скачать книгу бесплатно
Разберем следующий пример.
Не так далеко от космодрома Байконур в Казахстане живут сайгаки (Saiga tatarica). Эта азиатская антилопа представляет собой результат невероятного эксперимента по скрещиванию газели и современного пылесоса. Ее морда сильно вытянута и свисает над ртом, придавая ей комически симпатичный вид. Считается, что эта особенность позволяет ей согревать перед вдохом воздух во время суровых зим в степи.
Летом 2015 года половина всей популяции сайгаков внезапно погибла.
После тщательного исследования ученые пришли к выводу, что эпидемия, уничтожившая этих травоядных в таком количестве, оказалась бактериального происхождения. Pasteurella multocida – обычно совершенно безвредная бактерия в пищеварительном тракте антилоп – внезапно превратилась в смертоносный патоген. Причем никто так и не догадался, по какой причине. Сложно спорить с тем, что антилопа является живым существом, то же самое касается и бактерии. Оба организма питаются, размножаются, ощущают окружающую среду при помощи фоторецепторов (чтобы решать, куда идти/плыть), гравитационных рецепторов (чтобы распознавать, где верх, а где низ), болевых рецепторов (чтобы распознавать токсины) и так далее. Они обладают молекулой ДНК, используют сахар в качестве источника энергии; короче, сайгаки и бактерии – живые существа. Настаивать на противоположном – занятие для бездарных философов и далекое от интересов полевых биологов.
Как раз напротив.
Сколько определений, (почти) столько и видов
Термин «биология» существует с самого начала XIX века, и за два столетия исследователи так и не смогли договориться о таком определении жизни, которое устроило бы всех. Само собой, вместо этого они придумали больше сотни разных определений! Помимо Аристотеля, физика Эрвина Шрёдингера, биолога Жака Моно, а также астрофизика и популяризатора науки Карла Сагана, довольно много людей предлагали им свою помощь, всякий раз надеясь, что вот следующее определение уже наверняка будет хотя бы чуть более универсальным и финальным… но этого так и не случилось. Даже хуже: вполне возможно, что дать определение жизни «либо невозможно, либо бесполезно», как однажды написал философ Эдуар Машери.
Обратимся к предыдущему определению: живое существо состоит из клеток, обладает жизненным циклом, поддерживает гомеостаз, осуществляет метаболизм, растет, адаптируется к окружающей среде, реагирует на раздражители, размножается и эволюционирует. Но эти критерии оставляют за скобками отдельные исключения. А как насчет мула, стерильного гибрида осла и лошади, который неспособен размножаться? Он кажется вполне себе, хотя и не отвечает одному из основных критериев определения жизни.
И наоборот, лесной пожар поглощает и преобразует энергию для движения, роста и размножения, соответствует всем пунктам из списка метаболического определения жизни и все же не является в полном смысле слова живым существом.
А как насчет смоделированной компьютером игры в жизнь, алгоритмов, которые развиваются in silico, на кремниевом уровне, поколение за поколением или, скорее, один процессорный цикл за другим?
Другая проблема возникает при таких попытках подобрать универсальное определение: мы определяем эти свойства на примерах того, что, как мы точно ЗНАЕМ, живо. Мы берем человека, собаку или рыбу-каплю[16 - Которая вовсе не так неприглядна, как ее пытаются выставить. Эта рыба обитает на огромной глубине, а фотографируют ее, уже когда выловят. Вот представьте, как бы выглядело ваше лицо, заставь вас позировать фотографу после того, как вас достали с глубины 4000 метров? Хватить хейтить рыбу-каплю!] (Psychrolutes marcidus – для тех, кто в теме), а дальше мы просто смотрим, что это существо делает.
Каждое из перечисленных выше живых существ обладает набором клеток, движется, растет, размножается и так далее, то есть является живым организмом в широком смысле слова. Проблема заключается в том, что с помощью этого метода мы не всегда можем распознать организмы, которые функционируют по другим правилам, даже если они (возможно) вполне живы.
