагнетизм определяет свойства макрообъектов, а слабое – распад и упрощение объектов и выделение энергии. Соответственно, сильное взаимодействие, обеспечивающее внутреннюю структуру атомного ядра и его составляющих, является сильнее всех остальных на уровне ядер атомов, электромагнитное – доминирует по отношению к трем остальным на уровне атомов, связывая электроны с ядрами и обеспечивая объединение атомов в молекулы. Гравитационное взаимодействие становится главенствующим на уровне планет, звезд и галактик. При этом все образованные объекты, обладают качествами, которые не имелись у исходных объектов.

Имея определенные характеристики и осуществляясь одновременно, базовые взаимодействия являются определяющим фактором в виде, свойствах и качествах всех объектов и систем материального мира. А само их существование указывает на то, что всё в нашем мире взаимосвязано друг с другом и наделено такими особенностями, что способно вступать в контакты друг с другом и образовывать более сложные системы, а также распадаться на самые простые составляющие.

§ Движение. Еще одной не менее важной особенностью вселенной, дающей нам представление о ней, является то, что всей обычной материи, находящейся в ней, свойственно движение. Движением материальных объектов называется процесс изменения их положения в пространстве.

Все объекты обычной материи, от элементарных частиц до галактик, осуществляют движение различного типа. Так, многие элементарные частицы и перемещаются в пространстве вселенной и имеют спин, то есть собственное вращение. Электроны, входящие в состав атомов, вращаются особым образом вокруг собственной оси и движутся вокруг ядер атомов. Сами атомы, а также молекулы, в состав которых они входят, перемещаются друг относительно друга. Планеты, звезды и другие объекты состоят из находящихся в движении молекул, атомов и элементарных частиц и сами тоже находятся в движении. Например, в Солнечной системе каждая из планет вращается вокруг своей оси. Спутники планет вращаются вокруг своей оси и движутся вокруг своих планет. Планеты со своими спутниками движутся вокруг Солнца. Солнце само вращается вокруг собственной оси и движется вместе со своими планетами, также, как и миллиарды других звезд вокруг, центра галактики, в составе которой все они находятся. Галактики, находящиеся в составе кремастронов, вращаются вокруг центральной галактики и так далее.

Основными характеристиками движения материальных объектов являются перемещение, траектория, скорость и ускорение. Перемещение – это изменение местоположения объекта в пространстве, переход из одной его точки в другую. В случае собственного вращения происходит круговое движение объекта вокруг собственной оси. Траектория – это абстрактная линия в пространстве, по которой движется объект. Она представляет собой множество точек, в которых находился, находится или будет находится объект при своем движении. Скорость – это физическая величина, которая характеризует то, на сколько быстро он перемещается, а ускорением называют изменение скорости как по времени, так и по направлению.

Движение – это одно из самых распространенных, но при этом трудно понимаемых явлений нашего мира. Определение его характеристик сопряжено для нас со множеством трудностей. Во всеохватных, космических и сверхмалых, квантовых, масштабах оно вообще является для нас малопонятным процессом. Во всеохватном масштабе движение в нашем мире происходит относительно неподвижного пространства-вакуума. Для того, кто находился бы одновременно и вне материального мира, и внутри него, движением объектов было бы перемещение из одной точки пространства в другую, из одного положения в другое, в его истинном виде. Для нас же, для материальных объектов, находящихся внутри вселенной и являющихся ее составляющими, перемещение в пространстве, то есть изменение местоположения объекта в пространстве, переход из одной его точки в другую, определяется только относительно других объектов. Мы, находясь внутри вселенной, не можем, например, сказать, как движется Земля в принципе, мы можем лишь определить ее движение по отношению к другим -планетам, звездам, к Солнцу и так далее. То есть, движение любого объекта нам приходится рассматривать по отношению к какому-либо другому объекту обычной материи, но не по отношению к пространству вселенной в целом. Причина этого в том, что пространство вселенной, определяется вакуумом – особой формой материи, которая имеет для нас вид сплошной среды, не дискретной и не различимой для наших органов восприятия, и при том имеющей по отношению к нам невообразимо огромные размеры. Поэтому говорить о движении объекта, мы можем лишь тогда, когда ясно, относительно какого другого объекта, называемого объектом отсчета, изменилось его положение. В связи с этим, для нас движущимися объектами являются только те, что изменяют свое положение относительно других объектов в пространстве. Например, движение автомобиля, едущего по трассе, мы можем определить по изменению его положения относительно зданий и деревьев, о движении самолета, летящего над землей, мы можем судить по изменению его положения относительно поверхности Земли.

