banner banner banner
Дерзкие мысли о климате
Дерзкие мысли о климате
Оценить:
Рейтинг: 0

Полная версия:

Дерзкие мысли о климате

скачать книгу бесплатно


Таким образом, выясняется, что стратифицированная по плотности пресная вода не способна передавать теплоту в сторону ледяного покрова ни конвективной, ни кондуктивной теплопроводностью, то есть не может участвовать в теплообмене со льдом и с атмосферой иначе, чем претерпевая фазовые превращения. Тепловой поток через лёд в этом случае заполняется лишь теплотой кристаллизации и какой-то незначительной величиной теплоты, передаваемой при охлаждении самого льда. Это подтверждается натурными наблюдениями зимнего режима озер, из которых следует, что температурный профиль в них ниже льда в течение всей зимы чаще всего сохраняется неизменным.

Иначе, при охлаждении стратифицируется морская вода. Утяжеленная солями (при их концентрации более 24,7‰) увеличенную плотность вода приобретает параллельно с охлаждением до температуры замерзания (минус 1,3 °C и ниже). Причем вода с большей соленостью, имея большую плотность, может удерживаться у дна даже будучи несколько нагретой выше температуры замерзания. Образуется так называемый галоклин. Вода с одинаковой соленостью, участвуя в конвекции, сопровождающейся передачей тепла с глубин моря, не может замерзать, пока вся не охладится до температуры, близкой к температуре замерзания. Толщина этого слоя воды, называемого пикноклином, составляет десятки и даже сотни метров. Даже при малом нагреве выше температур замерзания это обеспечивает водной массе запас тепла, долго или полностью компенсирующий потерю его с поверхности воды. Поэтому моря замерзают всегда позднее пресных водоёмов или вовсе не замерзают. В. Ф. Захаров (1981) показал, что даже на Северном полюсе океан мог бы не замерзать, если бы поверхностный слой воды в нём не был бы существенно опреснен и не подстилался бы сравнительно близко расположенным (на глубине около 50 м) галоклином.

Из охарактеризованных условий, предшествующих замерзанию любого водоёма, отнюдь не следует, что после замерзания, он не может терять в атмосферу какое-то количество вновь приобретенного тепла через ледяной покров. Но вероятность такой теплопередачи не подтверждается наблюдениями в Северном Ледовитом океане.

Тем не менее, живуче и противоположное мнение о том, что через лёд Арктического бассейна всё же может теряться значительное количество тепла, не участвующего в фазовом превращении.

Это мнение возродилось с той поры, когда было обнаружено, что в Северный Ледовитый океан постоянно поступает огромное количество тепла с притоком вод из Атлантического океана. Надо было найти, как и куда теряется это тепло. В конечном счете возобладало представление о возможности потери тепла через ледяной покров. Насколько оно верно мы рассмотрим далее.

Среди физических свойств воды для суждений о теплообмене водоёмов с окружающей средой, необходимо отметить ее большую удельную теплоёмкость. Исключая жидкие водород и аммиак, удельная теплоёмкость воды оказывается выше, чем у всех остальных известных нам веществ. Это свойство обеспечивает возможность аккумулирования и последующего перераспределения гидросферой огромных запасов тепловой энергии, получаемых Землей от Солнца, можно, например, отметить, что, несмотря на несравнимо больший объём атмосферы Земли, запас тепла в Мировом океане превышает запас его в атмосфере в тысячи раз. Поэтому тепловое влияние атмосферы на океан в общем случае всегда оказывается намного менее значительным, чем влияние океана на атмосферу.

Но атмосфера, не имея столь больших «запасов» тепла, весьма активно перераспределяет его по поверхности земного шара как постоянно поступающее, так и теряющееся в космос, количество за счет очень большой теплоёмкости парообразования и обратных ему процессов конденсации и сублимации. В среднем на всей Земле постоянный расход тепла на испарение составляет 83 % от усваиваемой радиации. Столько же его высвобождается в атмосфере при конденсации. При этом 35 % всего внешнего теплооборота Земли составляет теплота фазовых превращений льда в атмосфере. Такое связывающее теплообмен поверхности Земли с космическим пространством действие атмосферы наблюдается в современную эпоху, когда средняя величина испарения составляет 113 см

в год. Когда же испарение и конденсация сокращаются или увеличиваются, то соответственно уменьшается или увеличивается тепловое посредничество атмосферы в теплообмене земной поверхности с космосом. При этом уменьшение испарения приводит к угасанию парникового эффекта атмосферы, увеличивается континентальность климата, происходит общее охлаждение Земли. Однако водные поверхности, доведенные до замерзания, резко ограничивают дальнейшую потерю тепла, причем не только фактом образования ледяного покрова, но и, как увидим далее, под влиянием некоторых важных особенностей его намерзания и таяния.

Пока же заметим, что большая удельная тепловая ёмкость фазового перехода «вода – лед – вода» является регулятором не только ежегодного теплообмена Земли с окружающей средой, но и ведущим буферным регулятором многолетнего и даже многовекового теплового состояния её биосферы.

