Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (Andrew Gelman) - скачать книгу в FB2, EPUB, PDF на Bookz
bannerbanner
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (Andrew Gelman)
Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Оценить:

5

Поделиться

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (Andrew Gelman)

Автор: Andrew Gelman
Язык: Английский
Размер: 385662 Кб
ISBN: 9780470090442
Бесплатный фрагмент: fb2.ziptxttxt.ziprtf.zipa4.pdfa6.pdfepubfb3

Полная версия:

Описание книги:

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Читать онлайн:

Спасибо за оценку! Будем признательны, если Вы оставите комментарий о данном произведении.

Добавить отзыв:

bannerbanner