скачать книгу бесплатно
(Ну, не совсем. Юристы советуют настаивать на том, что сила тяжести придает ускорение, а специальная теория относительности предполагает, что никаких ускорений нет. Есть определенные поправки, учитывающие силу тяжести, но в данном случае мы вправе преспокойно их проигнорировать. Поправка на силу тяжести в условиях Земли крайне, крайне мала в сравнении с поправкой на краю черной дыры, где без нее невозможно сделать осмысленные физические выводы.)
2. В отличие от Ньютона, Эйнштейн предположил, что все наблюдатели оценивают скорость света в пустом пространстве одинаково, независимо от того, движутся ли они. В нашем примере Рыжий швырял узелок и измерял его скорость, деля длину вагона на время, за которое узелок долетает до дальней стенки. Пачкуля сидел возле рельсов и смотрел, как поезд и узелок пролетают мимо, а поэтому видел, что узелок за то же время пролетел дальше (вдоль вагона и вдоль того участка земли, который вагон за это время проехал). Пачкуля видел, что узелок двигался быстрее, чем наблюдал Рыжий.
Теперь рассмотрим тот же опыт с лазерной указкой. Если Эйнштейн был прав (а опыты Майкельсона и Морли еще за два десятка лет до него доказали, что так и есть), значит, Рыжий измерит, что лазерный луч движется со скоростью с, и Пачкуля намеряет ту же самую скорость.
Большинство физиков глазом не моргнув соглашаются, что с – константа, и пользуются ею направо и налево. В частности, они беззастенчиво эксплуатируют с, зачастую выражая расстояния через время, за которые свет покроет эти расстояния. Например, световая секунда – это около 300 тысяч километров, то есть примерно половина расстояния до Луны. Естественно, чтобы покрыть расстояние в одну световую секунду, свету требуется одна секунда. Астрономы чаще пользуются термином «световой год» – это 9?460?528?177?426,82 километра, примерно четверть расстояния до ближайшей звезды.
Теперь давайте сделаем предыдущий пример еще более фантастическим и подарим нашему бродячему физику межгалактический товарный вагон. Длиной вагон будет в одну световую секунду, и у Рыжего появляется не только уйма места, чтобы хорошенько потянуться после сладкого сна, но и возможность снова провести эксперимент с лазером. Он стреляет из лазерной пушки с одного конца вагона, и, по его соображениям, лазеру требуется одна секунда, чтобы пролететь вагон из конца в конец. Иначе ведь и быть не может – ведь свет движется со скоростью света (еще бы)!
Однако Пачкуля наблюдает лазерный луч в движущемся поезде и говорит (справедливо), что пока луч летел, передняя стенка вагона тоже двигалась, а следовательно, согласно Пачкуле, луч пролетел дальше, чем по расчетам Рыжего. То есть Пачкуля обнаруживает, что луч пролетел всего 1,5 световые секунды. Поскольку свет должен двигаться со скоростью света, Пачкуля делает вывод, что вспышка света добиралась от лазера до цели 1,5 секунды.
Еще раз: Рыжий говорит, что определенная последовательность событий (лазер испускает луч, а затем луч достигает цели) заняла одну секунду, а Пачкуля говорит, что та же последовательность событий заняла больше времени. У обоих есть замечательные сверхточные часы, сделанные в одном и том же межгалактическом депо для бродячих физиков. Оба проделали все измерения и вычисления одинаково точно. Кто прав?
Оба[12 - ЧЕГО?!].
Нет, правда. Если скорость света одинакова для Рыжего и Пачкули, значит, Пачкуля должен объяснять то, что он наблюдает, тем, что у него спешат часы – или что у Рыжего часы отстают. Самое непостижимое, что отстают все часы в поезде Рыжего. Пачкуля видит, что маятники качаются медленно, часы тикают медленно, и даже сердце Рыжего бьется медленнее обычного (если есть чем это измерить).