Сейчас модно стало говорить о возможности перегрева поверхности Земли громадным количеством тепла, вырабатываемого человечеством. Как следствие перегрева называется ускорение таяния ледников и опасное повышение уровня Мирового океана. Интересно, как могут противостоять этому антропогенному фактору массы льда?

В состоянии оледенения, главным образом в массивах гигантских покровных ледников Антарктиды и Гренландии, находится около 27 млн. км

воды, или 2 % всего объема Мирового океана. Средняя толщина этой массы льда составляет 1600 м.

Сжигая все виды топлива во всех топках и двигателях, человек сейчас высвобождает сверх естественного прихода тепла от Солнца более 2 ? 10

кДж за год. Если все это количество тепла полностью направить только на таяние ледников, то за год они могут стаять лишь на 4 см, вызвав подъём уровня Мирового океана всего на 1,8 мм. Фактически вероятное воздействие этого тепла окажется, по меньшей мере, в 30 раз менее заметным и его последствия не могут быть зафиксированы наблюдениями даже в случае, если тепла будет вырабатываться на порядок больше.

Более ощутимое тепловое воздействие может оказать непреднамеренное затемнение поверхности ледников промышленно – энергетическими выбросами в атмосферу, уменьшающими их альбедо. Поэтому сохранение чистоты атмосферы и снежно-ледниковых покровов, по-видимому, является первостепенной профилактической мерой против возможных нежелательных затоплений суши и вообще модификаций климата через посредство ледяных поверхностей.

Глава 3. Где еще мы ошибаемся?

Определяйте значение слов, и вы избавите свет от половины его заблуждений.

    А. С. Пушкин

Неопределенности в объяснениях физических явлений и непреднамеренные ошибки, как испорченный компас, способны увести сознание с правильного пути к истине. От них особенно важно освободиться, когда мысль направляется по пути новых знаний. Старый багаж ошибок способен помешать стыковке всего ценного, что уже хорошо изучено с тем, что появляется вновь на пути развития наших представлений о природе. Уточнять прижившиеся толкования и исправлять чужие ошибки – дело ответственное и неблагодарное, но мы отважимся на него, поскольку видим в этом насущную необходимость.

3.1. Коротко о формах теплообмена

Начнем с некоторых частных, но необходимых пояснений к элементарным определениям термодинамики.

Под термином теплообмен чаще всего толкуется самопроизвольный процесс передачи тепловой энергии от более нагретого тела к менее нагретому.

К сожалению такое толкование страдает неопределенностью, хотя бы уже потому, что под термином «нагрев» можно понимать разные тепловые явления: либо изменения температуры тел, либо изменения их энтальпии (теплосодержания), либо то и другое вместе взятое. Но изменения энтальпии, например, при замене воды льдом, имеющим меньшую энтальпию, или наоборот, могут не вызываться различиями температуры нагрева и даже протеканием самого теплообмена в том смысле, в каком он определяется выше.

Поскольку от подобных неопределенностей начинается цепная реакция путаниц и новых неопределенностей, условимся понимать под термином «теплообмен» просто всякую передачу теплоты от одной вещественной среды к другой. Отметим важнейшие понятия о формах обмена тепловой энергией между телами.

Теплопроводностью называется теплообмен в неравномерно нагретом теле (среде), имеющей атомно-молекулярный характер, не связанный с движением самого тела, чтобы подчеркнуть суть этого процесса, его часто называют молекулярной теплопроводностью, что не относится к металлам, поскольку в них перенос энергии в основном осуществляется электронами проводимости. Например, принимается, что перенос тепла во льду осуществляется за счет связанных колебаний частиц, образующих кристаллическую решетку. Чтобы подчеркнуть характер происходящей при этом передачи тепла, процесс часто называют кондуктивной теплопроводностью или кондуктивным теплообменом.

Обязательным условием теплопроводности является наличие вещественной среды и непрерывной разности температуры (температурного градиента) в ней, то есть отсутствие изотермичности. Поэтому вещественная среда с одинаковой температурой не может осуществлять теплообмен, пока в ней не сформировался градиент температуры, о чём иногда забывается.

Конвективным теплообменом называется перенос теплоты в неравномерно нагретой среде жидкости или газа путём движения самой среды. В природе конвективный теплообмен чаще всего возбуждается действием силы тяготения из-за неравномерного нагрева и, следовательно, возникающих, в силу этого различий в плотности участков подвижной среды, находящейся на разных уровнях. Такой теплообмен называют еще естественной (свободной) конвекцией, характеризующейся перемещением среды по вертикали. Конвекция водной массы, сопровождающаяся ее плотностной стратификацией, имеет большое значение в формировании условий замерзания и зимней жизни водоёмов.

Адвективным теплообменом (адвекцией) называют горизонтальный перенос атмосферы, а вместе с ней и тепловой энергии. В последнее время этот термин часто стал распространяться и на случай переноса тепла с горизонтальными перемещениями воды и льда, например, морскими течениями. Это сугубо географический термин, поскольку в технике такой перенос принято называть вынужденной конвекцией.

