скачать книгу бесплатно
Буксировочная мощность Nб зависит от мощности, подводимой к винту и пропульсивного коэффициента
N
= R?V = N
?? = 2??M
?n
??.
Отсюда скорость движения судна
Буксировочная мощность Nб зависит от мощности, подводимой к винту и пропульсивного коэффициента
N
= R?V = N
?? = 2??M
?n
??.
Отсюда скорость движения судна
На стационарных режимах работы при неизменных внешних факторах скорость судна будет пропорциональна частоте вращения винта.
При постоянстве пропульсивного КПД ? будет соблюдаться равенство относительных величин
Это значит, что в относительных координатах характеристика винта
и корпуса
будут одинаковыми. Таким образом, на стационарных режимах соблюдается условие автомодельности характеристик сопротивления корпуса и винта. Это позволяет моделировать эксплуатационные режимы СЭУ и судна.
При переходных режимах (разгон, торможение, реверсирование, работа на волнении) будут дополнительно возникать инерционные силы и моменты движущихся масс
R' = D(dV/d?)
и вращающихся масс
Тогда отношение скорости судна к частоте вращения винта выразится
Все величины, кроме водоизмещения, будут переменными. Инерционной составляющей линии валопровода I?(d?/d?) можно пренебречь.
Анализ зависимости отношения V/n
показывает, что на участках ускоренного движения судна рост скорости судна будет отставать от роста частоты винта, а при торможении, наоборот, инерция массы судна D(dV/d?) будет отрицательная и будет способствовать поддержанию скорости судна.
Кроме того, следует отметить, что изменение частоты вращения при изменении уставки регулятора также будет происходить неравномерно, особенно при пуске ГД и использовании регуляторов без функций ограничения по нагрузке и давлению наддува (типа UG-40) [6].
Забросы топливоподачи могут быть значительным, что ведет к повышенным термическим напряжениям. Если используются регуляторы, реализующие ограничительную характеристику (типа UG-40TL и электронные), то забросы топливоподачи будут значительно меньше.
От настройки изодромной связи зависит многое. В современных электронных регуляторах (DGU 8800) в память микропроцессора занесена вся необходимая информация о двигателе, включая и момент инерции вращающихся масс, что позволяет автоматически мгновенно вычислять реальный вращающий момент двигателя с учетом инерционной составляющей на любом режиме и автоматически изменять характеристики (настройки) изодромной связи регулятора, обеспечивающие оптимальную по расходу топлива и по износу динамику работы двигателя (см. пункт 6.2.3.5).
Динамические качества пропульсивной установки будут зависеть от соотношения влияния перечисленных факторов (величины крутящего момента, пропульсивного коэффициента, инерционной силы движущихся масс судна, заданий регулятора).
Дизельная энергетическая установка входит в состав ПК и режимы ее работы будут во многом определяться характеристиками конкретного ПК.
1.3. Современные главные двигатели и их техническое использование
Конструкции, характеристики и сведения по эксплуатации многих современных ГД изложены в известной технической литературе [7,8,9,10,11,12,13,21,24,26,27,30,31,60], поэтому считаю необходимым представить информацию по эксплуатации двигателей, не нашедших подробного рассмотрения в технической литературе на русском языке. Общие положения и процедуры эксплуатации дизелей изложены в [8]. Более точные процедуры для каждого конкретного дизеля можно взять в его правилах технической эксплуатации. Отметим, что Руководящий документ [8] не учитывает особенности эксплуатации МОД компании «MAN Diesel & Turbo», изложенные в [14,16], в части их проверок перед пуском:
– давление к пневмомеханизмам выпускных клапанов должно быть подано до того, как будет запущен главный маслонасос, что делается для предотвращения чрезмерного открытия выпускных клапанов;
– должно быть проведено медленное проворачивание для предотвращения поломок из-за гидроударов, которые могут быть вызваны скоплением жидкости в цилиндрах;
– должна быть проведена проверка регулирующего механизма подачи топлива (проворачивается регулирующий маховичок в сторону увеличения индексов топливных насосов с проверкой установки последних в положение “ПОДАЧА ТОПЛИВА”). При возврате маховичка в положение “СТОП” проверяется, что индексы всех ТНВД установлены на ноль.