Движение, как и любое другой процесс, происходит за некоторое время. Определить движение объекта означает установить, как изменяются координаты, определяющие положение объекта в пространстве с течением времени. По причине того, что мы не имеем представлений о реальной системе координат, для определения положения объекта в пространстве, и системе отсчета времени, нам для каждого отдельно взятого случая приходится уточнять систему отсчета. То есть, мы должны задавать не только объект отсчета, по отношению к которому изучается движение какого-либо материального объекта, но и систему координат, связанную с этим объектом отсчета и систему отсчета времени.

Главной трудностью в определении движения и его характеристик является то, что все объекты вселенной движутся, и при том делают это с разными скоростями, в различных направлениях, под разными углами и множеству других аспектов. Объекты, которые мы задаем, как объекты отсчета, также находятся в движении. В больших масштабах с большим количеством различных объектов, движущихся разнообразным образом, это создает для нас существенные трудности в определении точных параметров движения.

Еще одной сложностью является то, что процесс движения какого-либо объекта может одновременно по-разному восприниматься в различных точках, на различных расстояниях от этого объекта. Например, пуля, летящая прямо в глаз наблюдателя, будет восприниматься им как неподвижный объект. Траектория движения пули для такого наблюдателя будет одной неподвижной точкой, хотя объект и будет явно двигаться. Существует и обратная ситуация, когда объект не движется, но наблюдатель фиксирует траекторию движения объекта. Это происходит в том случае, когда сам наблюдатель находится в движении.

То есть, для нас есть относительность движения, которая проявляется в различных формах, но несмотря на это, реальное движение объектов имеет объективные геометрические характеристики и никак не изменяется от того, как именно воспринимается это движение кем-либо из нас.

Движение тесно связано с взаимодействием. Проявляется это в том, что в различных подсистемах нашего мира, все существующие в них движения и все происходящие взаимодействия влияют друг друга. Например, Земля, которая движется в пространстве вселенной со скоростью 30 км\с, из-за наличия гравитационного взаимодействия с Солнцем, движется не по прямой, а по круговой орбите, вокруг него. Если извлечь Солнце из Солнечной системы и при этом осуществить это мгновенно, то Земля не прекратит свое движение, она продолжит его, но уже не по круговой траектории, а по прямой. То есть, воздействие объектов друг на друга, приводит к изменению состояния их движения.

Движение, в свою очередь, изменяет картину взаимодействия. Например, если взять в руку камень и отпустить его, то, по причине гравитационного взаимодействия камня и планеты, он упадет на землю вертикально. Если не просто отпустить камень, а бросить его параллельно поверхности земли, он пролетит некоторое расстояние и только потом упадет на землю. Если же камень кинуть очень сильно, то перед тем, как оказаться на земле он успеет пролететь расстояние, на котором будет сказываться шарообразность Земли, как планеты. То есть, если скорость камня будет 8 км\с, то Земля, ее округлая поверхность, будет как бы уходить из-под летящего камня ровно с той же скоростью, с которой он будет на нее падать. То есть, он будет по-прежнему падать на Землю, только падение, как таковое не осуществиться, пока у него будет хватать энергии двигаться с нужной скоростью.