Лучистым теплообменом называется перенос тепловой энергии между телами вследствие испускания лучей или электромагнитного излучения (радиации), что может происходить и даже лучше происходит при отсутствии промежуточной среды. Практически вся тепловая энергия, поступающая на Землю от Солнца, переносится лучистым теплообменом в виде коротковолновой радиации. Столько же Земля теряет тепла в космос путём длинноволнового излучения.

Важно заметить, что скорость распространения лучей не зависит от их длины и всегда равна скорости света. Лучи не могут нигде задерживаться иначе, чем путём поглощения одновременно нагревающейся материальной средой, которой они достигают и через которую проникают, или путём превращения в другую форму энергии. Световая энергия поглощенных лучей, переходящая в другие различные формы энергии среды, частично или полностью переизлучается средой на частотах, отличных от частоты поглощенного излучения. Недостаточное внимание к особенностям трансформации лучистой энергии нередко как увидим далее, порождает неясности толкования её динамики в атмосфере.

Лёд и снег играют большую роль в регулировании лучистого теплообмена Земли с окружающим космическим пространством в силу их значительных отражательных способностей.

Обратим внимание на мало известный в физической географии теплообмен при изотермическом изменении энтальпии масс. Этот теплообмен, в результате которого изменение количества теплоты (энтальпии) в определенной массе вещественной среды, не вызывается разностью температуры и не сопровождается ею. Чаще всего он происходит после независимо свершившегося фазового превращения в среде и вследствие переноса масс разного агрегатного состояния. Примером такого теплообмена может служить случай простой замены в водоёме массы льда равнозначной массой воды. В Арктическом бассейне такие явления постоянно происходят вследствие притока атлантических вод и обратно направленного выноса дрейфующих льдов в Атлантику. Невнимание к факту существования такого вида теплообмена породило целый ряд неясностей в описании процессов теплообмена и тепловых балансов полярных водоёмов, что нам еще предстоит далее обсудить особо.

В природе несколько видов теплообмена, действующих одновременно, дополняя один другим или, наоборот, сдерживая теплообмен одной формы другой. Например, на водоёме лёд намерзает за счет кондуктивного отвода теплоты кристаллизации в атмосферу и одновременно может дрейфовать, то есть участвовать в адвекции. Намерзая, под воздействием холодной атмосферы, он одновременно может подтаивать под действием проникающей солнечной радиации, нагревающей воду и конвективно передающей теплоту обратно льду и так далее. Выделить конкретную величину теплового влияния той или иной формы теплообмена не всегда возможно, но четкое представление о физических условиях таких процессов намного упрощает эту задачу.

3.2. «Туман» вокруг истины

Нет смысла подробно объяснять, что такое фазовый переход, поскольку достаточно твердые представления об этом даются уже в общеобразовательной школе. Но обратим внимание на нередкие случаи непреднамеренного искажения этих представлений, порождающих паралогизмы и целый ряд вытекающих из них сложностей в изучении и описании тепловых явлений в гидросфере.

Фазовым переходом первого рода называется термодинамический процесс, при котором энтальпия, плотность и другие характеристики вещественной среды изменяются скачком. Для осуществления такого перехода необходимо подводить или отводить теплоту, называемую теплотой фазового перехода и измеряемую скачком энтальпии при фазовом переходе в условиях постоянства температуры и давления.

Теплота фазового превращения для уточнения направленности перехода, например, «вода – лёд» называется либо теплотой кристаллизации, то есть количеством тепла, отводимым от воды при затвердении и соответствующем уменьшении её энтальпии, либо теплотой плавления – количеством тепла, подводимым для перехода льда в воду при соответствующем увеличении энтальпии. Для других случаев фазового перехода первого рода применяются другие термины, например, теплота испарения, теплота сублимации и так далее.

Из справочных источников ныне исчезает менее строгий термин «скрытая теплота», характеризующий изменение энтальпии при фазовом переходе. Недостатком толкования старого термина была не столько его некоторая неопределенность, сколько возможность нечеткого толкования следовавших за ним пояснений, давших пищу для заблуждений в понимании теплообмена при фазовом переходе.

Вот типичный пример прежнего толкования:

«Скрытая теплота – количество теплоты, поглощаемого телом или системой тел при фазовых превращениях (плавлении, испарении и тому подобное) без изменения температуры тела и выделяемое телом при обратном фазовом переходе (отвердении, конденсации и т. д.)» (БСЭ, изд. 2-е, т. 39, 1956). Здесь причастия «поглощаемое» и «выделяемое» как бы наделяют фазовый переход мистической способностью поглощать «всасывать» или «выделять», как независимый источник, теплоту. Старый термин, вместе с его неудачным дополнением, отжил, а следы непреднамеренно порожденной двусмысленности дают о себе знать.

В одной из работ доктора наук профессора читаем: «Процессы охлаждения воды и выделения тепла при кристаллизации льда взаимосвязаны». Не сложно заметить, что «охлаждение» и «выделение» тепла – это одно и то же. Здесь отнюдь не два самостоятельных процесса, между которыми надо искать взаимосвязь. Но когда допущено раздвоение (дуализм), можно не удивляться далее вытекающему из него курьезному рассуждению: «Если бы эти процессы не имели связи между собой, то в период замерзания вода в реке настолько переохладилась, что полностью превратилась бы в лёд, или наоборот, при образовании льда выделялось бы столько тепла, что весь процесс льдообразования прекратился бы вовсе, так как температура воды была бы значительно выше 0°».