Некоторые администрации вводят дополнительные требования. Перед входом в американские воды требуется проверка реверсов, резервной рулевой машины, проверка функционирования оборудования при обесточивании. При обесточивании включается автоматически АДГ, запускается аварийный поршневой компрессор, который дает сжатый воздух на запуск одного из ВДГ, восстанавливается электропитание и запускаются насосы, обеспечивающие работу ГД.
1.3.1. Краткие сведения о конструкции двигателей «MAN Diesel & Turbo» с электронным управлением серии МЕ/ME-C
Двигатели этого концерна широко применяются на морских судах и особенности их конструкции и вопросы технического использования в целом кратко освещены в отечественной русскоязычной литературе.
Считаю необходимым представить вниманию читателей краткое описание конструкции и подробное описание процедур пуска, обслуживания и остановки двигателей международной компании «MAN Diesel & Turbo» типа МЕ (описание работы САУ этих двигателей, которое будет полезно при изучении указанных процедур пуска, представлены в разделе 9 данной книги).
Двухтактные двигатели этой компании разрабатываются в Копенгагене, имеют диапазон мощности от 2 МВт до 84,2 МВт и устанавливаются на больших контейнеровозах, грузовых судах и танкерах.
Дизели напрямую связаны с гребными винтами. МОД типа MC с распределительным валом и цепным приводом не обеспечивают постоянство, оптимальные уровни давления впрыска и гибкое управление клапанами.
В двигателях типа МЕ-В привод клапанов осуществляется от распределительного вала, а привод ТНВД гидравлический. Система с электронным управлением и гидравлическими приводами, обеспечивает необходимую маневренность, эффективность и безопасность.
Управление ТНВД, выпускными и пусковыми клапанами в двигателях с электронным управлением серии 50–108 МЕ/МЕ-С осуществляется через блоки управления на цилиндрах CCU (Cylinder Control Unit) снабженные гидроприводами и управляющими клапанами NC.
Двигатели имеют гидравлическую станцию HPS (Hydraulic Power Supply), обеспечивающую поддержание постоянного высокого давления управляющего силового масла. При работе HPS масло забирается масляным насосом 1 из танка и после тщательной очистки в ФТО (2…5 мкм) поступает к аксиально-поршневым насосам, которые повышают давление управляющего масла до 175…250 бар и затем направляют его в блоки управления цилиндров HCU (Hydraulic Cylinder Unit). Схема гидравлического управления изображена на рисунке 1.5.
Блоки управления HCU включают в себя аккумуляторы силового масла, распределительные блоки, электронно-управляемые клапаны ELFI (Electronic Fuel Injection) управления подачей топлива и электронно-управляемые клапаны ELVA (Electronic Exhaust Valve Activation) для открытия-закрытия выпускного клапана, гидропривод впрыска топлива и гидропривод открытия выпускного клапана (Exhaust Valve Actuator).
Рис. 1.4. Гидравлическая станция двигателя серии МЕ [15]
Рис. 1.5. Внешний вид станции гидравлики двигателя серии МЕ [15]
Схема гидравлического управления изображена на рисунке 1.6.
Рис. 1.6. Схема гидравлического управления
Рис. 1.7. Внешний вид элементов блока управления на цилиндрах (HCU) [15].
Рис. 1.8б. Внешний вид элементов CCU [15].
На рисунке 1.9 изображены схемы открытия выпускных клапанов двигателей традиционной конструкции (рис. слева) и двигателей МЕ (рис. справа). Управление пусковыми клапанами в двигателях этих серий осуществляется электронно-управляемыми клапанами, которые смонтированы на главной магистрали пускового воздуха перед цилиндрами.
Рис. 1.9. Приводы для открытия выпускных клапанов двигателей серий МС(МС-С) и двигателей с электронным управлением серии МЕ [15]
Рис. 1.10. Расположение управляющих клапанов [27].
Расположение клапанов управления показано на рис. 1.10. Клапан ELFI управляет цикловой подачей топлива и обеспечивает различные варианты впрыска топлива. Подробно конструкция двигателе серии МЕ описана в литературе [9,15,16,43].