Таким образом, взаимосвязь движения и взаимодействия можно выразить следующим образом: проявление взаимодействия обратно пропорционально скорости движения. То есть, чем больше скорость, тем слабее проявляется взаимодействие, и наоборот, чем скорость меньше, тем взаимодействие проявляется очевидней. При этом взаимодействия между объектами не являются первопричиной движения, они только влияют на уже существующее движение, также как и движения объектов не являются первопричиной взаимодействий, а только лишь фактором, влияющим на них.

Движение с определенной скоростью и взаимодействие определенного типа, являются очень важными элементами различных подсистем вселенной. Солнце притягивает Землю, также как Земля притягивает камень, но Земля не падает на Солнце, так как находится в движении и при том с нужной скоростью. На субатомном уровне ядро атома, по причине существования электромагнитного взаимодействия, притягивает электроны, но в силу того, что электроны находятся в движении с нужной скоростью, они не падают на ядро, а движутся вокруг него. То есть, движения и взаимодействия не просто влияют, а дополняют и компенсируют друг друга в различных подсистемах, причем находясь в точной согласованности между собой, что, в свою очередь, является определяющим фактором существования самих этих подсистем, а, следовательно, и всей вселенной в том сверхсложном и строго упорядоченном виде в котором она есть.

Движение материальных объектов характеризуется определенными параметрами, и еще одной особенностью движения является то, что величины, этих параметров, как в принципе и всё, что касается материи, не могут иметь абсолютные значения. Они не могут равняться бесконечности или нулю, так как в подобных случаях все они и математические вычисления с ними теряют смысл. Из чего следует, что результаты математических действий с характеристиками движения, такими как скорость и пройденное расстояние, если они выражаются каким-либо конкретным конечным числом, будут в любом случае иметь конкретные численные значения.

Например, если один объект, от какой-либо неподвижной точки, движется со скоростью 50 км\ч, а другой движется в том же направлении, от той же точки, но со скоростью 25 км\ч, то разница их скоростей будет равняться 25 км в час, то есть через час между ними будет расстояние равное 25 км, через 2 часа – 50 км и так далее. Если же один объект движется со скоростью 50 км\ч в одном направлении, а другой со скоростью 25 км\ч в противоположном направлении, то сумма их скоростей составит 75 км в час, соответственно через час между ними будет 75 км, через два – 150 км.

И какой бы большой или маленькой ни была бы скорость, если она выражается конкретным числом, сложение скоростей будет иметь значение. Например, если один объект движется даже со скоростью равной 300.000 км\с в одном направлении, а другой объект движется в противоположном направлении со скоростью 10.000 км\с, то через секунду между ними будет разница в расстоянии в 310.000 км, через 10 секунд – в 3 100 000 км и так далее. То же самое будет иметь место и при сверх малых скоростях.

Совсем все по-другому, если имеет место быть движение с бесконечной скоростью. Так, если один из объектов движется с бесконечной скоростью, то есть за любой бесконечно малый промежуток времени проходит расстояние равное бесконечному количеству км, а другой объект движется в том же направлении с любой конечной скоростью, например, 500 км\ч или 500.000 км\с – неважно, то через любой промежуток времени, хоть сотую долю секунды, хоть через 1000 лет, между ними будет расстояние равное бесконечности. В случае, если второй объект будет двигаться с любой конечной скоростью в противоположном направлении, то ситуация с расстоянием между объектами за любой промежуток времени будет та же. Причиной этого является то, что абсолютность является запредельной для нашего мира и результаты математических действий в отношении нее не информативны для нас, то есть сколько бы ни прибавили или отняли от бесконечности, она останется бесконечностью. Здесь срабатывает одно из основных правил материального мира: подобное порождает подобное. Определенность, которая выражается каким-либо конкретным числом, порождает определенность, а абсолютность, связанная для нас с неопределенностью, порождает только абсолютность, все с той же неопределенностью. И определенности взяться просто неоткуда.