Рис. 3. Типичный ход температуры воздуха (пунктирная линия) и воды (кривая) перед образованием на ней льда. Временное падение температуры воды ниже 0 °C вызывается её переохлаждением из-за отсутствия ядер кристаллизации.

В более известной, неоднократно переизданной работе В. В. Шулейкина (1962, с.70) можно прочесть: «При таянии каждого грамма льда поглощается, как известно, около 80 кал, которые отнимаются от окружающей воды». Это уже грубая ошибка – от воды, покрытой льдом, теплота таяния отниматься не может, поскольку в присутствии льда вода уже предельно охлаждена и, далее отдавая тепло, может только замерзать. В этой же работе, как итог всех рассуждений, показан тепловой баланс «Ледовитого» моря, в котором теплота кристаллизации значится в приходе тепла морю, а теплота плавления – в расходе. Здесь уже все поставлено с ног на голову. Я не умолчал фамилию автора этой широко известной работы, безусловно талантливого и крупного ученого, академика, чтобы показать, как за спиной его авторитета в науку проникла ошибка, далеко уводящая от истины. К слову сказать, мои ранние попытки указать на эту ошибку всегда оборачивались против меня же. Зато публиковались работы, призванные как бы развеять туман над неясностями физики фазовых превращений. Но туман ещё более сгущался.

В работе тоже доктора наук профессора, адресованной специалистам и студентам, для этого используется известный график типичного хода температуры начала образования льда в воде дополненный нами (рис. 3).

Он объясняет отклонение графика температуры воды вверх тем, что «с возрастанием интенсивности кристаллизации увеличивается количество выделяющегося в воду тепла…». Как видно, здесь опять кристаллизация становится источником тепла для воды. Но очевидно, что теплота кристаллизации, как всякая теплота, при неоднородном поле температуры может передаваться (отводиться, изыматься) только в среду, имеющую температуру ниже температуры замерзания воды. Для замерзающего водоёма такой средой является атмосфера и только ею и в ее сторону вынужденно изымается теплота кристаллизации.

Что касается изгиба на графике температуры начала замерзания, то он вызывается некоторым переохлаждением воды из-за недостатка ядер кристаллизации – условия, необходимого для начала замерзания. Как только ядро кристаллизации попадает в такую воду, её переохлаждение мгновенно реализуется на образование соответствующего дополнительного количества льда уже вне связи с продолжающейся потерей тепла водой в атмосферу. Такой процесс скоро и неизбежно вызывает повышение температуры вновь образующегося льда до температуры нормального замерзания воды, что и отражает график. Количество образующегося таким путём льда легко определяется, если известна температура, до которой переохлаждалась вода.

Очевидно, что теплота кристаллизации не может выделятся в воду, равно как и теплота плавления не может отвлекаться из воды в присутствии льда. Когда это положение четко усвоено, то становится понятной простая зависимость, что на водоёмах количество теряемой и усваиваемой теплоты фазовых переходов прямо соответствует количеству намерзающего или стаиваемого льда.

Покажем, как далеко от истины уводит ученых нечеткое представление об этих положениях. Так, в работе А. А. Лебедева и Н. С. Уралова (1981), озаглавленной «Результаты оценки тепла фазовых превращений морского льда в северном полушарии Земли», уже настораживает заглавие – зачем оценивать особо теплоту фазовых превращений, если уже производились многочисленные оценки, в том числе и указанными авторами, объёмов намерзания льда в северном полушарии? Не пустая ли это работа?

С первых строк в работе обнаруживаются последствия прижившихся ошибок. И здесь теплота кристаллизации относится в приходную часть теплового баланса океана, а теплота плавления – в расходную, хотя очевидно, что с потерей теплоты кристаллизации энтальпия океана уменьшается, а при усвоении теплоты плавления увеличивается. Авторы делают заключение, что при образовании и таянии льда в Арктическом бассейне и его морях усваивается и теряется одинаковое количество теплоты кристаллизации и теплоты плавления. Но и это заключение неверно, поскольку давно и надежно установлено, что из Арктического бассейна лёд постоянно выносится, а значит здесь его ежегодно намерзает больше, чем тает. Соответственно и разнонаправленные обмены теплотой фазовых переходов вряд ли могут быть равными. В работе показывается, что с выносом льда из Арктического бассейна якобы теряется значительное количество тепла. Но ведь энтальпия единицы массы льда меньше, чем энтальпия такой же массы воды, а, следовательно, вынос льда из бассейна приводит к увеличению его энтальпии (к приходу тепла), что правильно и принималось ранее в расчетах.

Таким образом, представление о теплообмене на главной замерзающей акватории Земли – Арктическом бассейне – оказалось основательно запутанным. И чтобы нам далее легче было понять некоторые вновь обнаруженные особенности фазовых превращений, полезно помнить об ошибках наших предшественников.

Ошибки в толковании хода фазовых превращений и их следствий встречаются очень часто, но причиной их нередко бывают не только огрехи предшественников, но и неверно самостоятельно понятое исследователем наблюдение.