Это общий закон. Когда вы видите, как мимо кто-то проносится, имейте в виду, что, с вашей точки зрения, часы у них будут идти медленнее, просто у вас нет достаточно точных часов, чтобы это доказать. Если вы поднимете голову и увидите, что над вами летит самолет со скоростью около 1000 километров в час, а зрение у вас, предположим, настолько острое, что вы разглядите часы пилота, то вы увидите, что его часы идут медленнее ваших, но всего лишь на одну десятитриллионную долю! Иначе говоря, если бы пилот летел сто лет, к концу этого срока он был бы моложе, чем ему было бы положено, на целую секунду. Так что хотя этот закон (закон замедления времени) действует всегда, на самом деле в обычной жизни вы его никогда не заметите.
Замедление времени начинает сказываться в полной мере, только когда движешься со скоростью, близкой к скорости света. Приводить формулу мы не станем, так что поверьте нам на слово, что мы все подсчитали точно. Если поезд едет со скоростью в половину скорости света, то за каждую секунду на часах Рыжего проходит 1,15 секунды на часах Пачкули. При 90?% скорости света на каждую секунду Рыжего Пачкуля насчитает 2,3 секунды. А при 99?% скорости света соотношение станет 7?:?1. И чем ближе скорость приближается к с, тем больше это соотношение[13 - Как и вероятность того, что Рыжий выйдет из своего вагона на планету, населенную сверхинтеллектуальными, подлыми, грязными обезьянами.]. Когда поезд разгоняется до с, фактор замедления времени становится бесконечным, что и служит лишним подтверждением, что путешествовать со скоростью света невозможно.
И дело не только во времени. Пространство ведет себя ничуть не лучше. Давайте представим себе, что Рыжий идет по вагону по направлению к ближайшей станции со скоростью, представляющей собой заметную долю скорости света. Представим себе также, что Пачкуля устроился вздремнуть на этой станции. Так вот, с собственной точки зрения, Рыжий проходит это расстояние за более короткое время, чем с точки зрения Пачкули. Поскольку оба они согласны, что поезд приближается к станции с одной и той же скоростью, Рыжий, должно быть, считает, что общее расстояние до станции короче.
Время и пространство на самом деле зависят от того, как вы двигаетесь. Это не оптическая иллюзия, не психологический парадокс – так устроена Вселенная.
III. Если летишь в звездолете со скоростью, близкой к скорости света, какие ужасы ждут тебя по возвращении?
Казалось бы, это пустое любопытство, однако ученые нашли способ провести интересные исследования на основе этого феномена. В качестве примера грандиозных открытий, касающихся устройства Вселенной, приведем скромный мюон. Никогда о таком не слышали? Не ваша вина. Если разживетесь мюоном, дорожите временем, которое вы сможете провести в его обществе, поскольку в среднем мюоны живут около миллионной доли секунды (за это время луч света проходит меньше километра, а актерская карьера рэпера по имени Ванилла Айс достигает пика и завершается), а затем они распадаются на что-то совершенно другое.
Учитывая то, откуда они берутся и как долго пребывают с нами, нельзя сказать, чтобы мюонов было так уж много. Формируются они так: сначала космические лучи входят в верхние слои атмосферы и создают частицы под названием пионы (не путать с садовыми цветами), которые живут еще меньше и распадаются на мюоны. Все это происходит примерно в 15 километрах над поверхностью Земли. Поскольку двигаться быстрее света невозможно, а ближайшие мюоны пробегают за свою жизнь меньше километра, здравый смысл подсказывает, что до Земли они не добираются.
Здравый смысл снова вас обманывает[14 - Зато вы пойдете домой с этой книгой в качестве утешительного приза. И никто, кроме вас, не узнает, какой вы мастер догадываться, если, конечно, не заглядывает сейчас в книгу вам через плечо.]. Энергия мюонов так высока, что многие из них двигаются со скоростью 99,999?% скорости света, а значит, что для нас, наблюдателей, стоящих на земле, «часы» внутри мюонов – то, что подсказывает им, когда пора распасться, – замедляются раз в 200 или около того. Вместо того чтобы до распада пролететь меньше километра, они способны до распада пробежать почти 200 километров – а этого с избытком хватает, чтобы достичь Земли.
