Г. Самбурский.

Технологические и организационные аспекты процессов получения воды питьевого качества



скачать книгу бесплатно

Прямое определение органических примесей в воде затруднено, поэтому их содержание оценивается косвенным методом – по окисляемости (мг О/л). В качестве окислителя чаще всего применяют перманганат калия (KMnO4). Более сложным является альтернативное непрямое определение органических примесей – общее содержание углерода, ТОС (Total Organic Carbon).

С конца 1990-х годов серьезное внимание уделяется опасности попадания в питьевую воду крупных городов стероидов и фармацевтических веществ (см. напр., [119,120]).

Данные по токсикологии металлов, в частности, новые результаты по изучению канцерогенных свойств соединений хрома, приведены в [120—130]. Анализ воздействия на человеческий организм и методов контроля содержания фторид-ионов в питьевой воде – в [122,123]. В обзорах [131—140] приведено описание новых методов анализа воды и методик определения содержания в ней загрязняющих веществ. Методы масс-спектрометрии дают возможность определить присутствие органических соединений на уровне следовых концентраций [133 – 139].


Таблица 4. Группа показателей – химические

рН – водородный показатель

Определение рН или водородного показателя воды – это вычисление значений показателя концентрации ионов гидроксония (водородных катионов), который математически равен отрицательному логарифму значения концентрации водородных ионов:

рН = -1g (Н+)


Молекулу воды относится к так называемым слабым электролитам. Степень ее собственной диссоциации на ионы (ион водорода Н+ и гидроксильный ион ОН-) очень невелика. Произведение концентраций этих ионов называется ионным произведением воды Кw:

Kw = (H+) (OH-) = (10—7) (10—7) = 10—14 (моль/л) 2


Так, оценивают, что из 10 млн. молекул воды только одна диссоциирует на ион водорода и гидроксильный ион:

Н2О – ›Н+ + ОН-


Деминерализованная чистая вода должна в идеале иметь значение рН ? 7.

Присутствие солей, содержащих катионы и анионы слабых кислот и оснований, оказывает сильное влияние на значение водородного показателя:

Mg2+?H2O + H2O ? MgOH+ + H3O+

CO32- + H2O ? HCO3- + OH- и т. д.

Таким образом, рН воды всегда определяется соотношением концентраций ионов, которые участвуют в кислотно-основном равновесии для данной пробы воды. Если концентрация образующихся гидроксильных ионов выше, чем концентрация ионов водорода, то показатель рН имеет значение больше 7 и среда характеризуется, как щелочная. Если выше концентрация ионов водорода (ионов гидроксония), то pH меньше 7 и среда характеризуется, как кислая. Общие требования к качеству воды приведены в гигиенических нормативах [37,38].

Соответственно, активная реакция воды в зависимости от концентрации водородных ионов может быть нейтральной, кислой или щелочной (табл. 5).


Таблица 5.

Определение рН индикаторным способом

Показатель – общая минерализация

Показатель общей минерализации характеризует суммарную концентрация всех ионов (анионов, катионов) и недиссоциированных соединений, а также растворенных в воде органических веществ, которая имеет единицы измерения грамм на литр (г/л) или на кубический дециметр (г/дм3).

Фактически, общая минерализация при определении в воде может быть по значению близка с показателем «сухой остаток», который анализируют посредством выпаривания пробы воды определенного объема, которую предварительно профильтровывают через бумажный фильтр, а далее высушивают при температуре 105—120 °С до постоянного веса. Следует учесть, что сухой осадок не учитывает фракцию отогнанных при выпаривании органических соединений. Сухой остаток можно рассчитать также путем суммирования приведенных значений концентраций анионов и катионов, определенных различными методами химического анализа. По действующим нормативам общая минерализация питьевой воды не должна превышать 1 г/л. [37,38,43, 44—46]

Показатель – жесткость воды

Наличие жесткости воды обусловлено присутствием в любой воде катионов некоторых металлов, в том числе: кальция (Са2+), магния (Mg2+), стронция (Sr2+), бария (Ва2+), железа (Fe2+, Fe3+), марганца (Mn2+) и некоторых других.