Например, зная, что на испарение затрачивается теплота, именно этим многие объясняют почти всегда пониженную температуру смоченного термометра или ощущение прохлады смоченного живого тела. Но тут надо разобраться чья теплота расходуется при испарении. И здесь, казалось бы, самое простое объяснение оказывается неверным, если, вникнув в детали происходящего мы поймем, что смоченный термометр не испаряя своей жидкости, не может и отдавать свое тепло испарению. Но он не дополучает тепла от окружающего воздуха из-за того, что какая-то его доля, зависимая от сухости воздуха, перехватывается на испарение воды со смоченного батиста термометра (например, в психрометре). А отдать тепло или недополучить его – явления, хотя и имеющие одинаковый результат, по сути своей имеют разные причины. Не заметив различия между ними, легко скатиться к ошибочному мнению, что смоченный термометр сам охлаждается испарением, хотя это не так. То же самое и с ощущением прохлады мокрым телом: на испарение влаги с тела расходуется тепло, поступавшее к телу, а мы ощущаем это как некое охлаждение самого тела.

За неправильными объяснениями частного случая легко может последовать ошибочное объяснение более важного явления, что нередко и случается.

3.3. Как передается тепло через плавучий лёд?

Надо отметить интересное свойство плавучего льда передавать теплоту только в одном направлении – от воды в атмосферу, но не наоборот. Такое утверждение хотя и редко встречается в литературе, но часто парируется ответом, что де обратно через лёд может передаваться холод. Но «холод» или «передача холода» – это физически несостоятельные понятия, условно допустимые в обиходе, но не далее, ибо «передача холода» это нечто иное, как та же потеря или отвод тепла. Если мы будем думать и говорить, что из льда выделяется тепло, но в него же возвращается холод, то опять впадем в дуализм и будем дважды считать движение одного и того же теплового потока из льда в атмосферу. Лишь в самой массе льда, охлажденного ниже температуры замерзания, могут наблюдаться сменяющие один другого разнонаправленные потоки тепла. Не исключено, что невнимание к этому факту способствовало искажению представлений о направленности потоков теплоты фазового превращения между водой и льдом.

Как показано далее, такая однонаправленность потока тепла через плавучий лёд компенсируется в период таяния льда таким же по величине обратным потоком тепла, но передаваемым воде совсем иным путем, минуя кондуктивную теплопроводность, что, как оказывается, ускользало от внимания исследователей.

Собственно, однонаправленность теплообмена через плавучий лёд объясняется просто. С самого начала льдообразования и в период наращивания и существования ледяного покрова наиболее высокое значение температуры постоянно удерживается у нижней поверхности льда, а низкое – на внешней поверхности. И если весной внешняя поверхность всё же прогревается до температуры плавления, то следствием этого является прекращение сквозного кондуктивного теплообмена через ледяной покров.

Но и однонаправленный тепловой поток через ледяной покров водоёмов не бывает сколько-нибудь длительно постоянным, поскольку параметры его определяющие (разность температуры между поверхностями льда, его толщина) претерпевают изменения. Более стабильным бывает коэффициент теплопроводности пресноводного льда. Но морской лёд, за счет изменений количества замерзающих рассолов в разных его слоях, связанных с изменениями температуры, также не может сколько-нибудь длительно сохранять стабильность этой характеристики. Поэтому встречающиеся иногда данные расчетов за длительный промежуток времени теплопередачи через всю толщу ледяного покрова с помощью формулы теплопроводности, как правило, бывают ошибочны. Тем более таким путем нельзя определять потери тепла от воды в атмосферу через лёд.

Наибольшие искажения в решения вносит нестабильность температурного градиента. Он постоянно подвержен изменениям, зависимым от сезона года, от непериодических изменений температуры воздуха, вследствие изменения погодных условий, динамики толщины и плотности снега на льду, вытеканий воды на его поверхность и так далее.

Знание конкретной разности температуры между поверхностями ледяного покрова, что легко устанавливается по изменению температуры лишь верхней поверхности льда, ещё не свидетельствует о том, равномерно ли изменяется температура по всей толщине льда. А это условие также необходимо для удовлетворительного определения величины кондуктивного потока тепла через лёд.

Для сквозной кондуктивной передачи тепла через лёд необходимо непрерывное изменение температуры по нормали к плоскостям ледяного покрова. Эта передача будет лимитироваться участком нелинейного градиента, между концами которого разность температуры минимальна и совсем прекратится, если градиент будет разорван участком, лишенным разности температуры. Такой участок будет соответствовать положению безградиентного изотермического горизонтального слоя в ледяном покрове.

Поэтому встречающийся в печати вывод средне-интегрального температурного градиента, сделанный на основе одновременно выполненных ступенчатых измерений температуры льда по его толщине, чаще всего лишен практического смысла, а использование его при расчетах оказывается неправомерным. В любом случае величину общего теплообмена необходимо увязать с теплопроводящей способностью этого слоя льда, на границах которого обнаруживается наименьшая разность температуры. Обнаружить этот слой можно только прямым измерением температуры равных по глубине слоев льда, что сопряжено с большими трудностями.

