скачать книгу бесплатно
Исследование новых и нестандартных видов модуляции на основе OFDM-технологии
Евгений Николаевич Рычков
Рассмотрена технология ортогонального частотного разделения с мультиплексированием в контексте поиска новых алгоритмов для улучшения помехоустойчивости систем связи.
Исследование новых и нестандартных видов модуляции на основе OFDM-технологии
Евгений Николаевич Рычков
© Евгений Николаевич Рычков, 2024
ISBN 978-5-0064-2609-2
Создано в интеллектуальной издательской системе Ridero
Введение
Об авторе и цели написания данной книги
Автор стажировался в крупных зарубежных ВУЗах с качественным образованиям: университет Пуатье и университет Кадиса. В соответствующих им лабораториях XLIM (2014—2015) и Cacytmar (2016) автором проведены относительно насыщенные работы по поиску методов повышения помехоустойчивости систем связи с OFDM-сигналами. До этого я, Евгений Николаевич Рычков, работал на Красноярском радиотехническом заводе, где также проводил эксперименты с OFDM-радиосигналами применительно к тропосферному каналу связи, участвовал в разработке модема. В Акустическом институте им. ак. Андреева такого же рода система на основе этого же принципа OFDM разрабатывалась уже для акустики.
По приезду в Россию еще из Франции я узнаю, что мой научный руководитель, Патюков Виктор Георгиевич, умирает. К сожалению, я не нашел достойного партнера для дальнейших исследований в Сибирском Федеральном университете, поэтому далее над исследованиями мы работали в Московском Государственном университете с профессором Пироговым Юрием Андреевичем и с Захаровым Петром Николаевичем.
Оказалось, что в тематике моих исследований многие друг друга знают, речь идет о разработке не столько оборудования для мирных жителей, но идет наращивание алгоритмов и методов для военных заказов. В данной работе не раскрываются мои секретные наработки, но я, с одной стороны, решаюсь на то, чтобы показать базовую теорию в призме моего осознания темы OFDM-сигналов. С другой стороны, я предлагаю в книге действительно несколько инновационных направлений, которые являются объектом моей личной интеллектуальной собственности и о которых будет сказано далее.
Ведь мой опыт не ограничивается лишь городской средой и каналом связи Накагами, имеется даже относительно бесценное воскрешение модели гидроакустического канала связи Вагина-Авилова и его переосмысление в направлении OFDM-концепции. Об OFDM подробнее напишу далее.
Актуальность систем связи с OFDM-сигналами
Появление новых алгоритмов, повышающих помехоустойчивость и быстродействие систем связи, приводит к модернизации целого поколения устройств. Ярким примером является переход от систем связи четвертого поколения к технологиям 5G, основанным на OFDM-технологии. В настоящее время актуален переход к системам связи 6-го поколения (6G или 6 Generation). Для Интернета вещей, быстрой обработки массивных фото и видеофайлов необходима скорость связи не менее 100 Мб/c, определяемая как помехоустойчивостью системы, так и качеством используемых в ней алгоритмов. Поэтому, как и прежде, главной является традиционная задача поиска новых подходов и алгоритмов, которые могли бы удовлетворить современные растущие требования к быстродействию, точности, стоимости системы связи [82, 114].
Известный факт, что если в сетях 5G скорость передачи данных составляет от 1 Гбит/сек до 10 Гбит/сек, что в 30 раз выше, чем в сетях 4G (до 300 Мбит/сек), то в сетях 6G данные могут передаваться в 100 раз быстрее – от 1 Тбит/сек. Совершенствуются алгоритмы и решения. Если еще в 2010-х годах актуальным был переход от однотональных сигналов с определенной полосой сигнала с возможностью перестройки по частоте к многотональным системам связи с OFDM-сигналами, то сейчас ученые как расширяют диапазон используемых для создания радиоканала частот, так и стремятся эффективно распределять мощность по частотному и временному спектрам, находятся в поиске оптимальных решений для тех или иных каналов связи.