Быть может, более понятным примером станет так называемый парадокс близнецов. Так вот, позвольте представить вам близняшек Эмили и Бонни, которым 30 лет. Эмили решает отправиться к далекой звезде, садится в звездолет и улетает со скоростью 99?% скорости света. Год спустя ей становится скучно и одиноко, и она возвращается на Землю – опять же со скоростью 99?% от с.
Однако, с точки зрения Бонни, часы Эмили (и стенные, наручные, и пульс, и все прочее) все это время были замедленны. Эмили отсутствовала не два года, а целых 14! Как ни верти, это правда. Бонни стукнет 44, а Эмили – 32. Можно даже считать движение со скоростью, близкой к скорости света, своего рода путешествием во времени, только путешествовать вы все равно будете в будущее, а не в прошлое.
Будут и другие, не такие яркие последствия. Например, поскольку, с точки зрения Бонни, Эмили летела прочь от Земли в течение семи лет со скоростью, близкой к скорости света, значит, она должна была пролететь семь световых лет от Земли и только потом передумала и вернулась. Значит, она пролетела почти всю дорогу до звезды Wolf?359, пятой по близости к нашему Солнцу. Однако, с точки зрения Эмили, нельзя двигаться быстрее света, так что за год она прошла только расстояние в 99?% светового года. Иначе говоря, в пути она оценивает расстояние между Солнцем и Wolf?359 всего в один световой год.
Это явление известно как «сокращение длины». Как и замедление времени, сокращение длины – не оптическая иллюзия. Двигаясь со скоростью 99?% скорости света, Эмили наблюдает, что все, что расположено вдоль направления ее движения, сокращается в длину в семь раз. Земля покажется ей сплющенной, а Бонни – тощей, как щепка, но при этом она будет нормального роста и, так сказать, глубины.
В повседневной жизни мы не замечаем этого явления так же, как и сокращения времени. Если наш друг-пилот решит взглянуть, что делается внизу, улицы, над которыми он будет пролетать, будут несколько у?же, чем обычно, но даже при полете на скорости 1000 километров в час разница составит примерно 0,04?% величины атома. При помощи теории относительности легко объяснять диковинные явления, происходящие на очень высоких скоростях, однако очевидно, что здорового питания и физкультуры она не заменит.
Замедление времени и сокращение длины наблюдаются симметрично, когда Бонни смотрит на Эмили и когда Эмили смотрит на Бонни. Тут и таится парадокс. Когда Эмили спускается с трапа своего звездолета, вернувшись на Землю после полета на Wolf?359, все единодушно говорят о том, что она постарела всего на два года, а Бонни – на целых 14. Это категорически противоречит чуть ли не всему, что мы с вами только что обсуждали, потому что мы сразу понимаем, что «двигалась» именно Эмили, а не Бонни, а первое правило, которое нам внушают, заключается в том, что невозможно различить, кто двигался, а кто был неподвижен. Как же нам разрешить этот парадокс?
Мы уже познакомили вас с одним правилом, которое говорит, включились ли в действие законы специальной теории относительности или нет: чтобы специальная теория относительности заработала, нужно двигаться равномерно и прямолинейно. А чтобы расставить все по местам, мы вам скажем с определенностью: нет, Эмили двигалась иначе. Чтобы улететь от Земли, ей нужно было взлететь и набрать скорость (подвергнувшись при этом чудовищным перегрузкам из-за ускорения), а добравшись до Wolf?359, ей пришлось сбросить скорость и развернуться, а затем – еще раз сбросить скорость, когда она садилась на Землю.
