banner banner banner
Компоненты неметаллических материалов и их свойства. Монография
Компоненты неметаллических материалов и их свойства. Монография
Оценить:
Рейтинг: 0

Полная версия:

Компоненты неметаллических материалов и их свойства. Монография

скачать книгу бесплатно


 пластмассы хрупки и тверды, между T

 и T

 – гибки и податливы, выше T

 они являются вязкими расплавами.

Оптические свойства.

Пластические материалы бывают различной степени прозрачности – от совершенно прозрачных до матовых. Все аморфные полимеры прозрачны, тогда как в частично-кристаллических полимерах появляется некоторая мутность из-за различий в показателях преломления кристаллических и аморфных областей, которые неодинаково отклоняют световые лучи; при этом свет рассеивается и материал выглядит мутным. Если степень кристалличности низка и средний размер кристаллических областей мал, менее 500 ? (1 ? = 10

 м), тонкая пленка материала еще прозрачна (например, майлар, саран, профакс). Высокая же степень кристалличности и более крупные кристаллические области придают дымчатость даже тонким пленкам (например, полиэтилен, найлон-6, найлон-6,6).

Электрические свойства.

Все органические пластмассы являются изоляторами, а потому находят применение в электротехнике и электронике. В табл. 2 приведены некоторые важные электрические свойства ряда промышленных пластмасс.

Свойства пластмасс зависят от их основных характеристик: а) природы мономеров; б) средней СП; в) степени кристалличности системы. Электрические свойства некоторых промышленных пластмасс.

1.4. Термопластические материалы

Полиэтилен

(ПЭ) [—CH

—CH

—]

 существует в двух модификациях, отличающихся по структуре, а значит, и по свойствам. Обе модификации получаются из этилена CH

=CH

. В одной из форм мономеры связаны в линейные цепи (см. рис. 1) с СП обычно 5000 и более; в другой – разветвления из 4—6 углеродных атомов присоединены к основной цепи случайным способом. Линейные полиэтилены производятся с использованием особых катализаторов, полимеризация протекает при умеренных температурах (до 150° С) и давлениях (до 20 атм).

Линейные полиэтилены образуют области кристалличности (рис. 2), которые сильно влияют на физические свойства образцов. Этот тип полиэтилена (см. таблицу) обычно называют полиэтиленом высокой плотности; он представляет собой очень твердый, прочный и жесткий термопласт, широко применяемый для литьевого и выдувного формования (см.ниже) емкостей, используемых в домашнем хозяйстве и промышленности. Полиэтилен высокой плотности прочнее полиэтилена низкой плотности.

Разветвленные полиэтилены первоначально получали нагреванием этилена (со следами кислорода в качестве инициатора) до температур порядка 200° С при очень высоких давлениях (свыше 1500 атм). Разветвления уменьшают способность полиэтилена к кристаллизации, в результате эта разновидность полиэтилена имеет следующие свойства:

Этот полиэтилен обычно называют полиэтиленом низкой плотности. Разработаны методы получения полиэтилена низкой плотности при низком давлении и умеренных температурах сополимеризацией этилена с другим олефином, например, бутиленом CH

=CH—CH

—CH

. Там, где в цепь встраивается бутиленовая единица, образуется короткая боковая цепь:

В этом случае упаковка цепей не может быть столь же плотной, как для «чистого» полиэтилена. Полиэтилен низкой плотности представляет собой прочный, очень гибкий и слегка упругий термопласт, несколько более мягкий, легче формуемый и выдавливаемый, чем полиэтилен высокой плотности; полиэтилен низкой плотности находит широкое применение в производстве покрытий, упаковочных материалов и изделий, изготовляемых методом литьевого формования.

Полиэтилен – один из наиболее полезных и важных пластических материалов. Детали электронных устройств, покрытие картонных молочных пакетов, упаковочные пленки и игрушки – вот далеко не полный перечень того, что делают из полиэтилена.

Полипропилен

(ПП) [—CH

—CH (CH

) —]

 получают из пропилена C

H

. В 1954 Дж. Натта (Италия) определил его молекулярную структуру, открыв важный класс стереорегулярных полимеров. Боковые метильные группы CH

 могут располагаться в цепи полипропилена случайным образом

или регулярно

Натта назвал полимеры первого типа атактическими, а второго – тактическими, в данном специфическом случае – изотактическими (что значит «на одной стороне»).

В атактическом полипропилене беспорядочное расположение метильных групп препятствует кристаллизации, в результате получается мягкий, резиноподобный материал, который легко растворим в органических растворителях и размягчается при невысоких температурах. Он используется для получения различных изделий методом экструзии, а также в качестве клея для пластмасс.

В тактическом полипропилене метильные группы расположены регулярно вдоль цепи. Вследствие этого из тактического полипропилена получаются прочные жесткие термопласты с высокими температурами плавления и отличной устойчивостью к растворителям. Изотактический полипропилен – важный промышленный продукт. Он широко используется для получения волокон и пленок и как материал для литьевого и выдувного формования емкостей.