Вследствие того факта, что показатели значения концентрации ионов кальция и магния для воды естественного происхождения практически во всех случаях выше, чем для ионов других металлов, общее значение показателя жесткости определяют, основываясь на анализе концентраций именно катионов кальция и магния. В целом, значение общей жесткости определяется приведенным сложением значений карбонатной (временной, устраняемой кипячением) и некарбонатной (постоянной) жесткости. В свою очередь, постоянная жесткость вызывается присутствием в воде кальция и магния в виде сульфатов, хлоридов, силикатов, фосфатов.

Жесткость воды, вызванная наличием катионов кальция и магния, связана с процессами образования с присутствующими в воде карбонатными и гидроксильными ионами малорастворимых соединений кальция и магния. Имеющиеся в природных водах гидрокарбонатные анионы при повышении температуры разлагаются на углекислый газ и ион угольной кислоты:

2СО3—›СО2+СО32-2О

В том случае, если в воде присутствуют катионы жесткости, при взаимодействии с карбонатными анионами при высоких температурах происходит образование солей с очень низкой растворимостью. Таким образом воды с высокой жесткостью могут образовывать накипь и отложения на разного рода бытовой технике, котлах при нагревании и в трубопроводах горячей воды. Точно также катионы жесткости образуют труднорастворимые соли с жирными кислотами, которые входят в состав различных моющих средств, что зачастую является существенной помехой при использовании жесткой воды для разных видов стирки.

Для определения количественных значений жесткость воды используют процедуру титрования в присутствии индикатора мурексида или хрома темного синего хим. реактивом «трилон – Б» при значении рН пробы около 9. Оценивают жесткость воды, исходя из количества трилона-Б, израсходованного для изменения окраски индикатора. Для описания концентрации катионов жесткости в воде используют единицы измерения миллиграмм-эквивалент на литр (мг-экв/л) или в милли-моль на литр (ммоль/л), а также градусы жесткости. В РФ жесткость воды выражают в ммоль/л (в единицах системы СИ) или в мг-экв/л. Жесткость воды, пригодной для питьевых целей, ограничена значением концентрацией 7 ммоль/л. [1,37, 46]

Показатель – окисляемость воды

Процедура определения окисляемости воды основывается на присутствии в рассматриваемой анализируемой пробе воды органических веществ и ряда легко окисляющихся неорганических примесей, таких, как железо двухвалентное, сероводород, сульфиты и т. д. Собственно окисляемость воды, или, иначе говоря, химическое потребление кислорода (ХПК), следует анализировать посредством определения количества кислорода, который расходуется в процессе химического окисления органических и неорганических веществ, присутствующих в воде. Сам процесс окисления реализуется под действием разного рода окислителей и используют при этом ряд известных методов определения окисляемости воды: перманганатный, иодатный, бихроматный и т.п.; собственное название метода при этом зависит от типа используемого в процессе анализа окислителя. Наиболее часто в практике водоподготовки применяется метод анализа на основе использования перманганата калия – перманганатная окисляемость. Перманганатная окисляемость для питьевой воды не должна быть выше значения 5 мг/л. [1, 37,44—46]

Показатель органические и неорганические вещества

По имеющимся оценкам, общее суммарное количество химических веществ и химических соединений, которые в результате хозяйственной деятельности человека загрязняют природные воды и, соответственно, способны оказывать негативное влияние на состояние здоровья человека, непрерывно увеличивается, составляя на сегодняшний день уже более 50000 позиций. Следовательно, проведение анализов по определению концентрации всех известных химических веществ, для которых обнаружена способность присутствия в воде, практически нереально.