Когда прикидочный расчет оказывается всё же необходим, полезно знать, что вероятность более удовлетворительного решения увеличивается в первой половине зимы, когда градиент температуры чаще бывает линейным и становится малой во второй половине зимы. Вероятность удовлетворительного решения оказывается тем больше, чем тоньше бывает лёд. Чтобы понять причины таких зависимостей полезно знать о составляющих теплового потока через лёд и характере их взаимодействия.

Чем бы не возбуждался и каким бы источником не обеспечивался тепловой поток через лёд, по величине он может быть только таким, каким определяют его конкретные параметры теплопроводности, но не больше и не меньше. Знание этого условия упрощает решение задачи о дифференциации источников тепла, обеспечивающих тепловой поток.

В общем случае тепловой поток через пресный плавучий лёд может слагаться из трех составляющих его величин: теплоты кристаллизации; тепла, обменивающегося при изменении энтальпии самого льда, то есть при его остывании ниже температуры замерзания; и, наконец, из потока теплоты, передаваемой от воды в атмосферу, но не принимающей участия в фазовых превращениях у нижней поверхности льда.

Поскольку удельная величина теплоты фазового превращения воды в лёд оказывается довольно стабильной (около 334 Дж/г), то величина интенсивности отвода теплоты кристаллизации легко определяется по скорости намерзания льда, а общее количество её потерь за всё время его намерзания – толщиной ледяного покрова.

Отвод тепла, определяющий уменьшение (иногда и увеличение) энтальпии самого льда способствует формированию градиента температуры, по «ступенькам» которого далее осуществляется весь кондуктивный теплообмен через толщу льда. Он определяется теми же параметрами теплопроводности и, сверх того, удельной теплоёмкостью льда, которая составляет около 2Дж/ г?°C.

Определение удельной теплоёмкости морского ледяного покрова требует особого подхода. Так как в обычном случае ледяной покров имеет наименьшую температуру на поверхности, а наибольшую – на нижней, то и отвод (расход) тепла при уменьшении энтальпии льда наибольший вблизи внешней поверхности и наименьший вблизи нижней. Он вовсе исключается в слое изотермического протекания фазового превращения. Общее количество тепла, отводимого при охлаждении пресного льда, обычно оказывается во много раз меньше, чем его высвобождается при фазовом превращении. Поэтому большинство известных решений задачи о наращивании плавучего льда, часто называемых «стефановскими» по имени ученого, впервые предложившего общий принцип решения таких задач, игнорируют количеством теплоты, передаваемым при охлаждении льда ниже 0 °C.

Однако в мощных многолетних арктических льдах доля тепла, участвующего в изменении энтальпии в общем теплообмене через лёд, становится значительной и часто требует учета. Простой метод определения этой величины был недавно предложен (Л. И. Файко, 1986).

Ещё более неопределенными долго остаются представления о возможной величине сквозного потока тепла от воды в атмосферу через лёд. Здесь в первую очередь возникает вопрос – может ли вообще существовать такой поток тепла? Если известно, что нижний «конец» градиента температуры во льду всегда равен температуре фазового превращения, то есть температуре предельно возможного, в присутствии ядер кристаллизации, охлаждения воды.

Но он может быть. Чтобы убедиться в этом, достаточно представить случай, когда путем добавления, определенного количества теплой воды под лёд можно вовсе остановить его наращивание и, тем самым, полностью заменить поток теплоты кристаллизации таким же по величине сквозным потоком тепла от воды в атмосферу. Если же могут иметь место тот и другой (крайние случаи), то могут быть и разные сочетания в соотношениях долей теплоты кристаллизации и теплоты, передающейся непосредственно от воды. Всякие отклонения температуры воздуха соответственно деформируют температурный градиент во льду, зачем следует и изменение интенсивности оттока теплоты через лёд.

Замерзания открытой воды не произойдёт до тех пор, пока потери тепла с её поверхности будут восстанавливаться таким же количеством тепла, конвективно поступающего из глубины водоёма. Когда же снизу тепла станет поступать меньше, поверхностный слой воды вынужденно начнет переохлаждаться и замерзать. С этого момента общая потеря тепла водоёмом в атмосферу резко сократится, так как будет лимитироваться намного менее интенсивной кондуктивной теплопроводностью через лёд. Того, кто захочет познакомиться с математической интерпретацией изложенных положений, можно отослать к упомянутой выше работе автора.

3.4. Ляпсусы теплобалансовых расчетов

Где термическое состояние любой системы, находящейся под воздействием потоков тепла, направленных как к ней, так и от нее, сохраняется достаточно долго постоянным, надежным способом отыскания источников и количеств прихода – расхода тепла является метод теплового баланса. Если при достаточно надежном установлении количеств прихода и расхода тепла их равенства не наблюдается, то есть собственно баланса не существует, то такая система находится в неравновесном термодинамическом состоянии. Эти простые, хотя и не всегда правильно понимаемые положения обусловили чрезвычайную популярность теплобалансовых расчетов и этот метод стал едва ли не главным инструментом оценок и исследований по термике водоёмов и суши. Географы стали ему доверять больше, чем допустимо и здесь стали возникать разночтения. Сейчас мы уже уверенно знаем, что сумма отрицательной и положительной температур воздуха за год, например, в Якутске, соотносятся как минус 5500°: плюс 1800°, то есть далеко не равны между собой. Но по привычному расчету теплового баланса непременно будет показано, что противонаправленные тепловые воздействия на подстилающую поверхность равны. Об этом свидетельствуют все выведенные балансы.