Растения, которые живут в довольно трудно воспринимаемом ритме, можно наивно назвать «неживыми», как и кораллы, которые легко принять за цветные камешки. Водоросли, биопленки из бактерий или грибы, которые на первый взгляд могут показаться мусором, ставят нас перед той же проблемой. Паразиты, повинные в наших болезнях, простейшие или бактерии, тоже довольно долго ждали, чтобы их признали живыми.
Короче говоря, понять основные правила, опираясь на отдельные наблюдения, – идея так себе, и наша интуиция в этом деле нам не помощник.
Не совсем живой мир
Проблема приобретает еще более серьезные масштабы, когда мы сталкиваемся с организмами, которые были открыты совсем недавно и больше не укладываются в «классические» определения живых существ. Само собой, больше всего спорят о вирусах, поскольку они не имеют клеток и представляют собой обрывки нитей ДНК или РНК, защищенные капсидом. Но есть и другие внутриклеточные организмы размером в несколько нанометров, которые также балансируют на грани общепринятого понятия жизни.
В 1950-х австралийские офицеры патрулировали Восточное нагорье Папуа (в те времена это была колония), когда они обнаружили, что племя форе поражено странной болезнью. У людей возникали проблемы с мышечной координацией, они едва держались на ногах, разражались неконтролируемым смехом, в итоге переставали двигаться и умирали.
Это страшное нейродегенеративное заболевание получило название куру. Его можно сравнить с болезнью Крейтцфельдта – Якоба: мозг поражает частица, которая называется прионом. Жившие в Папуа форе получали прионы через ритуальный каннибализм, поедая мозг умершего родственника. Этот обычай способствовал эффективному распространению вирусной частицы среди населения. Принятые властями санитарные меры постепенно искоренили болезнь.
Однако самое удивительное во всей этой истории – природа самой частицы, приона.
Подобно остальным вирусам, «живая» природа этого образования вызывает много споров, и сам его механизм еще очень плохо изучен. Известно, что это белок, который спирально складывается различными способами, и некоторые его патогенные конформации «загрязняют» другие белки, заставляя их складываться так же, как и он. Они в свою очередь тоже становятся патогенами и заставляют другие белки принимать ту же структуру и так далее. Этот весьма оригинальный процесс размножения не требует сложных клеточных механизмов. Поэтому прионы могут быстро распространяться без участия ДНК!
Споры вызывают и другие биологические объекты. Являются ли живыми сателлиты, плазмиды и транспозоны – обрывки ДНК или РНК, интересы которых могут расходиться с интересами их носителя? Но самый удивительный пример – это вироиды, свободные кольцевые нити РНК, которые используют клетки других организмов. Эти молекулы представляют собой последовательности всего из нескольких сотен нуклеотидов, которые размножаются, подобно паразитам. Здесь нет клеточного механизма, есть только строка молекулярного кода, который воспроизводится на протяжении тысяч, миллионов, миллиардов лет. Мы ничего не знаем ни о них самих, ни об их истории. Существовали ли они в этой форме с момента зарождения жизни или являются результатом предельного упрощения организма-предка? Пока никто не может ответить на эти вопросы.
В любом случае строить определения на примере самих себя – метод довольно бесполезный, когда нужно описать нечто совершенно на нас не похожее. То, что похоже на нас, входит в группу, но пытаться классифицировать то, что находится на периферии… ну, это уже посложнее.
Великое произведение биосферы
На самом деле эта проблема напоминает трудности, с которыми столкнулись алхимики XVI века, пытаясь определить понятие «вода». В те времена еще не существовало молекулярной теории, которая позволяла бы классифицировать молекулы в соответствии с их атомным составом. Поэтому воду определяли не как «один атом кислорода и два водорода» – у нее было гораздо более размытое понятие, обернутое в прилагательные, которые описывают растворимость, цвет, плотность. А ученые пытались придумать чистое, идеальное определение, набор прилагательных, которые могли бы полностью охватить понятие «вода» – как мы сегодня пытаемся полностью охватить понятие «жизнь».