В книге предлагается как базовая теория по системам связи в представляемом направлении, так и новые возможности, которые на сегодня не используются и являются элементами ноу хау по мнению автора. Такие изыскания можно обнаружить по наименьшему количеству ссылок на других авторов и на другие работы, ссылки приводятся на работы автора данной книги, а в концепции очевидны не научные факты, а последовательность логических рассуждений с авторскими экспериментами, где-то с использованием векторного оборудования.
Технология OFDM, в современном виде предложенная примерно 20 лет назад, развивалась довольно медленными темпами из-за отсутствия аппаратных возможностей в прошлом. До сих пор отсутствует теоретико-практическая база для применения OFDM-технологий в тропосферной и подводной видах связи. Вместе с тем появляются и новые работы по использованию OFDM-технологии в сферах, отличных от классической мобильной связи [53, 133], разрабатываются новые алгоритмы обеспечения систем связи с OFDM сигналами с улучшенными параметрами быстродействия и помехоустойчивости [59, 124].
Предложения по разработке и совершенствованию многочастотных систем предлагались еще в 1960-х годах. Известны американская синхронная система связи «Кинеплекс» со скоростью 3 кб/с и российская система МС-5, вышедшая немного позднее, но обладающая скоростью 4.8 кб/с. Эти системы являются первым вариантом OFDM-устройств – в них разнос между поднесущими частотами пропорционален длительности передаваемого знака и для приемопередачи используется операция БПФ [37]. Стоит отметить работы Чанга (Chang), Зальцберга (Salzberg), Вайнштайна (Weinstein) и Эберта (Ebert) в области разработок по OFDM-системам связи [17].
В 1999 году был принят первый стандарт из семейства современных документов по беспроводной связи с OFDM технологией IEEE 802.11 (WiFi) [104]. По алгоритмам синхронизации в системах связи с OFDM-сигналами известны работы таких авторов, как Т. Д. Шмидл, Д. С. Кокс, У. Д. Уорнер, Ж. Ж. ван де Бик, Пелер и Руиз (циклический префикс), а также таких российских ученых, как Ю. Б. Зубарев, Б. И. Шахтарин, А. П. Солодовников, И. А. Батырев, Г. В. Свистунов, М. С. Малютин и других [29, 128]. Cовершенствуются стандарты, алгоритмы, в настоящее время разрабатывается связь 5-го поколения (5G), которая рассчитана на широкую полосу частот, высокие скорости связи на каждой поднесущей и несущую частоту в диапазоне 50—60 ГГц.
Развивается направление широкополосных систем связи, где скорость обмена данными и помехоустойчивость достигаются за счет использования широкой полосы частот, высокой спектральной эффективности и алгоритмов, повышающих качество использования частотно-временных ресурсов. В системах связи 5G рассматриваются вопросы цифровой фильтрации поднесущих частот в передатчике, применение неклассических преобразований сигналов, таких как OQAM IOTA, больше внимания уделяется вопросам адаптации к каналу связи [114].
Сама по себе OFDM-технология является новым видом модуляции по сравнению с известными квадратурными и классическими видами, ведь за счет использования преобразования Фурье происходит повышение спектральной эффективности и появляется возможность оптимизации распределения энергии сигнала по спектру. В то время как во временной области, за счет того, что информацию можно передавать дольше, возникает устойчивость к относительно кратковременным замираниям. Очевидно, что классическая OFDM-модуляция не является единственно возможным видом на основе базиса преобразования (Фурье), если использовать следующие критерии: оптимизация энергии сигнала в частотно-временном пространстве, уменьшение внеполосных излучений и повышение спектральной эффективности.
Таким образом, исследование базисов преобразования в системах связи с OFDM-сигналами, отличных от Фурье, разработка алгоритмов на основе базисов преобразования, повышающих скорость связи и помехоустойчивость, является одним из наиболее перспективных направлений в развитии современных систем связи, позволяет обеспечить значительный выигрыш в помехоустойчивости систем связи и упростить аппаратно-алгоритмическую комплексность системы связи. Также это актуально для задач локации и проведения физических экспериментов, где из изменения параметров, заложенных в сигнале, можно получить информацию о среде распространения. Альтернативные базисы преобразования позволяют производить более точный анализ, например, вейвлет-базис имеет свойства детализации сигнала.