Так где же правда? А она искажена тем, что среди методов климатологических исследований незаметно, постепенно, но крепко прижились досадные несовершенства, путаница и просто несуразица.

Что такое «радиационный баланс»? Смысловое значение этих двух слов приемлемо лишь для характеристики общеземной разности между приходом и расходом радиационного тепла, достигающего поверхности всей Земли, но отнюдь не может распространяться на каждый конкретный участок земной поверхности.

Оценки в последнем случае вуалируются искусственными смысловыми натяжками из-за не совсем ясно принятой разницы между радиационным и тепловым балансами «радиационный баланс первичен, тепловой – вторичен», хотя величины тех и других потоков тепла оцениваются размерностями (кал/см

или Дж/см2 и сравниваются в общих строках баланса. Здесь определенно существует субъективно созданное прибежище для накопления смысловых ошибок, уводящих к грубым искажениям представлений о климате разных регионов. Например, из книги в книгу «кочуют» тепловые балансы озер Севан, Аральского, Каспийского моря и так далее. Недоумение вызывает тот факт, что всё количество приходящей солнечной радиации, достигшее поверхности воды в балансах однозначно относится к поглощенному водой. Например, для оз. Севан это количество составляет 120,9 ккал/см

год (505 кДж/см

). Зная удельную теплоемкость воды и среднюю глубину озера (28,5 м) не сложно рассчитать, что в случае поглощения этого тепла вода в озере летом нагревалась бы до 42,4 °C, а на глубинах меньше 12 м – должна была закипать! Но ни того, ни другого не происходит и, значит, отнесение статьи прихода тепла ориентировано нечетко. Здесь опять условности, исподволь приживающиеся как аксиомы, через путы которых к истине надо докапываться путем дополнительного не всем доступного специального анализа.

Рассмотрим много раз опубликованный тепловой баланс оз. Севана.

Здесь уже в расходе значится: эффективное излучение (175 кДж/см

год): турбулентный обмен с атмосферой (132 кДж/см

год) и тепло, затраченное на испарение воды (198 кДж/см

год). Только тут выясняется, что первая величина вовсе не поглощалась водой поскольку эта доля тепла, как от зеркала, просто отразилась от поверхности водоёма. Но ведь между смыслами слов «поглотилась» и «отразилась» существует большая разница.

Из второй статьи расходов после некоторого мысленного усилия следует, что в ней отражено количество тепла, пошедшее на нагревание воды в озере, что точнее можно измерить термометром. Но далее оказывается, что только это количество тепла и шло на нагревание воды, то есть собственно поглощалось озером. Оно составляет лишь 24 % всей достигшей озеро энергии солнечной радиации. А как же с испарением? Испарение происходит на бесконечно тонкой поверхностной пленке воды и этот изотермический процесс тоже не влияет на изменение температуры воды, а значит, и тепло затраченное на испарение тоже может относится к поглощенному массой водоема. Как следует из оценок актинометристов до 86 % всей поступившей к поверхности водоёма радиационной энергии расходуется на испарение в верхнем слое воды толщиной в 1 мм, то есть практически отражается, а не поглощается. Скрытая энергия испарения поднимается в высоты атмосферы, где и высвобождается снова путем конденсации пара в воду или при сублимации[2 - В метеорологии смысл термина «сублимация» расходится с принятым в физике, где им обозначается обратный процесс – испарение (возгонка) льда (Гляциологический словарь, 1984).] его в ледяные кристаллы. Но для водоёма парообразование не проходит бесследно, поскольку он теряет массу, как «хранительницу» тепловой энергии. Потери массы, это потери энтальпии, то есть изотермическая потеря теплоты, не доступная фиксированию термометром, но энергетически выраженная ещё больше, чем изменением температуры, так как удельная теплота парообразования весьма велика и составляет 2,25 кДж/г. Величина третьей расходной статьи баланса свидетельствует о том, что на оз. Севан ежегодно испаряется слой воды в 88 см. И именно на убыль уровня озера расходуется вся энергия, пошедшая на парообразование.

Но если мы пришли к заключению, что убыль воды в озере свидетельствует о потере им энтальпии (грубо – теплосодержания или просто тепла), то должны согласиться и с тем, что обратная прибыль воды в свою очередь должна сопровождаться соответствующим увеличением энтальпии озера. А отсюда следует, что принятый метод расчета теплового баланса, даже после устранения тех несуразностей, которые отмечены выше, может быть верен в случае, если одновременно балансируется массообмен водоёма с окружающей средой и не может быть истинным, если баланс водообмена не рассматривается.