Если учитывать все эти ускорения, ничего нельзя утверждать с определенностью, и для описания происходящего нужна гораздо более сложная теория. Это видно даже из истории вопроса: Эйнштейн выдвинул специальную теорию относительности (без учета ускорений) в 1905 году, а общую теорию относительности (которая учитывает гравитацию и другие разновидности ускорения) разработал лишь к 1916 году.
IV. Можно ли развить скорость света (и поглядеть на себя в зеркало)?
Мы ушли страшно далеко от первоначального вопроса, и это никуда не годится, потому что это очень хороший вопрос – настолько хороший, что его задавал себе сам Эйнштейн. Однако вам, наверное, кажется, что мы ничуть не приблизились к ответу на него.
Au contraire![15 - Совсем наоборот! (фр.)]
Ответ будет состоять из двух частей, и одну из них вы уже готовы сформулировать (и даже уже сформулировали). Вспомним старину Рыжего и его поезд. Теперь представим себе, что поезд Рыжего едет со скоростью 90?% скорости света (или с любой другой скоростью на ваш выбор). Однако Рыжий ничего вокруг не замечает, потому что лихорадочно прихорашивается перед свиданием с красоткой Лили по прозвищу Окорочок. Не заметит ли он, глядя в зеркало на свою симпатичную физиономию, что чего-то не хватает? Нет, не заметит. Поскольку в его вагоне нет окон, а движется он равномерно и прямолинейно, нет никакого эксперимента, который показал бы ему, что он движется, а не стоит на месте. Пока зеркало движется вместе с Рыжим, он выглядит совершенно так же, как если бы никуда не ехал.
Все это прекрасно и правильно, пока Рыжий движется медленнее света, но что будет, если он движется со скоростью света? Да-да, мы понимаем, мы сами говорили, что двигаться со скоростью света никому не удастся, поэтому, вероятно, вы могли бы поверить нам на слово и тем удовлетвориться. Но зачем?
Поясним на примере. Пачкуля, завидуя успеху, который Рыжий имеет у дам, наблюдает за тем, как тот готовится к свиданию. Конечно, ему надо следить очень внимательно, ведь поезд Рыжего несется со скоростью 90?% скорости света. Трагедия происходит в тот момент, когда у Рыжего звонит мобильник (только не спрашивайте, каким образом прошел сигнал) – это Лили сообщает, что не придет. Лили говорит очень ласково, но Рыжий все равно ужасно расстроен – он хватает еще тепленькую банку фасоли и швыряет ее в переднюю стенку вагона со скоростью 90?% скорости света (с его точки зрения).
Вероятно, Пачкуля вне себя от радости, точнее, от злорадства, но это не мешает ему отметить, с какой скоростью летит банка фасоли. В годы беспечной юности он бы предположил, что фасоль летит со скоростью 1,8 с – скорость поезда (0,9 с) плюс скорость банки (0,9 с). Но он давно оставил подобные глупости.
Вспомним два факта.
1. Пачкуля видит, что часы Рыжего замедлились (в данном случае в 2,3 раза).
2. Пачкуля видит, что поезд Рыжего сжался (в данном случае опять же в 2,3 раза).
Конечно, детали тут не так уж важны, но вот что Пачкуле представляется существенным:
1) фасоли нужно гораздо больше времени, чем утверждает Рыжий, чтобы долететь от руки Рыжего до стены и расплющиться об нее;
2) фасоль пролетает куда меньшее расстояние, чем утверждает Рыжий.
Главное – то, что фасоль летит гораздо медленнее, чем говорят наши (и Пачкулины) наивные первоначальные оценки. Банка летит со скоростью не 1,8 с, а жалкие 99,44?% скорости света.