Рис. 1.11. Схема гидропривода ТНВД
ТНВД, представляет собой сервопоршень и впрыскивающий плунжер. При приеме сигнала от электронной системы управления вступает в действие быстродействующий золотниковый управляющий клапан ELFI, который управляется электрическим линейным электромотором, работающим внутри управляющего устройства. Перемещение золотника открывает доступ силового масла из аккумуляторов к поршню, который соединен с топливным плунжером. Из-за высокого давления масла, действующего на поршень, создается высокая скорость плунжера топливного насоса, в результате чего происходит быстрое нарастание давления топлива перед форсункой и резкий подъем иглы форсунки, приводящий к качественному впрыску топлива под высоким давлением.
Давление впрыскиваемого топлива поддерживается постоянным за все время открытия иглы. Максимальное давление впрыска топлива порядка 160–200 МПа обеспечивается во всем рабочем диапазоне частот вращения коленчатого вала дизеля. Окончание впрыска происходит также резко, как и начало впрыска. Электронная система посылает сигнал к управляющему клапану который с помощью быстродействующего золотника, моментально его передвигает на слив силового масла. Происходит резкая отсечка впрыска топлива в цилиндр.
Гидравлический модуль каждого цилиндра оснащен аккумулятором масла для обеспечения достаточно быстрого нагнетания масла, а также для предотвращения сильных колебаний давления.
В обычном двигателе оптимизация процесса сгорания топлива в цилиндре возможна лишь для одного режима, так как зависит от конкретного профиля кулака на распределительном валу. При наличии электронного управления в рамках описанной конструкции управление процессом сгорания топлива в цилиндрах производится в оптимальном варианте, так как электронная система мгновенно реагирует на любые варианты нагрузок дизеля, переходя на разные алгоритмы программы управления.
В отличие от традиционного ТНВД с кулачковым приводом, эта система впрыска может иметь регулируемый ход плунжера и подавать топливо под необходимым давлением и количеством при определенной нагрузке. Система может обеспечить как одиночный впрыск, так и двойной впрыск с варьированием впрыска по форме, фазам, продолжительности, давлению и т. п.
Система управления приводом выпускного клапана приводится в действие таким же способом, что и плунжер топливного насоса впрыска топлива, но в этом блоке запрограммировано также управление на время открытия и закрытия выпускного клапана.
Поршень первой ступени второй имеет демпфер, работающий в двух направлениях. Поршень второй ступени не имеет демпфера и находится непосредственно в прямом контакте с поршнем, который передает давление гидравлической системы для преобразования ее в поступательное движение штока выпускного клапана. Силовое масло из под этого поршня в конце движения выпускного клапана поступает в цилиндр поршня первой ступени, демпфируя и устраняя ударные нагрузки на седло и тарелку клапана.
Управление пусковыми клапанами тоже осуществляется электронно-управляемыми клапанами.
1.3.2. Техническое использование двигателей типа МЕ/ME-C
Рассмотрим процедуры пуска, обслуживания во время работы и остановки двигателей «MAN Diesel & Turbo» типа МЕ/ME-C. Они имеют ряд существенных особенностей [16].
Считаю необходимым предварительно кратко остановиться на топливоподготовке. Более подробная информация имеется в источниках [9,22,74]. Известно, что эффективная очистка тяжелых топлив может быть обеспечена только с помощью сепараторов. Кроме того, современные сепараторы по сравнению с фильтрами в 12…18 раз эффективнее удаляют алюмосиликаты [30]. Способность к отделению воды во многом зависит от разности плотностей топлива и воды (не менее 30 кг/м
), вязкости и производительности сепаратора. При подогреве тяжелого топлива вязкость снижается, а разность плотностей увеличивается, так как зависимость плотностей воды и топлива разная. Топливо плотностью до 1010 кг/м
при 15 °С при подогреве до 98 °С может быть успешно очищено от воды до 0,2 %. Плотность дистиллированной воды 960 кг/м
. Плотность же реальной пресной, содержащей, как известно, и некоторое количество солей, будет больше. Соленая морская вода имеет еще большую плотность.
«MAN Diesel & Turbo» при эксплуатации двигателей с электронным управлением серии МЕ/ME-C рекомендует использовать сепараторы 24 часа в сутки, кроме времени необходимого для их очистки. Производительность сепараторов должна соответствовать количеству, которое необходимо двигателю, плюс количество топлива, потребляемого в периоды, когда сепаратор останавливается для очистки.