Заметим, что автор далеко не первый замечает несовершенства принятого метода теплобалансовых расчетов. Например, В. Н. Степанов (1963, с.120) писал: «… радиационный баланс неуравновешивает ни в каждом данном месте, ни в океане в целом теплообмен, осуществляющийся за счет остальных компонентов», поскольку тепло может переносится как по вертикали, так и по горизонтали. И он настойчиво предлагал «заменить термин «баланс» (равенство, равновесие) термином «бюджет», под которым понимается разность между приходом и расходом тепла». Однако, если любой участок суши или моря термически стабильно существует очень большой ряд лет, то очевидно, что на нем имеет место примерное балансирование прихода и расхода тепла. Следовательно, и количественное соотношение конечных величин прихода и расхода тепла в этом случае обязательно, независимо от результатов их субъективных расчетов, существует. Задача исследователя в этом случае сводится лишь к тому, чтобы наблюдениями и расчетами подтвердить этот факт. А это можно сделать, учитывая лишь все факторы теплообмена, в том числе возможный приход тепла помимо радиации, обмен теплотой при обмене масс и прочие иногда не замечавшиеся особенности тепло- и массообмена внешних сред и сфер Земли.

Притягательность метода теплового баланса исходит от непреложности закона сохранения и превращения энергии. Мы автоматически принимаем, что если где-то тепло потрачено, то откуда-то оно должно возвратиться в том же количестве, а значит, можно его подсчитать, составляя тепловой баланс. Однако оказывается, что вывести сходящийся (замыкающийся) тепловой баланс для некоторых объектов природы не всегда возможно. Примером может служить обыкновенный ледяной покров на водоёмах. В этом случае нельзя составить годовой тепловой баланс собственно для льда, поскольку расходом теплоты кристаллизации он создается, а равным приходом теплоты плавления ликвидируется.

Но можно составить баланс теплообмена при намерзании и таянии льда. Если обозначим теплоту кристаллизации Q–, а теплоту плавления Q+, то можно, ничего не считая для одного и того же намерзающего и тающего слоя льда сразу записать баланс: Q- = Q+

Просто? Но за этой простотой, как оказалось, скрывались очень важные особенности теплообмена замерзающих водоёмов с внешней средой, дающие пищу для нового взгляда на проблему климата. Дальше об этом расскажем подробнее. Вернемся ещё и к тепловым балансам.

Часть II. Раскрываем ещё одну тайну льда

Каждый учёный, не сделавший открытия, есть самоубийца.

    М. Пришвин

Глава 4. Плавучий лёд аккумулирует теплоту для водоёма

Ледяной покров водоёма настолько всем хорошо знаком, что, казались бы, не стоило тратить времени на поиски каких-то еще неизвестных его свойств. Но как часто ошибочность первого взгляда уводила исследователя от познания очень важного нового! Так случилось и со льдом. Пытаясь «на всякий случай» проверить, каким внешним теплообменом поддерживается баланс теплоты кристаллизации и теплоты плавления при намерзании и таянии плавучего льда, автор столкнулся с поразительной несуразицей, в которую невозможно было сразу поверить. Потребовалось ещё более 15 лет, чтобы эта назойливо маячившая в сознании загадка привела к обнаружению ясно обозначившегося ранее неизвестного природного явления. Оно до сих пор обсуждается на предмет научного признания. Но само явление очевидно и обросло неопровержимыми доказательствами его правомерности. Автор теперь может изложить его понятно и тем самым дать возможность читателю самому убедиться в его сути и важности, чему и посвящено далее следующее.

4.1. Невероятный, но очевидный разбаланс

Итак, теплота кристаллизации Q– и теплота плавления Q+ для одного и того же слоя намерзающего и тающего льда равны, то есть Q- = Q+

Так это всегда и принималось в теплобалансовых расчетах по замерзающим водоёмам, но оканчивалось тем, что корректных, не вызывающих сомнений в своей правильности, балансов теплообмена замерзающих водоемов с внешней средой по сей день не получено. Сотни раз рассчитывался тепловой баланс Северного Ледовитого океана, но ни один из них так и не был признан сколько-нибудь верным. И опять же В. Н. Степанов (1963) отметил, что теплового баланса здесь и не может быть. Но он объяснил это всегда существующим обменом Северного Ледовитого океана с водами Мирового океана, а автор причину разбаланса стал искать на типичном бессточном озере Якутии. Взял и сравнил, какими тепловыми воздействиями внешней среды обеспечивается балансирование расхода и прихода теплоты кристаллизации и теплоты плавления при намерзании и таянии льда.

И тут обнаружились удивительные факты. Оказалось, что лёд тает намного быстрее, чем намерзает. Ещё ранее то же самое заметил советский ученый С. В. Томирдиаро (1972), объяснив это, как обнаружилось далеко неполно, прозрачностью льда для солнечных лучей. Далее нами обнаружилось, что тепловые воздействия внешней среды при намерзании и таянии льда, выраженные как суммы градусо-суток отрицательной ?-t° и положительной ?+t° температуры, различаются ещё более разительно. Для атмосферы над якутским озером эти величины составили: при намерзании льда ?-t° = минус 5 500°, а при полном таянии этого же слоя ?+t° = плюс 200°. Тепловое воздействие отрицательной температуры при намерзании льда оказалось в 27,5 раза больше, чем положительной при таянии того же слоя льда!