Играть в эту игру можно до бесконечности. Например, представьте себе, что на банке сидит муравей. У муравья большие планы, касающиеся царицы его муравейника, но тут она сообщает ему, что должна остаться дома, чтобы вычистить панцирь. В гневе муравей швыряет комочек пищи со скоростью 0,9 с (с его точки зрения) в сторону передней части поезда. Пачкуля, обладающий невероятно острым зрением, увидит, что крошка движется со скоростью 99,97?% скорости света.
А на крошке живет амеба, которая ждала на свидание саму себя, поскольку размножается делением, безо всякого секса… в общем, сами понимаете.
Как бы мы ни старались, сколько бы ни повторяли наши воображаемые опыты, сколько бы банок и крошек ни бросали, мы так никогда и не достигнем скорости света. Будем бесконечно приближаться к ней – и все тут.
Кроме того, чем ближе мы к скорости света, тем труднее заставлять предметы двигаться быстрее. Кажется, что разогнать предмет до скорости в 99?% скорости света требует вдвое больше работы, чем до 50?% скорости света; на самом же деле работы потребуется вшестеро больше. А для того чтобы всего-навсего разогнаться с 99?% скорости света до 99,9?%, потребуется втрое больше работы.
Итак, теперь можно поработать и над вопросом шестнадцатилетнего Эйнштейна[16 - То есть над тем вопросом, который нам известен. Дети в этом возрасте такие почемучки…]: что произойдет, если двигаться со скоростью 99?% скорости света и посмотреть на себя в зеркало? Ничего – или по крайней мере ничего особенного. Ваш звездолет будет выглядеть как обычно, ваши внутренние часы, с вашей точки зрения, будут идти как всегда. И физиономия будет все той же. Единственное, что бросится вам в глаза, – это то, что у ваших друзей, оставшихся дома, сердца, часы, корпоративные календари и прочие приборы для измерения времени замедлились в семь раз против обычного. И к тому же все предметы сплющились под воздействием неведомого фактора.
Можно сделать еще шаг вперед и задать вопрос, изменится ли что-нибудь, если посмотреть в зеркало на скорости 99,9?% скорости света. Замедление времени и сокращение длины будут чуть больше (в 22 раза, а не в 7), а так все то же самое.
Беда в том, что все эти скорости крайне близки к скорости света, но все же не дотягивают до нее. Каждое крошечное дополнительное ускорение требует все больше и больше энергии, а для того чтобы в самом деле разогнаться до с, потребуется бесконечное количество энергии. Не очень большое, просим отметить, а именно бесконечное.
Быть может, вам этого мало. Если вам удастся как-то разогнаться до скорости света (невзирая на то, что это невозможно), свет от вашего лица так и не дойдет до зеркала, а значит, вы, как заправский вампир, не увидите собственного отражения. Мало того! Сам факт, что вы не увидите своего отражения, и докажет, что вы достигли скорости света. Но поскольку вы уже точно знаете, что никто не может сказать, стоит он или движется, это лишнее доказательство, что разогнаться до скорости света невозможно.
V. А разве относительность не придает атомам бесконечную энергию?
Все эти разговоры о часах и эталонах метра и скорости света, возможно, интересны и сами по себе, но, наверное, когда (и если) вы задумываетесь об относительности, в голову вам первым делом приходят некоторые другие вопросы. Почти наверняка вы думаете при этом о самой знаменитой физической формуле (и единственной, которую вы встретите в этой книге в явном виде):
E = mc
.
Выглядит она крайне просто, к тому же вы уже познакомились с одной из ее составляющих – это с, скорость света.
Буква Е в левой части обозначает энергию, и мы совсем скоро поговорим о том, при чем тут энергия, но сначала обсудим другую составляющую – m, то есть массу.
Вероятно, вам кажется, что масса – это мера «величины» предмета, но для физика масса всего-навсего отражает то, насколько трудно заставить предмет двигаться и насколько трудно остановить его, если он уже движется. Гораздо проще остановить Рыжего, если он бежит на вас со скоростью 15 километров в час, чем его поезд, если он едет с той же скоростью.