Таким образом, различали «крепкую воду» (aqua fortis), «королевскую воду» (aqua regia) и «живую воду» (aqua vitae). По иронии, ни одна из этих вод не состояла из молекулы H
O: крепкая вода – это азотная кислота, королевская вода – смесь азотной и соляной кислот, а живая вода – это, само собой, крепкий алкоголь.
Биолог, который попытался бы определить жизнь так же, как алхимики в свое время пытались определить воду, называя ее самые очевидные свойства, был бы неправ. Невозможно сформулировать точное определение жизни без эквивалента молекулярной теории, которая в итоге позволила описать воду.
Вместо того чтобы классифицировать живых существ с помощью перечня минимальных свойств, мы можем опробовать другой подход и попытаться найти более рациональную теоретическую почву. Короче говоря, нам нужна общая теория биологических систем. Слишком расплывчато? Ничего страшного. Главная сложность в том, что сейчас нам известна только одна разновидность жизни. Если мы проследим родословную всех ныне живущих видов вплоть до их общего предка[17 - См. раздел 1.], мы обнаружим только объекты, наделенные общими характеристиками: общая наследственность (ДНК), схожие химические процессы и так далее. Мы никогда не сможем определить, что именно делает объект «живым», сравнивая эти виды и не связывая автоматически жизнь со свойствами этих видов.
Другими словами, чтобы создать общую теорию биологических систем, нужно опираться на те формы жизни, которые эволюционировали действительно независимым образом.
В поисках параллельных форм жизни
Существует множество направлений: например, некоторые исследователи рассматривают гипотезу мира РНК. Она предполагает, что до тех пор, когда наша биосфера стала состоять из клеток, первые формы жизни состояли из РНК. Эта молекула может содержать информацию, которая передается от поколения к поколению, и осуществлять метаболические процессы (как сегодня это делают протеины). Согласно этой гипотезе, мир был заполнен самовоспроизводящимися молекулами, которые развивались по дарвиновским принципам. Иначе говоря, это действительно отличная от нашей форма жизни!
Но есть и гораздо более экзотический путь: искать другие формы жизни… за пределами Земли! Через сорок пять лет после первых аппаратов «Викинг» метод по-прежнему заключается в поиске молекул, которые могут быть признаками жизни. Открытие фосфина в атмосфере Венеры наделало много шума, поскольку это вещество считалось свидетельством биологической активности[18 - И все-таки нет. Такие молекулы часто производят бактерии в бескислородной среде, но в случае Венеры вполне вероятно, что они происходят из множества вулканов этой инфернальной планеты.], в то время как Марс привлек всеобщее внимание после обнаружения на нем метана. Эта молекула встречается только в определенных местах и в определенное время года – тоже признак возможной биологической активности. Для сравнения: проект Европейского космического агентства (ЕКА) «ЭкзоМарс» должен стартовать по направлению к Красной планете в 2022 году. По этому случаю на его поверхность будет спущен марсоход «Розалинд Франклин», перед которым поставят задачу искать в марсианской почве следы существования в настоящем или прошлом биологической жизни. Осуществляться она будет при помощи мощного бура длиной в два метра. Этот марсоход присоединится ко многим другим, уже присутствующим на планете, пока занятой только роботами и, как это ни парадоксально, являющейся лучшим местом для поисков альтернативных форм жизни.
Философам тоже хватит работы: даже если в будущем спускаемым аппаратам удастся обнаружить новые доказательства биологической жизни за пределами нашей планеты, ответить на вопрос о том, являются ли они формой жизни, параллельной по отношению к нашей, без философского подхода к проблеме просто не удастся. И как только они разберутся с этой загадкой, им придется перейти к связанным с ней этическим вопросам. Должны ли мы терраформировать их планету? Разрабатывать их среду обитания? Колонизировать их биосферу? Или защищать среду их обитания как зоопарк на карантине?
Будем надеяться, что, когда мы перейдем к активному освоению космоса вкупе со всеми потенциально необратимыми последствиями, у нас уже будут готовые ответы на эти вопросы!