Исследование возможных базисов преобразования для OFDM-сигналов, разработка алгоритмов модуляции на основе этих базисов и анализ путей повышения помехоустойчивости для систем связи с OFDM-сигналами и составляет основное содержание данной работы.
Целью работы является разработка и исследование алгоритмов, повышающих помехоустойчивость существующих OFDM систем различного назначения.
Для достижения этой цели были поставлены следующие задачи исследования:
– для современной системы связи с OFDM-сигналами сформировать математический аппарат, для примера использовать алгоритмы системы связи 5-го поколения, а также исследовать особенности использования в тропосферном и гидроакустическом каналах связи;
– исследовать вейвлет-базисы вкачестве базовых в системах связи с OFDM-сигналами, алгоритмы OQAM IOTA и FBMC, оценить выигрыш в помехоустойчивости и то, для каких каналов удобно использование отличных от Фурье базисов преобразования;
– синтезировать принципиально новые методы модуляции на основе базового преобразования в системе связи с OFDM-сигналами, либо разработать алгоритмы, имеющие отношение к OFDM-системе связи, хотя бы косвенно связанные с видом преобразования.
Методы исследований. Используются методы линейной алгебры, теории сигналов, теории статистической радиотехники для разработки модели OFDM-модема. Для анализа процессов в системах связи применяются методы корреляционного анализа, цифрового моделирования, методы цифровой обработки сигналов. Поиск новых путей повышения помехоустойчивости OFDM систем осуществляется с использованием вейвлет-преобразования и теории вероятностей.
Научная новизна.
– Найденная и исследованная возможность применения теоремы Котельникова для генерации и приема высших гармоник в качестве поднесущих частот OFDM-сигнала позволяет снизить требования к аппаратной базе при генерации широкополосных OFDM-сигналов и повысить помехоустойчивость системы связи.
– Разработан метод оценки частотных расстроек, основанный на алгоритмах высокоточной оценки частотно-временных параметров сигнала в OFDM-системах и позволяющий уменьшить погрешность квантования и шумовую составляющую частотного смещения до потенциально возможного минимума.
– Предложены структуры модемов, обеспечивающие более высокие скорости связи в областях, где OFDM-технология в настоящее время не используется. Показана возможность достижения скорости 8 Мб/с в полосе 50 МГц при BER = 10
в тропосферных каналах связи. В случае гидроакустической связи с помощью OFDM технологии может быть достигнута скорость передачи информации до 9 кб/с в полосе 3 кГц.
– Изучены возможности использования нейросетей в алгоритмах OFDM, заменяющие стандартное преобразование Фурье и позволяющие увеличить в OFDM-системах быстродействие метода резервации тона. Показано, что нейросетевой алгоритм не нарушая стандартов IEEE позволит уменьшить пик-фактор сигнала на 2—3 дБ без искажения передаваемой информации при расширении спектра на 9,5%/. Исследованы особенности вейвлет-фильтрации и сингулярного анализа применительно к OFDM-сигналам и показано, что сигнал может быть успешно отфильтрован при переходе от временной реализации к комплексным переменным.
– Рассмотрено применение вейвлет-базиса в системах связи с OFDM-сигналами и определены условия, при которых он дает выигрыш по сравнению с базисом Фурье, предложена возможность создания адаптивной системы связи, основанной на базисе вейвлет.
Теоретические достижения работы заключаются, прежде всего, в разработке новых алгоритмов обеспечения синхронизации в системах связи с OFDM-сигналами. Продемонстрировано применение вейвлет-фильтрации в качестве базиса преобразования OFDM-сигналов при измерении частотной расстройки. Впервые показано, что вейвлет-преобразование может давать существенный выигрыш в помехоустойчивости системы. Разработан новый метод оценки частотных смещений в системе связи. Найдены алгоритмы, пригодные для разрабатываемых в настоящее время сетей 5-го поколения и использующие нейросетевой метод уменьшения пик-фактора, новые принципы генерации и приема OFDM-сигнала, цифровую фильтрацию отдельных поднесущих в спектре OFDM-сигнала.