Но мы уже заметили одну интересную вещь, касающуюся эффективной массы – в данном случае эффективной массы консервных банок с фасолью. Мы обнаружили, что чем выше скорость банки, тем больше работы требуется, чтобы разогнать ее хоть чуточку быстрее. Иначе говоря, банка с фасолью ведет себя так, словно становится все более и более массивной (то есть ее все труднее и труднее двигать). А как мы уже отметили, если скорость банки приближается произвольно близко к скорости света, впоследствии потребуется бесконечное количество работы, чтобы придать банке хоть какое-то ускорение.
Посмотрим с другой стороны: при увеличении энергии движения инерционная масса тоже увеличивается, то есть материя банки не прирастает, но банка ведет себя так, словно это происходит. Но даже если скорость банки снизится до нуля, то есть энергии движения не будет вообще, инерция банки никуда не денется. Если банка с фасолью совершенно неподвижна, она все равно обладает определенным количеством энергии, некоторой минимальной инерционной массой. Если добавлять энергию, то инерционная масса только увеличивается.
Знаменитое уравнение Эйнштейна – не более чем формула преобразования массы в энергию и обратно.
У этой формулы широчайший спектр самых удивительных применений, и мы буквально видим ее отражение каждую секунду всю жизнь – в солнечном излучении.
Теория Эйнштейна, по всей видимости, находит успешное применение на практике, однако, кроме того, она необычайно сильно повлияла на общественное сознание, особенно на сознание тех, кто ее не понимает.
Один из уважаемых авторов этой книги (Голдберг), будучи действующим ученым, часто получает рукописи, сочинители которых заявляют, будто разработали теорию, которая опровергает существующие физические парадигмы, и в девяти случаях из десяти главный их тезис – что великое уравнение Эйнштейна ошибочно, что его логика ущербна или просто что математически допустимо другое толкование. Этот феномен настолько распространен и наблюдается настолько часто (причем со временем все чаще), что даже спустя 100 лет после того, как Эйнштейн опубликовал свою формулу, в журнале «Америкэн Лайф» появилась статья о человеке, который (безуспешно) попытался доказать, будто «Е не равно эм це квадрат».
Почему же простая формула преобразования вызывает такой ажиотаж? Отчасти потому, что она так проста на вид. Никаких незнакомых буковок, к тому же большинство людей в общих чертах понимают физический смысл всех ее составляющих. И она действительно очень простая. Как будто нам говорят: «Вот хочу продать мою материю и получить энергию. Сколько дадите?»
Ответ: «Довольно-таки много». Дело в том, что, как мы уже установили, с – большое число, а мы еще возводим его в квадрат и умножаем на него массу.
Начнем с малого. Представим себе, что у вас есть около двух граммов буммония – это такое вещество, которое мы только что придумали, так что имеем право запатентовать и употреблять его название. Это примерно масса монетки в один пенни, и вам каким-то образом удается превратить ее в энергию. Если бы такое было возможно, а мы вас уверяем, что нет, вы бы получили около 180 триллионов джоулей. Не представляете себе, сколько это? Не проблема, объясним.
Такая энергия позволит вам:
1) сделать так, чтобы 50 тысяч стоваттных лампочек горели целый год;
2) с лихвой обеспечить калориями все население городка Терре-Хот в штате Индиана (с населением 57?259 человек) на целый год;
3) заменить энергию примерно 5000 тонн угля или 6?356?000 литров бензина. Если заправить этим бензином автомобиль, можно перевезти на нем всех до единого жителей Терре-Хот из Нью-Йорка в Калифорнию. Непонятно, правда, зачем это делать.
Для сравнения, энергия сгорания двух граммов угля питает одну лампочку примерно час.
Материя, как и большинство людей, не развивает свой потенциал полностью, а если не считать случаи, когда мы сталкиваем материю с «антиматерией» или «антивеществом» (о чем мы еще поговорим), преобразовать всю массу в энергию невозможно. Так что не считайте, будто от E = mc?