Тем не менее, есть возможность систематизировать химические вещества, которые могут нанести ущерб для здоровья человека из числа тех, что наиболее часто встречаются в природных водах и/или образуются при обработке воды. Таким образом, в СанПиН 2.1.4.1074—01 представлены предельно допустимые концентрации таких химических веществ. При обнаружении и проявлении в источнике водоснабжения необходимо определять их концентрацию в природной или обработанной воде, а в случае превышения допустимых гигиенических нормативов ПДК проводить доочистку воды. [9,37,43,44]

1.2 Вещества, являющиеся основными загрязнителями питьевой воды

Железо. Повышенное содержание железa (более, чем 0,3 мг/л), которое может присутствовать в воде в виде гидрокарбонатов, сульфатов, хлоридов, различных органических комплексных соединений или в форме высокодисперсной взвеси, придает воде характерную неприятную красно-коричневую окраску, существенно ухудшает вкус, способствует развитию железобактерий, образованию и отложению осадка в коммуникациях, и засорению труб. Кроме того, если в такой воде осуществлять стирку белья, то на нем останутся ржавые пятна. Подобные характерные пятна появляются на посуде, раковинах и ваннах. В случае употребления для питья воды с содержанием железа выше нормативных требований, потребитель повышает риск развития различных заболеваний печени, аллергических реакций и пр.

Марганец. Повышенные концентрации марганца в воде оказывает вредное воздействие на здоровье, в т.ч. мутагенное действие на человека. При уровнях значений концентрации в системе водоснабжения, превышающих 0,1 мг/л, марганец приводит к появлению черных пятен на сантехническом оборудовании и белье, а также к неприятному привкусу напитков. Кроме этого, наличие марганца в питьевой воде способно вызывать образование и накопление осадков и отложений в системе распределения воды. Уже при концентрации 0,02 мг/л марганец доказано влияет на образовании пленки на трубах, которая отслаивается далее в виде черного осадка.

Хлориды и сульфаты. В ряде случаев в питьевой воде встречается соли соляной и серной кислот (хлориды и сульфаты). Эти соединения придают воде, соответственно, соленый и горько-соленый привкус. Использование воды с повышенным содержанием сульфатов и хлоридов приводит к нарушению деятельности желудочно-кишечного тракта. Согласно [37] вода, для которой на один литр приходится более 350 мг хлоридов и/или более 500 мг сульфатов, уже считается неблагоприятной для здоровья.

Кальций и магний. Содержание в воде катионов кальция и магния сообщает воде жесткость, как было указано в п. 1.2. Жесткость воды обычно выражается в мг-экв/л, хотя есть иные единицы измерения (см. разд. 1.2). Физиологически благоприятный для человека показатель уровня жесткости воды составляет 3,0—3,5 мг-экв/л. Сильно минерализованная, т.е. насыщенная солями вода причиняет массу неудобств: существенно сложнее готовить овощи и мясо, при стирках разного типа увеличивается расход чистящих средств, образующаяся накипь портит теплообменное оборудование. Жесткость выше значения 4,5 мг-экв/л уже приводит к интенсивному накоплению осадка как в системе водоснабжения, так и на сантехнических приборах, мешает работе бытовых приборов. Для большинства объектов бытовой техники, согласно инструкции по эксплуатации, жесткость используемой воды не должна быть более, чем 1,5—2,0 мг-экв/л. Постоянное употребление в качестве питьевой воды с повышенной жесткостью имеет следствием для человека накопление солей в организме и, в конечном итоге, может стать причиной заболевания суставов (например, артриты, полиартриты), развитию мочекаменной болезни, образования камней в почках, желчном пузырях.

Фтор. Учитывая то, что вода также во многом отвечает за состояние зубов человека, есть множество данных, впрочем неоднозначно трактуемых, свидетельствующих о зависимости содержания фтора в воде и частоты заболевания кариесом. Ранее считалось, что фторирование воды эффективно для профилактики кариеса, особенно у детей. Однако содержание фторидов в питьевой воде выше санитарных норм (не более 1,5 мг/л) оказывает вредное воздействие на здоровье человека. Фтор является активным в биологическом отношении микроэлементом, содержание которого в питьевой воде во избежание кариеса или флюороза зубов может быть в пределах 0,7—1,5 мг/л.