3. Почему мы умираем?
Люди не любят умирать. И, как ни странно, эволюция ничего не сделала для решения этой проблемы… и на то есть причина.
Гильгамеш об Энкиду, своем друге,
Горько плачет и бежит в пустыню:
«И я не так ли умру, как Энкиду?
Тоска в утробу мою проникла,
Смерти страшусь и бегу в пустыню».
Эпос о Гильгамеше, таблица IX, перевод на русский язык В. К. Шилейко
Учитывая тему, этот раздел будет более философский, чем остальные, так что готовьтесь к серьезным откровениям.
Вот первое: люди не очень любят умирать. Умирать – это отстой.
Вы предупреждены, если что.
Самое древнее литературное произведение, которое дошло до наших дней, «Эпос о Гильгамеше», было написано 4000 лет назад. Половина произведения посвящена рассказу о том, как герой, Гильгамеш, ищет бессмертие, чтобы избежать участи его друга Энкиду.
Со стороны старость выглядит очень странно: все процессы, поддерживавшие организм, постепенно перестают функционировать без видимых причин до тех пор, когда тело уже не может обеспечить собственное существование. Очень просто встать в позу фаталиста и изречь: «Мы умираем, потому что так нужно», – но тогда мы упускаем случай задаться интереснейшим научным вопросом: почему же каждая жизнь неизбежно заканчивается смертью[19 - За исключением некоторых представителей клана Маклаудов, которым удалось до сих пор сохранить голову на плечах.]?
Что такое смерть?
Прежде всего небольшая справка: здесь мы говорим о старости, или, на жаргоне биологов, о физиологическом старении. Остановка жизненных функций в результате несчастного случая, который привел к смерти, не является частью нашего вопроса. В этом разделе мы попытаемся понять, почему все организмы на нашей планете однажды умирают, даже если они прекрасно защищают себя.
Почему мы стареем? И почему наши органы не способны бесконечно восстанавливать сами себя? Почему запас наших сил истощается и почему мы умираем? На эти вопросы можно ответить по-разному – в зависимости от уровня наших рассуждений и от того, с кем мы их обсуждаем.
Клетка может удваиваться ограниченное число раз, затем сами механизмы деления перестают работать. В 1960-е годы Леонард Хейфлик дал этому пределу свое имя, доказав, что каждая клетка человеческого эмбриона способна удваиваться 40–60 раз до тех пор, пока этот процесс не остановится навсегда. Одно из объяснений этого процесса связано с теломерами – концевыми участками хромосом, которые состоят из повторяющейся последовательности нуклеотидов.
У человека эти теломеры представляют собой повторение последовательности TTAGGG 2500 раз. Они не кодируют белки, но их присутствие предотвращает случайное слияние хромосом друг с другом и ограничивает их разрушение. Когда клетка дублируется посредством митоза, сначала происходит репликация ДНК. При каждой такой репликации ответственные ферменты не достигают конца теломер, и некоторые из них становятся немного короче. Эта редукция соотносится с так называемым пределом Хейфлика, но есть и другие процессы, вызывающие постепенное старение клеток.
Концы хромосом, теломеры, сокращаются с каждым циклом клеточной дупликации
В статье, опубликованной в научном журнале в 2013 году под заголовком «Признаки старения» (The Hallmarks of Aging), группа европейских исследователей описала девять механизмов, которые заставляют клетки стареть. К ним относится рост вредоносных мутаций в ДНК, то есть ошибок, которые возникают в момент репликации. Другая причина – дисфункция митохондрий, эти органеллы находятся внутри наших клеток и снабжают их энергией, которую извлекают с помощью преобразования глюкозы. Беспощадная логика этого процесса такова: изнашивание клеток в конце концов отражается на состоянии органов, которые начинают слабеть, ведут организм к старению и в итоге – смерти.