один шаг до полной независимости от нефти, остановитесь. Рано радоваться.
Великое уравнение Эйнштейна изменило мир: самые очевидные примеры его применения – ядерное оружие и атомная энергия. Важно понимать, что при большинстве ядерных реакций мы преобразуем в энергию лишь крошечную часть общей массы материи. Наше Солнце – гигантский термоядерный генератор, который превращает водород в гелий. Основная реакция предполагает, что мы берем четыре атома водорода и получаем один атом гелия и некоторое количество отходов, в том числе нейтрино, позитроны и, само собой, энергию в виде света и тепла. Для нас это крайне выгодно – ведь энергия, вырабатываемая Солнцем, в виде солнечных лучей согревает поверхность Земли, питает растения и водоросли и в конечном счете поддерживает нас как экосистему.
Однако по эффективности всему этому далеко до нашего буммония. Из каждого килограмма водорода, «сгорающего» на Солнце[17 - Физики обожают напоминать, что при ядерных реакциях никакого горения не происходит. Горение – это не ядерный, а химический процесс, и для него нужен кислород.], мы получаем 993 грамма гелия, а значит, в энергию преобразуется лишь семь граммов. Однако, как мы уже видели, и небольшой массы хватает для великих дел.
Самые известные примеры преобразования массы-энергии – это именно превращение массы в энергию, а не наоборот, в том числе самые страшные из этих превращений и вообще главный кошмар на этой Земле – ядерные бомбы и радиоактивный распад. В каждом из этих случаев столкновение энергичных частиц или спонтанный распад заставляет небольшое количество массы преобразоваться в ошеломительно огромную энергию. Почему радиоактивные вещества такие страшные? Потому, что даже при одном распаде образуется фотон с такой колоссальной энергией, что дай ему хоть малейший шанс, и он попортит вам клетки.
Когда Вселенная только зародилась, в ней гораздо чаще происходил обратный процесс – из энергии получалась материя, хотя сейчас такое бывает довольно редко. В те далекие времена, когда температура достигала миллиардов градусов, материя то и дело возникала от столкновения лучей света друг с другом. Невероятно, но факт. Вот почему мы вернемся к этому в главе 7.
Хит-парад среди физиков!
Кто самый выдающийся физик современности? Горячая пятерка!
Нас то и дело вовлекают в досужие споры на уровне «кто лучше – Кирк или Пикар?» или «кто самый лучший физик?». Если ответ на первый вопрос очевиден для всякого, кто хотя бы одним глазом смотрел «Звездный Путь» и при этом не йинтагх[18 - «Идиот» по-клингонски. Не бейте нас тапком.], то второй вопрос куда сложнее. Если бы спор был на деньги, мы бы отстаивали ту точку зрения, что величайшие физики – те, в чью честь назвали что-нибудь важное и серьезное, даже если кто-нибудь другой уже пришел независимо к тому же выводу. Иногда величайшие мыслители не удостаиваются заслуженной славы (мы думаем о вас, Тесла), но наш список такие случаи, увы, не учитывает – считайте, что таким людям просто не повезло. Нас интересуют именно знаменитости. Кроме того, поскольку мы хотим не отставать от жизни, то, к сожалению, не будем рассматривать заявки от тех, кто совершил самые значительные открытия до 1900 года. Наконец, мы уверены, что многие физики не согласятся с нашим списком, но им мы со всем нашим уважением предложим написать собственную книгу.
Итак:
1. Альберт Эйнштейн (1879–1955),
Нобелевская премия за 1921 год.
Нужны ли здесь какие-либо аргументы? Эйнштейн создал теорию относительности – и специальную (эта глава), и общую (главы 5 и 6), – причем, судя по всему, на абсолютно пустом месте и совершенно самостоятельно. Он неопровержимо доказал, что свет состоит из частиц (глава 2), и стал одним из отцов-основателей квантовой механики, хотя сам в нее толком не верил. Его имя стало синонимом слова «гений», к тому же, положа руку на сердце, он единственный из нашего списка, кого вы знаете в лицо.