Ряд примесей являются непосредственно опасными для организма человека.

Сульфиды. Наличие в воде сульфидов (или сероводорода) придает воде характерный неприятный запах, способствует интенсификации процессов коррозии трубопроводов и повышает вероятность их зарастания вследствие развития серобактерий. Сульфиды оказывают на человека прямое токсическое действие, и вызывают раздражающее действие для кожи, а сероводород сам по себе ядовит для живых организмов.

Мышьяк. По данным отечественных исследователей, употребление воды, содержащей 0,2—1 мг/л мышьяка, вызывает расстройство центральной, и особенно периферической, нервной системы с последующим развитием множественных невритов. Безвредной в [37] признана концентрация мышьяка 0,05 мг/л. Однако имеющиеся данные позволяют говорить о том, что ПДК по мышьяку необходимо сделать более жестким [39,42].

Свинец. Об опасности для здоровья содержания в воде свинца специалисты санитарно-гигиенического направления впервые заговорили в связи с массовыми интоксикациями, которые возникли при использовании на водопроводах свинцовых труб. Однако повышенные концентрации свинца могут встречаться также и в подземных водах. Вода с точки зрения [37] считается безвредной в том случае, если содержание в ней свинца не более 0,03 мг/л. Данный показатель также должен учитываться, исходя из оценки риска для здоровья населения. [39,40,42]

Стронций достаточно широко распространен для природных вод, при этом значения его концентрации варьируются в довольно широких пределах (от 0,1 до 45 мг/л). Длительное поступление стронция в больших количествах в организм ведет к функциональным изменениям печени. Вместе с тем продолжительное употребление питьевой воды, содержащей стронций на уровне значения концентрации 7 мг/л, не вызывает функциональных и морфологических изменений в тканях, органах и в целостном организме человека. В настоящее время именно величина принята в качестве норматива содержания стронция для воды питьевого качества.

Нитраты и нитриты. Согласно общепризнанным современным научным данным, нитраты в кишечнике человека под влиянием микробиологических процессов восстанавливаются до нитритов. Всасывание нитратов ведет к образованию метгемоглобина и к частичной потере активности гемоглобина в процессах переноса кислорода. Потенциальный риск – развитие метгемоглобинемии, т.е. той или иной степень кислородного голодания, симптомы которого проявляются в первую очередь у детей, особенно грудного возраста. Метгемоглобинемия проявляется цианозом (синюхой), увеличением содержания в крови метгемоглобина, снижением артериального давления. Эти симптомы специалисты регистрируют не только у детей, но и у взрослых. Грудные дети заболевают несколько чаще при искусственном вскармливании, в том случае, если сухие молочные смеси разводятся водой, в которой содержатся нитраты, или при прямом употреблении этой воды для питья. Дети более старшего возраста существенно меньше подвержены метгемоглобинемии, а если и заболевают, то болезнь протекает менее тяжело, так как у более старших детей сильнее развиты компенсаторные механизмы. Употребление воды, содержащей 2—11 мг/л нитратов, еще не вызывает повышения в крови уровня метгемоглобина, в то время, как употребление для питья воды с концентрацией 50—100 мг/л серьезно увеличивает этот уровень. Содержание нитратов в питьевой воде на уровне 10 мг/л является безвредным.

Уран – в целом распространенный в природных водах радиоактивный элемент. Особенно заметные концентрации урана могут встречаться в подземных водоисточниках. В основу нормирования концентрации урана заложены не известные радиоактивные свойства, а санитарно-токсическое влияние в качестве химического элемента-загрязнителя. Допустимое содержание концентрации урана в питьевой воде равно 1,7 мг/л. [37].

Кадмий, накапливаясь в почках, вызывает гипертонию, ослабляет общий иммунитет организма, оказывает негативное воздействие на умственные способности человека, т.к. вытесняет необходимый для нормальной работы мозга цинк. Кроме того, период полувыведения кадмия очень высок и к его остаточным концентрациям следует относиться чрезвычайно внимательно.