Практическая значимость работы заключается в следующем:
– Для реализации поставленных в работе задач было предложено использовать метод резервации тона на основе нейросетей – новое направление, способное ускорить время вычислений. Аналогичные разработки проводятся в лаборатории XLIM, Франция. Результаты иссертационной работы позволяют преодолеть ряд практических трудностей, имеющихся в разработках АО «НПП «Радиосвязь» и связанных с невозможностью создать высокоскоростную тропосферную OFDM-систему связи. Подобные технологии используют компании Raytheon и Comtech – они используют модем на базе PXI и LabVIEW, генерирующий и принимающий OFDM-сигналы, но не обеспечивающий нужных скоростей. Исследование в данной работе тропосферного OFDM-канала связи демонстрирует особую важность применения эквализации и уменьшения пик-фактора, устанавливает возможные причины неработоспособности применяемого в НПП «Радиосвязь» модема. Программное обеспечение OFDM-модема, разработанное в диссертации, позволяет конструировать данный канал связи, избегая закрытых систем связи таких, как Keysight или Albentia Systems.
Основные положения, выносимые на защиту.
– Система связи с OFDM-сигналом на основе вейвлет-базиса, обеспечивающая выигрыш в помехоустойчивости на несколько порядков при замираниях с узкополосной частотной режекцией, при этом снижается помехоустойчивость к временным импульсным помехам, наблюдается значительное уменьшение потерь информации в канале связи.
– Метод генерации и приема OFDM-сигнала, основанный на дублировании гармоник в спектре аналогового сигнала, позволяет существенно повысить помехоустойчивость систем связи 5G, расширяя полосу OFDM-сигнала в несколько раз при ограниченной тактовой частоте оборудования.
– Способ высокоточного измерения частотных расстроек в системах с OFDM-сигналами с применением весовых коэффициентов позволяет получить частотную расстройку с точностью на 2 порядка выше, чем в классических частотомерах, обеспечивая повышение помехоустойчивости связи на величину порядка 1е-5.
Внедрение результатов. Результаты разработанного программного обеспечения для гидроакустической системы связи используются в НИОКР АО «АКИН» для создания OFDM модема гидроакустической связи. Получено свидетельство о регистрации программы для ЭВМ №2015661505 от 21 сентября 2015 года.
Достоверность: модели OFDM-систем, полученные в диссертационной работе, учитывают базовые алгоритмы, используемые в OFDM-системах, такие, как теория биортогональных вейвлетов, методы уменьшения пик-фактора сигнала, методы кодирования. Помехоустойчивости, представленные в работе, соответствуют уровням, полученным в других источниках. Метод высокоточного измерения частотно-временных параметров применительно к OFDM-системам имеет подробное обоснование в работах Патюкова В. Г..
Апробация результатов. Результаты работы апробированы на международных и всероссийских конференциях:
– Международная конференция SibCon – г. Красноярск, 2011 и 2013 г.;
– XVI Всероссийская конференция «Современные проблемы радиоэлектроники» – Красноярск, 2013;
– Международная конференция «Science and information conference» – г. Лондон, 2015 г.;
– VII, VIII, IX и X Всероссийские конференции «Радиолокация и радиосвязь» – г. Москва, 2013, 2014, 2015, 2016 и 2018 годы;
– Конференция на Красноярском радиозаводе, 2017;
– Конференция РТ, Севастополь (пленарный доклад), 2017 г.;
– XVI Всероссийская школа-семинар «Физика и применение микроволн» – г. Москва, 2017 и 2018 годы;
– I2T, Прага, 2018;
– Ломоносов, 2018;
– Конференция в МИФИ, 2018.