2. Ричард Фейнман (1918–1988),
Нобелевская премия за 1965 год.
Благодаря уникальному складу ума Фейнман стал героем и примером практически для каждого молодого физика. Он изобрел квантовую электродинамику, которая при помощи квантовой механики объясняла, как устроено электричество (глава 4), и доказал, что частицы и поля буквально двигаются по всем возможным путям одновременно (глава 2). Кроме того, он прославился как «великий популяризатор», и по крайней мере несколько примеров из нашей книги беспардонно (но со ссылками) свистнуты из лекций Фейнмана.
3. Нильс Бор (1885–1962),
Нобелевская премия за 1922 год.
Довольно скоро вы прочитаете главу 2, которая будет посвящена квантовой механике. Вы ее обязательно полюбите! Даже если нет, ближе к середине главы мы расскажем, что стандартные представления о квантовой механике на настоящий момент называются «копенгагенской интерпретацией». Догадайтесь с трех раз, откуда Бор родом. Бор не только в общих чертах определил мировоззрение современного человека, но и первым создал реалистичную картину атома и показал, что как попало атом не сляпаешь – его состояния «квантуются».
4. Поль Адриен Морис Дирак (1902–1984),
Нобелевская премия за 1933 год.
Дирак был среди тех, кто продрался сквозь целую гору уравнений, получил формулу, которая на вид казалась физически абсурдной, но решил, что «Бог, создавая этот мир, опирался на математические выкладки восхитительной красоты», и решил, что раз так, все эти уравнения все равно верны. Примерно так он и предсказал существование антиматерии за четыре года до того, как ее обнаружили.
5. Вернер Гейзенберг (1901–1984),
Нобелевская премия за 1933 год.
Когда Гейзенбергу присудили Нобелевскую премию, формулировка была такой: «За создание квантовой механики, применение которой, среди прочего, привело к открытию аллотропных форм водорода». Хотя на самом деле Гейзенберг не создал квантовую механику, он внес колоссальный вклад в ее разработку и открыл «принцип неопределенности Гейзенберга». Об этом подробнее в главе 2.
Глава 2
Квантовые странности
Так живой он или мертвый – шредингеровский кот?
Если вы хоть в чем-то похожи на нас, то ваше презрение к авторитетам сравнимо разве что с вашим же вкусом к жизни. Вы не подчиняетесь ничьим приказам и уж, конечно, ничего не принимаете на веру. Мы так хорошо вас понимаем – ведь мы тоже бунтари-одиночки. Вот почему мы не отвечаем на ваши вопросы об устройстве Вселенной сакраментальным «потому что мы так сказали». Напротив, мы из кожи вон лезем, взывая к вашему здравому смыслу и повседневному опыту, чтобы они подтолкнули вас в нужном направлении.
С квантовой механикой это не получается. На здравом смысле тут далеко не уедешь, хотя вам, возможно, и покажется, будто вы летите с ветерком. Вас, словно Гензеля и Гретель, привлекут яркие цвета и простые ответы, которые вы получите, если изберете легкий путь. Считайте наши подсказки хлебными крошками, которые готовы повести вас по тайным лабиринтам квантовых странностей. Опустим ту часть, согласно которой нас склевали прожорливые птички.
«А что такого странного в квантовой механике?» – спрашиваете вы с беспечной улыбочкой. Да, мы понимаем, вы стреляный воробей, в жизни у вас уже было буквально все, и вас уже ничем не обескуражить. А значит, вы не будете возражать, если мы попросим вас пройти один незамысловатый популярный тест[19 - Если вы опустили глаза и обнаружили, что на вас пижама, значит, вам опять снится этот треклятый сон.].
Старинный тестъ на классическую интуицiю