Алюминий, имея свойство накапливаться в организме человека, способен быть причиной старческого слабоумия, повышенной нервной возбудимости, вызывать различные нарушения моторных реакций у детей, анемию, головные боли. Кроме этого, в зоне ответственности алюминия заболевание почек, печени, колиты, неврологические изменения, связанные с болезнью Паркинсона. [44,119,121].

Соответственно, строго регламентируется и предельно допустимая концентрация в воде ряда веществ, применяемых для осветления воды (например, полиакриламида, сернокислого алюминия). [39,40]

Органические вещества, вызывающее повышенное значение перманганатной окисляемости, отрицательно влияют на печень, почки, репродуктивную функцию, а также на центральную нервную и иммунную системы человека. Вода, имеющая перманганатную окисляемость выше 2 мг 02/л, не рекомендуется к употреблению.

Токсичность вышеназванных компонентов не настолько велика, чтобы вызвать прямое острое отравление, но при длительном употреблении воды, содержащей упомянутые вещества в концентрациях выше нормативных, может развиться хроническая интоксикация, приводящая в итоге к той или иной патологии. Следует учитывать также, что токсическое воздействие веществ может проявляться не только при пероральном поступлении их с водой, но и при всасывании через кожу в процессе гигиенических (душ, ванна) или оздоровительных (плавательные бассейны) процедур.

Таким образом, чтобы ответить на вопрос о пригодности воды для питья необходимо оценить образец как минимум по вышеуказанным параметрам. [9,14,119,121].

1.3 Общие задачи водоподготовки

Водоподготовка – обработка воды, поступающей из природного водоисточника, для приведения её качества до требуемых показателей. Водоподготовка включает следующие основные методы обработки:

осветление (удаление из воды коагуляцией, отстаиванием и фильтрованием коллоидальных и суспензированных загрязнений);

умягчение (устранение жёсткости воды осаждением солей кальция и магния, известью и содой или удаление их из воды катионированием);

обессоливание и обескремнивание (ионный обмен или дистилляцией в испарителях);

удаление растворённых газов (термическим или химическим методом) и окислов железа и меди (фильтрованием).

биологическая очистка воды от бактерий, вирусов и других микроорганизмов. В настоящее время в основном используется хлор, озон и УФ-стерилизация.

улучшение органолептических свойств воды (удаление из воды веществ, придающих воде запах (сероводород, хлор), и ряда органических веществ).

В задачи водоподготовки входит:

Удаление взвешенных частиц.

Нерастворимые вещества в воде могут присутствовать в твердой или в коллоидной формах, попадая в воду либо из почвы, либо в ходе одной из технологических стадий, например, при фильтровании через фильтры с наполнителем. Как правило, удаление таких частиц осуществляется путем их задерживания, перед чем при необходимости проводят насыщение воды кислородом и/или коагуляцию. В основном задерживание посторонних частиц проводят с помощью фильтров – с наполнителем, рукавных или погружных.

Удаление и дезактивация посторонних микроорганизмов.

Обнаруживаемые в воде посторонние биологические структуры могут попадать в нее из источника происхождения (в случае поверхностных вод) или являться результатом загрязнения в ходе производственного процесса. Перед использованием они должны быть удалены или инактивированы. В зависимости от размера посторонние микроорганизмы подразделяют на простейшие, плесени и водоросли, на бактерии и, наконец, вирусы. Удаление этих микроорганизмов осуществляется путем их физического удержания (адсорбции). Инактивацию, как правило, проводят, разрушая клеточную структуру и генетический материал клетки методами химического окисления (хлором, озоном, перекисью водорода и т.п.) или ультрафиолетового облучения.

Удаление нежелательных химических соединений.

Под нежелательными химическими соединениями, как стабильными, так и нестабильными, понимают вещества природного происхождения (которые отражают геологические характеристики водоносного слоя) и вещества, попавшие в воду вследствие человеческой деятельности (железо, марганец, фториды, мышьяк, органические соединения и др.).



скачать книгу бесплатно

страницы: 1 2 3