Для эффективного удаления воды с помощью обычного сепаратора надо правильно выбрать гравитационный диск (см. инструкцию сепаратора).
Обычной практикой является наличие как минимум двух сепараторов для очистки топлива, а лучше трех (два параллельных пурификатора + кларификатор). Последовательное соединение сепараторов требует повышенной производительности, что снижает качество очистки.
Иногда в качестве дополнения к сепараторам может быть установлен гомогенизатор. Гомогенизатор всегда должен устанавливаться после сепараторов и перед фильтром тонкой очистки, чтобы свести к минимуму риск забивания фильтра из-за агломерации асфальтенов и не препятствовать эффективной работе сепаратора.
В качестве дополнения в системе топливоподготовки может быть установлен «горизонтальный» осветлитель – супердекантер (Super Decanter). Он успешно удаляет осадок перед обычным сепарированием и сводит к минимуму риск забивания сепараторов. Наряду с зарубежными гомогенезаторами заслуживает внимания возможность использования отечественных аппаратов, например, бироторного аппарата волновой обработки (патенты РФ № 2347153, № 70084).
Сепараторы типа FOPX сепарационной установки «ALKAP» (фирма «Лаваль») очищают топлива с плотностью до 1010 кг/м
(при 15 °С) и вязкостью до 700 сСт (при 50 °С) при безвахтенном обслуживании установки. Отсутствует гравитационный диск (вместо него проточный диск). Сепаратор собран как кларификатор, что повышает его эффективность (для отделения примесей используется все межтарелочное пространство) и облегчает его обслуживание, так как устраняется непростая процедура подбора регулировочной шайбы.
1.3.2.1. Подготовка к пуску двигателей «MAN Diesel & Turbo» типа МЕ и их систем
Мероприятия по подготовке к пуску представлены в таблице 1.1
Таблица 1.1. – Мероприятия при подготовке к пуску
Во время проворачивания необходимо проверить работоспособность устройства заземления гребного вала. Между корпусом судна и валом не должно быть разности потенциалов, которая ведет к разрушению подшипников валопровода.
1.3.2.2. Пуск двигателя типа МЕ
Таблица 1.2. Пуск двигателя типа МЕ
Таблица 1.3. – Характерные неисправности при пуске.
Дополнительные комментарии к таблице
В таблице «Неисправности при пуске ГД» указаны некоторые возможные причины сбоев при запуске, по которым может быть дана следующая дополнительная информация и комментарии.
Пункт 2
Двигатель обычно запускается, когда давление пускового воздуха превышает 10 бар. Однако компрессоры следует запускать, как только давление в пусковом воздушном ресивере станет ниже 25 бар.
Пункт 8
Процедура проверки, описывающая, как определить, что все пусковые клапаны в крышках цилиндров закрыты и герметичны, находится в Разделе 703–07 (инструкция по эксплуатации) [16]. Если пусковой клапан негерметичен во время работы двигателя, соответствующая пусковая воздушная трубка сильно нагревается. В этом случае пусковой клапан необходимо заменить и отремонтировать. Если двигатель не запускается по причинам, указанным в пункте 8, это обычно происходит в определенных положениях коленчатого вала.
Если это происходит во время маневрирования, реверсирование должно быть выполнено как можно быстрее, чтобы переместить коленчатый вал в другое положение, после чего двигатель может быть снова запущен в направлении, указанном телеграфом.
Пункт 14
Проверьте, есть ли напряжение на электромагнитном клапане, который управляет пусковым клапаном.
Если электромагнитный клапан активирован правильно, отследите неисправность, ослабляя по одной трубке на пути прохождения сигнала через систему, пока не будет обнаружен клапан, блокирующий сигнал. Неисправность может быть вызвана неисправным клапаном или причинами, указанными в пункте 15.
Пункт 15
Если отключение было вызвано слишком низким давлением или слишком высокой температурой, верните их к нормальному уровню. Затем сигнал остановки можно отменить, нажав соответствующий переключатель «сброса» на панели управления.
Пункт 19
Реле тепловой защиты электродвигателя ограничивает количество пусков подряд (3…4). Для отключения воздуходувки (вспомогательного нагнетателя) необходима правильная регулировка и работоспособность прессостата давления наддувочного воздуха (0,4…0,6 бар).
Проверки при запуске