СП "> Т

»> Т

»> Плотность "> Кристалличность "> Растворимость»>

Полистирол

(ПС) [—CH

—CH (C

H

) —]

 синтезируют из стирола C

H

 с пероксидными или азоинициаторами при температурах 60—150° С в жидкой фазе (в растворе, суспензии или эмульсии). Расположение бензольных колец по бокам линейной цепи препятствует кристаллизации настолько, что термопластический полимер получается аморфным, прозрачным, жестким и несколько хрупким.

Несмотря на чувствительность к воздействию растворителей и некристаллический характер, полистирол – один из наиболее важных термопластов, благодаря своей прозрачности, легкой формуемости и прекрасным электроизолирующим свойствам. Полистирол широко используется в электрическом оборудовании, предметах обихода, игрушках и особенно как теплоизоляционный пенопласт. В последние годы получен полистирол с более высокой ударопрочностью благодаря добавкам эластических компонентов; новые сорта расширили сферу применения этого полимера.

Полиметилметакрилат

(ПММА) [—CH

—C (COOCH

) (CH

) —]

 – аморфный прозрачный термопласт, имеющий важное промышленное значение. Его синтезируют из метилметакрилата C

H

O

 так же, как полистирол получают из стирола. Он тверд (несколько тверже полистирола), абсолютно бесцветен и кристально прозрачен, T

 ок. 100° С. Полиметилметакрилат широко используют для изготовления украшений, оптики и других товаров, где желательно высокое качество.

Поливинилхлорид

(ПВХ) [—CH

—CHCl—]

 получают из его мономера, винилхлорида CH

=CHCl при температурах от 20° С до 100° С с пероксидными инициаторами (синтез аналогичен синтезу полистирола). Поливинилхлорид состоит из линейных цепей и является атактическим полимером, а следовательно, аморфным, твердым, жестким, устойчивым к воздействию растворителей термопластом.

Особенно важное свойство поливинилхлорида – огнестойкость, связанная с присутствием хлора в его молекуле (ок. 55%). Хлор придает поливинилхлориду жесткость, полимер размягчается лишь при высоких температурах; по этой причине в некоторых случаях приходится вводить пластификаторы (10—40%), чтобы сделать его более легко формуемым, выдавливаемым и выдуваемым. Поливинилхлорид используется в больших количествах в производстве волокон, пленок, труб, резины, формованных изделий, искусственной кожи и покрытий.

Родственным термопластом является поливинилиденхлорид [—CH

—CCl

—]

. Это кристалличный, высокоплавкий, устойчивый к воздействию растворителей материал, из него изготавливают пленки и грубые ткани.

Полиакрилонитрил

(ПАН) [—CH

—CH (CN) —]

 синтезируют из акрилонитрила C

H

N аналогично получению полистирола и поливинилхлорида. Он состоит из линейных цепей, аморфен и имеет такую высокую температуру стеклования, что с трудом поддается формованию. Однако включение других мономеров в цепь полимеров на основе акрилонитрила делает их более пластичными и понижает T

. Получаемые сополимеры легко обрабатываются и сочетают твердость и прозрачность с высокой устойчивостью к воздействию растворителей. Полиакрилонитрил и сополимеры широко используются в производстве синтетических волокон (орлон, динел, акрилан), пленок, резин, формованных изделий (из акрилонитрил-бутадиен-стирольных смол) и покрытий.

Поливинилацетат

(ПВА) [—CH

—CH (OCOCH

) —]

 синтезируют из соответствующего мономера аналогично получению полистирола и поливинилхлорида. Этот относительно дешевый термопласт находит широкое применение. Он аморфен, имеет низкую температуру размягчения, легко растворим и используется главным образом для покрытий и как клей.

Политетрафторэтилен

[—CF

—CF

—]

, более известен как тефлон. Его получают газофазной полимеризацией тетрафторэтилена CF

=CF

. Это высококристалличный, линейный термопласт с очень низкой T

 (ок. —110° С); очень высокая T

 (ок. 330° С, много выше, чем у большинства пластмасс) позволяет использовать тефлон при относительно высоких температурах. Тефлон инертен по отношению к химическим и физическим воздействиям; это прекрасный электроизолятор, кроме того, он обладает наибольшей стойкостью к растворителям среди известных полимеров. К тефлону ничего не прилипает; у него наименьший коэффициент трения из всех твердых материалов. По этим причинам он широко используется в производстве электронного оборудования, прокладок и подшипников.

Полиоксиметилен

(ПОМ, полиформальдегид) [—CH

—O—]

 получают газофазной полимеризацией формальдегида CH

O. Это твердый, жесткий, высококристалличный, линейный термопласт с T

 ок. 180° С и T

-85° С. Он не отличается высокой термической и химической стабильностью, но благодаря своей твердости, высокой температуре плавления и стойкости по отношению к органическим растворителям широко применяется для литьевого формования.

Полиоксиэтилен

(ПОЭ, полиэтиленоксид) [—CH