Публикации. По результатам диссертационных исследований опубликовано 28 печатных работ, из которых 6 статей изданы в журналах, рекомендованных ВАК, 3 – в журналах, индексируемых в базе Scopus, 5 – в материалах докладов, приравненных публикациям из списка ВАК (конференция «Радиолокация и радиосвязь»), 7 – в материалах докладов. Получено свидетельство о регистрации программы в Российском реестре программ для ЭВМ.
Структура и объем работы. Данная работа состоит из введения, 4-х глав, заключения, двух приложений, списка литературы, включающего 142 источника. Основная часть работы изложена на 169 страницах машинописного текста. Работа содержит 53 рисунка и 5 таблиц.
Глава 1. Математическая модель OFDM-системы на примере системы связи 5-го поколения
Генерация и передача OFDM-сигналов
Системы связи 4-го поколения и WiFi-сети являются законченными связными решениями, обладающими сравнительно большими скоростями передачи информации от 100 Мб/с и выше. Системы связи 5-го поколения обладают скоростью более единиц Гб/c, временная задержка в системе связи снижена (с ~30 мс) до 1 мс, но данные передаются на сравнительно короткие расстояния порядка 10-в м. Несмотря на это, появляются все новые предложения по улучшению скорости и помехоустойчивости в данных сетях связи, возникают новые алгоритмы, такие как резервация тона, OQAM-IOTA (Offset-QAM Isotropic Orthogonal Transform Algorithm), FBMC (Filter bank multi carrier или фильтрация банком фильтров). В ряде случаев это усложняет математический аппарат системы связи, но позволяет повысить скорость связи и помехоустойчивость в них.
Широкое развитие стали получать программно-определяемые системы, где параметры системы и используемые алгоритмы не являются универсальными под любой канал связи, а могут быть подобраны в зависимости от условий канала связи. Стоит рассматривать алгоритмы, которые могут адаптировать систему в зависимости от канала связи.
Технология OFDM отличается применением прямого и обратного быстрых преобразований Фурье (соответственно, БПФ и ОБПФ) в качестве базовых операций. После операции БПФ сигналы на поднесущих частотах, рассматриваемые уже во временной области, ортогональны между собой. Это условие ортогональности сигналов X
, X
…X
на поднесущих частотах f
, f
…f
с учетом длительности OFDM-символа T
можно представить в следующем уравнении [139]:
(1.1)
Ортогональность не нарушается при любом разносе между частотами вследствие свойства БПФ. Однако нужно учитывать возможность нарушения синхронизации в системе, эффекты Доплера в канале, где доплеровский сдвиг зависит от частоты, поэтому возникает ограничение на минимальный частотный разнос между поднесущими частотами в спектре OFDM-сигнала. Также принято использовать по возможности целое количество периодов сигнала для каждой поднесущей частоты, но на практике это условие ограничивает скорость связи, ведь необходимо выполнение соотношения между длительностью OFDM-символа и частотным разносом между поднесущими частотами.
После добавления циклического префикса во временной области сообщение, полученное в результате группировки сигналов в один поток, проходит операцию перемножения с весовым окном, затем преобразуются в аналоговую форму с помощью ЦАП. В первом приближении может быть рассмотрено дискретное преобразование Фурье (ДПФ и соответствующее ему ОДПФ (обратное)) применительно к системам связи с OFDM-сигналами вместо операции БПФ. Сигнал после операции ОДПФ представляется формулой:
(1.2)
где k – номер выборки в частотной области, n – номер выборки во временной области, N – количество точек ОДПФ, X
– комплексная амплитуда на поднесущей частоте. Передатчик формирует сигнал, сообщение в котором распределено между спектральными составляющими. В сигнал добавляются циклический префикс (ЦП), нулевые и пилот- поднесущие сигнала. Если нет дублирования, то кратковременные флуктуации уровня сигнала в узкой полосе частот приведут к искажению нескольких битов, однако за счет более низкоскоростной передачи большего количества символов одновременно это отклонение значения можно выявить и скомпенсировать.
В настоящее время известно, что при переносе частоты в радиочастотную область комплексно-сопряженные значения частот становятся поднесущими частотами, дублирующими информацию на интервале ниже несущей частоты гетеродина. Во время операции БПФ можно не задавать комплексно-сопряженные значения, но классической является ситуация, где каждой несущей частоте соответствует комплексно-сопряженная частота на интервале выше половины частоты дискретизации. Тогда необходимо формировать сигнал следующим образом:
где
– комплексно-сопряженное число для одного из комплексных чисел, получившихся на выходе квадратурного модулятора.
Чтобы повысить помехоустойчивость к замираниям, может быть задействован разнесенный в пространстве прием. Встречаются аббревиатуры, такие как «MIMO OFDM» (Multiple In Multiple Out – множественный вход, множественный выход) [82]. Для того, чтобы ограничить объемы исследований, это направление не рассматривается в данной работе, поэтому предпочтение отдается SISO-технологии (по одной передающей и приемной антеннам) с учетом на то, что MIMO может быть использована при необходимости и может применяться совместно с исследуемыми алгоритмами.
Положительные стороны применения технологии OFDM [49, 116].
– Высокая эффективность использования радиочастотного спектра, объясняемая почти прямоугольной формой огибающей спектра при большом количестве поднесущих частот.
– Простая аппаратная реализация: базовые операции реализуются методами цифровой обработки.
– Хорошее противостояние межсимвольным помехам (ISI – intersymbol interference) и интерференции между поднесущими (ICI – intercarrier interference). Как следствие – лояльность к многолучевому распространению.
– Возможность применения различных схем модуляции для каждой поднесущей, что позволяет адаптивно варьировать помехоустойчивость и скорость передачи информации.
– Отрицательные стороны использования технологии OFDM [49, 116].
– Необходима высокая синхронизация частоты и времени.
– Чувствительность к эффекту Доплера, ограничивающая применение OFDM в мобильных системах.
– Неидеальность современных приёмников и передатчиков вызывает фазовый шум, что ограничивает производительность системы.
– Защитный интервал, используемый в OFDM для борьбы с многолучевым распространением, снижает спектральную эффективность сигнала.
– Относительно большой пик фактор сигнала (с которым борются ограничением амплитуды [116]).
Из комплексного выражения (1.2) необходимо получить физический сигнал, который просто можно подать на антенну и получить на приемной стороне. Если нет прямого синтеза частоты, то есть если I и Q компоненты сигнала на низких частотах относительно несущей частоты, то необходимо так же перенести сигнал в высокочастотную область. Существуют различные схемы переноса комплексного сигнала на радиочастоту. Может применяться простое суммирование с двух смесителей (С), на входы которых поступают фильтрованные (ФНЧ) I- и Q- компоненты, умноженные на несущую гармонику, фаза которой для синфазной составляющей соответствует нулевой фазе косинусоиды, а для квадратурной – нулевой фазе синусоиды.
В таком случае недостатком является вторая боковая полоса (если не закладывать информацию в зеркальные или отрицательные частоты). Этого недостатка лишена схема Уивера, однако появляются минусы: невозможность напрямую сформировать промежуточный квадратурный сигнал сразу на нулевой частоте или на другой промежуточной частоте, относительно большое количество вычислений по процедуре ОБПФ и БПФ, необходимость применять высокочастотные устройства для получения и обработки первичного OFDM-сигнала.
Разработка модели канала связи и прием сигнала, прошедшего многолучевой канал
В канале связи OFDM-сигнал подвергается не только воздействию аддитивного белого Гауссова шума, но и эффекту многолучевости. В зависимости от характера распределения волн законы огибающей сигнала могут задаваться распределениями Рэлея, Накагами и другими. Уровень замираний сигнала может быть незначительным, а может достигать 40 дБ и более. Импульсная характеристика многолучевой среды распространения описывается формулой:
(1.3)
где h
– передаточные коэффициенты лучей многолучевого сигнала, ?
– их фазы, k