Но все эти причины, связанные с изнашиванием механики тела, носят лишь функциональный характер, то есть объясняют, не почему наступает старость, а как. Проще говоря, это все равно что попытаться объяснить причину несчастного случая с участием автомобилиста, измеряя плотность дерева, в которое он врезался. Окей, его действительно убило столкновение с деревом, но настоящие причины лежат в другой плоскости. То же самое со старением.
В чем смысл смерти?
Для биолога очевидно одно: в ДНК накапливаются мутации, ошибки, которые в конце концов убивают организм, но в то же время существуют и ферменты, способные его восстановить. Наш организм действительно способен на впечатляющие подвиги из области регенерации (особенно в младенчестве), что касается и теломеров: так, существует фермент (обратная транскриптаза), способный их удлинять.
Возникает следующий вопрос: почему эти восстановительные процессы перестают работать?
Нас интересует конечная причина старения, глубинная причина смерти. Хотя физиология объясняет нам сам механизм, она не дает нам ответ на вопрос «почему». Именно в этот момент нам на помощь приходит эволюционная биология.
Многих эволюционных биологов вопрос «Почему мы умираем?» интриговал уже с конца XIX века. Всего через несколько лет после смерти Дарвина Август Вейсман, который также считался одним из самых влиятельных биологов своего века, попытался сформулировать теорию. По его мнению, люди стареют и затем умирают, чтобы просто освободить дорогу молодым. Ну да. Справедливости ради отметим, что в конечном счете он отказался от этого объяснения по простой причине: его теория предполагает существование некой цели, программы, которой стремятся следовать все организмы. Но эволюция – это слепой процесс, лишенный определенной заранее цели: особи, обладающие наиболее выигрышным для размножения набором свойств, в итоге производят больше потомства. Им, в свою очередь, передаются те же самые свойства, которые позволят им более эффективно размножаться.
Естественный отбор дает основу для толкования свойств живых организмов. Проблема теории Вейсмана заключалась в том, что она не помогала понять, каким образом старение могло быть отобрано в ходе эволюции. С помощью какого механизма особи, умирающие первыми, могут размножаться эффективнее других? Почему старость является биологическим свойством, дающим какие-либо преимущества ее носителям перед теми, кто ее не испытывает? Эти вопросы долго оставались без ответа.
Эволюция выбирает смерть
Ответ в конце концов дал именно естественный отбор – или скорее отсутствие естественного отбора. По прошествии достаточного количества времени (и поколений) отбор может удалить неблагоприятные мутации, которые вызывают проблемы в конце жизни, либо отдать предпочтение особям, у которых восстановительные процессы действуют даже спустя долгие годы существования. Считается, что отбор действует как своего рода «контроль качества», который властвует над организмами в течение миллиардов лет. Однако в первой половине XX века два генетика выявили интересный феномен: судя по всему, этот контроль качества утрачивает свою силу по мере старения организма…
В 1941 году британский генетик Дж. Б. С. Холдейн изучал страшную болезнь Хантингтона. Она проявляется в дегенеративных процессах нервной системы, вызванных мутацией определенного гена; Холдейн пытался понять, почему естественный отбор не ликвидировал эту мутацию. Заметив, что симптомы болезни обычно проявляются приблизительно в возрасте 35 лет, он предположил, что она связана с ослаблением естественного отбора в конце жизни. Наши предки редко жили дольше 40 лет, поэтому за всю историю эволюции избавление от мутации, вызывающей болезнь Хантингтона, не давало никаких преимуществ.
Десятилетие спустя лауреат Нобелевской премии Питер Медавар сформулирует эту мысль в эссе «Нерешенная проблема биологии» (An Unsolved Problem of Biology). В своей статье он утверждает, что в геноме каждого человека в течение всей жизни накапливаются всевозможные вредные мутации (помимо вызывающих болезнь Хантингтона) и эти мутации не подвергаются естественному отбору. Другими словами, «фильтр» с возрастом меняется: более молодые обладают оптимальными возможностями для выживания и размножения, в то время как более старым уже ни на какую оптимизацию рассчитывать не приходится.
Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера: