banner banner banner
История античной науки. Открытия великих ученых и мыслителей древности
История античной науки. Открытия великих ученых и мыслителей древности
Оценить:
Рейтинг: 0

Полная версия:

История античной науки. Открытия великих ученых и мыслителей древности

скачать книгу бесплатно


Как такое произошло? Мы можем лишь гадать, но наши догадки не случайны и не тщетны. Первый теолог в общих чертах описал идею единства или целостности: одна причина, один мир, одна индивидуальность (самость), один Бог. Почти так же рано должна была возникнуть и мысль о двойственности или дуализме, поскольку в природе много парных явлений. У нас два глаза, две ноздри, два уха, две руки, две ноги; у женщин две груди. Руки особенно наглядны, ведь человек с самого начала пользовался ими неодинаково. Самые простые действия, такие как еда, питье, применение орудий, занятие любовью или драка, подразумевают разные задачи для каждой руки. Две руки демонстрируют правую и левую стороны всего – не простую двойственность, но противоположность, полярность, в пределах которой одна сторона отличается от другой и бывает предпочтительнее. Главное же противопоставление демонстрировала полярность пола. Не только все люди, но и все животные, за которыми можно было наблюдать, либо мужского, либо женского пола. Это было не только очевидно, но и безоговорочно, неизбежно. Более того, противопоставляются все качества и свойства: горячее – холодное, сухое – мокрое, большое – маленькое, приятное – неприятное, хорошее – плохое.

Выделялись и группы более многочисленные, хотя и не столь универсальные. Отец и мать со своим первенцем составляли троицу, триединство. По реке можно плыть вверх и вниз по течению, но для человека, стоящего на равнине, сторон света больше. Если он вставал, раскинув руки, то мог выделить четыре стороны – вперед, назад и по направлению каждой руки. Скоро язык отразит данное наблюдение четырьмя значимыми словами: вперед, назад, направо, налево. Если одной рукой указывать на восходящее солнце, а другой – на заходящее, возникает представление о четырех важнейших точках. К этим четырем составляющим можно добавить пятую – центр, то место, где стоит наблюдатель. Кроме того, он видит небо над головой и землю под ногами. Отсюда возникают категории пятеричности, шестеричности, семеричности. Первую из этих категорий значительно подкрепляет наличие пяти пальцев. Считая предметы по пальцам на руках и ногах, естественно группировать их пятерками и говорить о количестве «рук». Более крупные группы, например десять или двадцать, почти так же естественны, просто их не так легко признать.

Большинство людей, почти все, принимали подобные категории как данность и не особенно думали о них, но, если среди них находился прирожденный математик – а почему бы ему не быть? – он наверняка догадался о существовании чисел, чисел вообще, абстрактных чисел, не зависящих от считаемых предметов. Должно быть, он понял, что пять пальцев на руке, на ноге или пять… чего-нибудь на Кассиопее – суть одно и то же. Ну а теологов и космологов, возможно, завораживало число один, от которого произошли все остальные, или двойка, символизирующая вселенскую полярность, и даже три, таинственный треугольник. Дуализм, получивший развитие в зороастризме, уходит своими корнями в глубочайшие тайники человеческого сознания.

Эти числовые разряды положили начало не только арифметике, то есть чистой науке, но и числовому мистицизму, или чистой чуши. Оба начала росли буйно. Рассмотрим ситуацию в Китае, не забывая о том, что речь идет о доисторическом периоде. Группирование чисел, которое так любят китайцы, возникло в незапамятные времена. Если бы можно было проследить его до самых истоков, скорее всего, мы бы перенеслись в глубочайшую древность. В китайском мировоззрении превалирует идея о вселенской полярности ян и инь, мужского и женского, позитивного и негативного принципов жизни. Ян – мужское, свет, горячее, активное, небо, солнце, скалы и горы, хорошее… Инь – женское, темное, холодное, пассивное, земля, луна, вода, неприятности и зло… (думаю, понятно, что первыми китайскими космологами были мужчины, а не женщины!).

Рис. 1. Символы ян (белое, мужское) и инь (темное, женское) в окружении восьми триграмм

Все примеры дуализма можно выразить через ян и инь. Сексуальное происхождение всех форм жизни, то, что каждому ребенку полагаются два родителя, распространяется на всю Вселенную. Любопытнее всего то, что такая сексуальная космология очень рано получила математическое выражение. Противопоставляется не только отрицательное и положительное (фундаментальное различие, которое позже разовьется в геометрии и арифметике), но и изображение ян в виде непрерывной, а инь – прерывистой линии. Возьмите три и три соответственные линии, и возможны восемь комбинаций, восемь триграмм (ба гуа), ни больше ни меньше (рис. 1). Открытие этой тайны приписывали Фу Си, легендарному первому императору Поднебесной, который правил предположительно в 2953–2838 гг. до н. э. Подобное приписывание – лишь дань глубокой древности. Если сочетать линии ян и инь шесть по шести раз, получится 64 возможные гексаграммы, каждой из которых придавалось определенное значение. Процесс можно продолжать, и его продолжали (математический ум не дремал!), что уже не должно нас волновать.

Интересно, что древние китайские ученые и мистики, сами того не сознавая, занимались комбинаторным анализом. Глупо было бы ожидать, что они сразу понимали все математические последствия своих умозаключений, но их инстинктивные устремления в нужную сторону подтверждаются тем, что они изобрели шестидесятеричный период (систему китайского летоисчисления), который основан на комбинации десятеричного («небесные стволы») и двенадцатеричного («земные ветви») циклов. Китайское название, «цзя цзы», составлено из названия первого «ствола» и первой «ветви». Названия 12 «ветвей» – это названия животных; так, «цзы» – крыса. Поскольку 12 ? 5 = Ц) ? 6 = 60, возможны 60 различных комбинаций (рис. 2). Это открытие приписывают еще одному мифическому императору, Хуанди, который правил в 2698–2598 гг. Сначала это открытие применялось только по отношению к дням и часам; считать по этой системе годы начали позже, в эпоху Хань (примерно во время Христа), но нас сейчас интересует лишь фундаментальная идея о шестидесятеричном цикле, а не о его применении.

Рис. 2. Шестидесятеричный цикл (китайская система летоисчисления). Десять символов каждого первого столбца похожи; они представляют десять небесных корней. Двенадцать земных ветвей написаны во вторых столбцах, от 1 до 12, от 13 до 24, от 25 до 36, от 37 до 48, от 49 до 60. Каждая группа из двух иероглифов отличается от остальных

Любопытно сравнить китайский календарь с календарем майя. Они так независимы друг от друга, как будто развивались на разных планетах. Майя сочетали гражданский год (хааб), состоящий из 365 дней, с ритуальным периодом (цолькин), состоящим из 260 дней; сочетание давало «длинный год», или «связку лет», как они это называли, из 18 980 дней (= 52 хааб = 73 цолькин)[3 - Подробнее см.: Morley Silvanus Griswold. The ancient Maya. Stanford: Stanford University Press, 1946. C. 265–274 [Isis 37, 245 (1947); 39, 241 (1948)].].

Обычные китайцы не занимались такими размышлениями; им ба гуа и цзя цзы были такими же естественными, как времена года или фазы Луны, однако привычка к численным категориям у них глубоко укоренилась. Некоторое желание объединять вещи попарно, по три и так далее существует у каждого (оно выражает инстинктивное стремление к порядку и симметрии, основополагающее не только для науки, но и для искусства), но китайцы позволили своему стремлению развиваться свободнее, чем другие народы. Таким образом, им знакомо большее количество разрядов, чем, скажем, для нас четыре основные точки; они группируют по 2, 3,4, 5, 6, 7, 8, 9, 10, 12, 13, 17, 18, 24, 28, 32, 72, 100. У.Ф. Майерс перечислил 317 таких групп, и я уверен, что его список можно продолжить. Конечно, многие из этих групп более позднего происхождения; другие будут добавлены в будущем, но первоначальный замысел почти так же древен, как и сама китайская цивилизация.

Мы очень близко подошли к математике, но затем нас отнесло в сторону. Должно быть, в прошлом подобное происходило много раз; то же самое происходит уже с нами. Любую научную идею можно исказить – и она часто искажается; здесь ничего не поделаешь. Любое орудие можно использовать как с добрыми, так и с дурными целями.

Возвращаемся от фантазии к реальности; возможно, своим развитием арифметика обязана тому, что наши предки не останавливались на небольших и знакомых категориях. Им приходилось многое считать, в том числе сравнительно большие количества. Вождь племени, который, что вполне естественно, хотел оценить свои запасы, задавался вопросом, сколько у него воинов, сколько лошадей, овец и коз. Короче говоря, требовалась перепись, и, даже если племя было маленьким, такая перепись быстро приводила к числам, превышающим количество пальцев на руках. Как же вождь справлялся с задачей? В своем замечательном рассказе о переписи, которую проводил раджа Ломбока (острова к востоку от Бали), А.Р. Уоллес подробно останавливается на возникших неизбежных математических затруднениях. В результате раджа приказал производить подсчеты с помощью многочисленных связок стрел. Как он считал стрелы? Помним, что группирование – основа счета. Каждый язык демонстрирует наличие, как выражаются математики, основания системы счисления. Таким основанием часто бывала пятерка (у многих американских племен), иногда 20 (у майя), но чаще всего 10. Одни основания системы счисления были популярнее других, потому что почти каждый первобытный человек пользовался одним и тем же калькулятором: пальцами рук и ног. Если он ограничивался пальцами одной руки (или ноги), основанием служила пятерка; если он пользовался обеими руками (или ногами), основанием служил десяток. Если учитывались все пальцы на руках и ногах, за основание принималось число 20. Счет по пальцам ног был вполне естественным для теплых стран, где люди ходили босиком. Во многих языках, например в греческом, латыни и арабском, пальцы на руках и на ногах называются одним словом; если требуется уточнение, последние называются «пальцами ног». Как говорится, добродетель посередине. Народы, чьим культурным шаблонам суждено было доминировать над остальными, бессознательно сошлись на использовании десятков. Откуда нам известны основания систем счисления первобытных людей? Следы без труда можно отыскать в языках, пусть даже наша десятеричная система явно представлена нашими числительными. Более того, отчасти благодаря самим словам понадобилось и было инстинктивно создано основание системы счисления. Основание делает возможным в случае необходимости периодически использовать одни и те же слова, с небольшими изменениями; без него потребовалось бы бесконечное множество слов. Так, во многих европейских языках, для того чтобы вслух досчитать до ста, требуется 19 слов: «один», «два»… «десять»; «двадцать»… «девяносто»; «сто». Необходимо помнить несколько вариаций для второго десятка: «одиннадцать», «двенадцать», «тринадцать»… «девятнадцать». Для того чтобы досчитать до 999 999, необходимо добавить всего еще одно слово: «тысяча».

Стихийное стремление ведущих держав к десятеричной системе счисления прекрасно, но, в конечном счете, намного прекраснее чудесная симметрия каждого языка. Подобные вещи поражают воображение! Чем объяснить бессознательное параллельное развитие таких сложных структур – и не в одном месте, а повсюду, где развивается человек? Каждый язык демонстрирует не идеальную симметрию, подобную симметрии геометрического чертежа, но симметрию во многом несовершенную, подобную дереву или красивому телу – живую симметрию.

Как подсчитывались результаты первобытной переписи? Допустим, что каждый считаемый предмет представлен прутиком и что принято десятеричное основание системы счисления.

Делаются пучки по десять прутиков в каждом; общее число прутиков в десять раз превышает количество пучков. Если пучков оказывалось слишком много, человеку, производившему подсчеты, возможно, и пришло бы на ум заменять каждый пучок более длинным прутиком, своего рода «суперпрутиком», и составлять из них новые «суперпучки» по десять пучков в каждом. Если бы подсчитывающий обладал математическим умом и пошел на такой шаг, он мог повторять операцию по мере необходимости. Признав десятки, он мог признать сотни, тысячи, десятки тысяч и так далее, создавая для новых понятий новые слова, а также новые символы. Не забывайте, что количество новых необходимых слов (или символов) стремительно сокращается. Скорее всего, прошло очень много времени, прежде чем для подсчетов понадобилось слово «миллион», и мы сейчас лишь начинаем с известной частотой применять слово «миллиард».

То, что мы называем основными арифметическими действиями (сложение, вычитание, умножение и деление), возникло естественно, если не эксплицитно, из самого процесса перечисления и распределения совокупностей. Идея вычитания также возникла в случаях, когда числа немного меньше круглых и легче подойти к ним сверху, чем снизу, сказать, например, что предметов на 2 меньше, чем 20, а не 18, на 1 меньше 100, чем 99, на 300 меньше 10 000, чем 9700. Доказательствами служат слова (сотворенные народом!) duo-deviginti («без двух двадцать») и undecentum («без одного сто», «один до ста») в латыни, а также triacoston apodeonta myria в греческом; они обозначают соответственно 18, 99, 9700.

Мы допускали, что первые подсчеты производились при помощи прутиков и других предметов, например камушков (calculi на латыни, отсюда «калькуляция», «калькулятор» и т. д.). Кроме того, подсчеты производились при помощи узлов на веревках или зарубок на палочках. Естественно, одни и те же периоды возникали вновь и вновь. Человек, который, пусть и бессознательно, мыслил десятеричным ритмом, делал зарубку подлиннее для десятка и еще длиннее – для сотни; цифры, которые приближались к более длинным зарубкам, легче можно было понять при помощи вычитания из этих зарубок.

Понятия ритма и шаблона появились по необходимости, когда пришлось вести более осязаемый счет в процессе создания орнаментов и украшений. Самые простые измерения, которые требовались при сооружении алтаря или строительстве дома, возможно, вызвали к жизни первые геометрические представления, ибо для того, чтобы красиво украсить различные предметы или тело, требовались не только отдельные измерения, но и полный их спектр плюс по возможности много симметричных и периодических комбинаций декоративных элементов. Лучшей учительницей стала мать-природа; бесконечные узоры, которые можно наблюдать, например, в деревьях, листьях, цветах, у птиц, змей и т. д., становились источником вдохновения для людей, развивших в себе любовь к прекрасному. Некоторые дошедшие до нас рисунки времен палеолита выполнены подлинными художниками. Узоры на керамике и тканях, которые можно видеть в антропологических музеях, доказывают живость воображения и изобретательность наших предков. Ремесленники были способны не только создавать чрезвычайно сложные узоры. Они виртуозно вносили в них изменения; им хватало тонкости осознать ценность небольших отклонений. При создании любой художественной композиции требуется решение, пусть и приблизительное, многочисленных геометрических задач.

Измерить расстояние и разделить его было достаточно легко, скажем, при помощи веревки, которую можно сложить вдвое, вчетверо и т. д. Сложнее было оценить относительное расстояние между звездами знакомого созвездия или изменение расстояния до движущегося небесного тела (планеты), которое приближалось к чему-то неподвижному. Скорее всего, первые «ученые» измеряли эти расстояния тоже с помощью веревок. В таком случае они вскоре наверняка заметили, что расстояние, которое требовалось измерить, уменьшалось, если поднести веревку ближе к глазам. Наконец, какому-то доисторическому Ньютону пришло в голову, что астрономические расстояния – не линейные, а угловые. Понятие угла стало геометрическим и астрономическим изобретением фундаментальной значимости.

Недостаточно произвести измерения; их необходимо выразить, что подразумевало выбор единиц. Недостаточно выбрать единицы; необходимо их сохранить. Сохранение стандартных единиц стало, наверное, одним из первых шагов в научной организации, хотя, естественно, процесс шел так же бессознательно, как и прочие первые шаги. Похоже, почти каждый народ предпочитал в качестве единиц измерения части человеческого тела (локоть, стопу, пядь и т. д.). Наши предки прекрасно понимали, что единиц измерения нужно много: мелкие – для малых расстояний, побольше – для более длинных расстояний и так далее. При этом они не пытались установить устойчивые отношения между этими единицами. Их не стоит винить, скромно помня о том, что и высокоцивилизованные народы наших дней еще не осознали такой потребности.

Доисторическая астрономия

Мы не случайно заговорили о звездах. Для любого мыслящего человека невозможно было наблюдать за ними ночь за ночью и не задаваться рядом вопросов, глубоко научных по своей сути. Первобытные люди, особенно те, кто в силу теплого климата ночевали под открытым небом, в течение года не могли не замечать сдвиги во времени заката и рассвета, фазы Луны, регулярное смещение Луны влево (в Северном полушарии), изменение положения звезд на разной высоте, сезонное появление и исчезновение созвездий, более сложные траектории движения утренней и вечерней звезды и других планет. Они разными способами познавали процесс течения времени, поскольку не могли не замечать чередования дня и ночи, фаз Луны, смену времен года и лет. Они составляли для себя календари, в которых на основе прошлого опыта предсказывались те или иные события. Их календари основывались на метеорологических наблюдениях, на лунном или солнечном цикле или на сочетании некоторых явлений. Такие календари можно было совершенствовать, так как наблюдения, легшие в их основу, повторялись и уточнялись.

Продолжать перечисление нет нужды. Ясно, что по меньшей мере немногие привилегированные народы, которым больше повезло с климатом, местоположением или развитым мышлением, накопили солидный багаж знаний еще до изобретения письма. В некоторых местах доисторические знания были настолько обширными и разнообразными, что полный их перечень, если бы можно было его воссоздать, занял бы значительное место.

Теоретическая наука

Некоторые читатели возразят: каким бы тогда ни было знание, оно являлось чисто практическим, эмпирическим, слишком грубым и несовершенным, чтобы считаться наукой. Почему не следует называть тогдашние знания наукой? Это была очень слабая, очень несовершенная, однако способная к совершенствованию наука; наука в наше время определенно глубже и богаче, однако для нее характерны те же общие черты. Наука в наши дни весьма несовершенна, однако способна к совершенствованию. Можно сказать и по-другому: тогда теоретической науки не было. Почему? Насколько «чистой», теоретической должна быть наука, чтобы заслужить такой эпитет? Если теоретическая наука – это непредубежденная наука, знания, приобретенные ради самих себя, без намека на их непосредственное применение, конечно, первые астрономы были или могли быть настолько же «теоретиками», насколько теоретики астрономы нашего времени. Возможно, в ту эпоху уже возникли астрологические фантазии, но равно возможно, что их тогда еще не было, потому что они подразумевали бы некоторую степень искушенности, какой тогдашние астрономы еще не достигли. Главной причиной наблюдения за странным поведением некоторых планет могло стать простое любопытство.

Любопытство – одна из наиболее сильных сторон человека, и оно гораздо древнее самого человечества. Возможно, именно оно становилось главной движущей силой научного познания в прошлом – как и в наши дни. Необходимость называют матерью изобретений, техники и технологии, но матерью науки было любопытство. Возможно, мотивы первобытных ученых (в противовес мотивам первобытных техников и шаманов) не очень отличались от мотивов наших современников: они значительно разнились от человека к человеку, от одного времени к другому. В доисторические времена они, как и сейчас, охватывали весь спектр, от совершенно бескорыстного, отчаянного любопытства и духа авантюризма до личных амбиций, тщеславия и алчности.

Если бы исследования с самого начала не вдохновлялись своеобразным бескорыстным авантюризмом, а также тем, что враги науки позже заклеймят опрометчивостью и нечестивостью, научный прогресс шел бы заметно медленнее. О сумме знаний, приобретенных некоторыми первобытными людьми, свидетельствуют данные антропологов, а также поддающиеся анализу достижения древнейших цивилизаций. Оказывается, выйдя на историческую сцену, человек уже овладел многими искусствами, ремеслами, а также практическими знаниями и умениями.

Тогда, как и в наши дни, истинный ученый, как и истинный художник, скорее всего, был или казался немного странным и скрытным; весьма вероятно, что его более практичные соседи уже тогда подшучивали над его рассеянностью. Конечно, ученые и художники не более рассеянны, чем их соседи, просто они сосредоточены на другом. Древний ученый был поглощен собственными размышлениями; его мотивы были менее осязаемыми, его жизнь казалась таинственной. Одни желали славы и признания, другие, вероятно, уже поняли, что слава тщетна и лучше к ней не стремиться. Будь первобытный изобретатель эгоистичным и завистливым, он предпочел бы оставить свою новую идею – скажем, лучший крюк, лучший топор, лучшие материалы для изготовления орудий – при себе, в пределах своей семьи. Почти в каждом случае ученый или изобретатель тяготел к сдержанности. Научный прогресс всегда сопряжен с психологическими и социальными случайностями.

Иногда первобытное изобретательство не только развивалось втайне, но и противоречило общепринятым традициям и обычаям, ниспровергало их. Каждое изобретение, каким бы полезным оно ни оказывалось (а оно не может считаться полезным, пока им не начнут пользоваться), ставит в тупик, смущает. Чем оно важнее, тем больше оно смущает. В первобытные времена, как и сейчас, существовали заинтересованные круги, хотя их существование было, скорее всего, не столь очевидным. Тогда, как и сейчас, прогресс тормозила инерция, для которой свойственны сила привычки и самоуспокоенность, а также недоверие и презрение ко всему новому или чужеродному.

Однако такая инерция – не просто препятствие, но необходимость, как маховик или тормоз. Ее задача – придавать устойчивость и оправдывать вторжение человека в неизведанное. Сопротивление новым орудиям или новомодным идеям было полезным, потому что новшества следовало тщательно проверить перед тем, как принимать их. Каждое принятое орудие было плодом очень долгого процесса проб и ошибок, очень долгой борьбы между изобретателями, новаторами, реформаторами, с одной стороны, и консерваторами – с другой. Последние были гораздо более многочисленными; зато первых можно считать более воодушевленными и напористыми.

Диффузия и конвергенция

Некоторые антропологи-«диффузионисты», похоже, верят, что каждое изобретение было сделано в каком-то одном месте, и если оно оказывалось достойным, то заимствовалось и распространялось повсеместно. Рассуждающие подобным образом Г.Э. Смит и У.Дж. Перри хотели бы, чтобы мы считали Египет колыбелью цивилизации. Столь смелое обобщение не имеет доказательств, и история науки склонна его опровергать. Сходные открытия, то есть идентичные или похожие открытия, сделанные примерно в одно время разными народами в разных местах, довольно часто встречаются в Новое время, и их обстоятельства подробно исследуются. Как правило, такие явления объясняются общностью задач или орудий. Изобретатели решали одни и те же задачи и черпали сведения из одних и тех же источников, а свое вдохновение – из одних и тех же потребностей; одновременность (точнее, квазиодновременность) их побед объясняется сходством потребностей. Мы говорим: «Идея носилась в воздухе». Более того, каждая задача, как только она решена, порождает новые задачи; каждое открытие влечет за собой логическую цепочку других открытий. Почему бы такому не быть в доисторические времена? В этом отношении далекое прошлое отличается от наших дней лишь в том, что в прошлом все двигалось гораздо медленнее, а сходные процессы исчислялись веками, а не годами или месяцами, как сейчас.

Самым внушительным примером конвергенции (в противовес имитации) можно считать независимое изобретение десятеричной системы счисления в разных частях света, ее почти единодушное (пусть и бессознательное) принятие теми народами, чьи культуры стали доминирующими. Это одно из чудес эпохи зарождения науки. Анатомическое объяснение, приведенное выше, достаточно убедительно само по себе, однако оно отнюдь не является исчерпывающим. Почему люди считали десятками, а не пятерками и не двадцатками?

Теория конвергентной эволюции, или конвергенции, как называют ее антропологи, не отрицает частоты заимствований и имитации у разных народов. Ее сторонники утверждают, что сходство разных культур не обязательно является результатом имитации, но может возникнуть и часто возникает благодаря независимым изобретениям. Даже когда какой-либо народ заимствует некую культурную черту, орудие, слово или идею у другого народа, имитация чаще активна, чем пассивна. Более того, орудие или идея должны быть приемлемыми для нового народа. Даже если их принимают не сразу, они все же должны быть приняты, что часто подразумевает такую же долгую и болезненную борьбу, как и при принятии оригинального изобретения. Культурная черта лишь тогда усваивается тем или иным народом, когда она становится совершенно понятна (возможно, ошибочно истолкована), когда она начинает нравиться и ассимилируется. Появление новой черты или нового свойства идет не в процессе простого добавления, но в процессе биологического усвоения, воссоздания. Для того чтобы пользоваться металлическими, а не каменными орудиями, людям пришлось отбросить прежние убеждения и стать – как это называется сейчас – осмысленными пользователями металлических орудий.

Даже если человечество зародилось в одном месте, между его возникновением и зарождением культуры прошло столько тысячелетий, что у людей были бесчисленные возможности расселиться во многих местах, куда толкали их судьба и обстоятельства. Хотя задачи, которые предстояло решать нашим предкам, различались в зависимости от климатических и географических условий, их суть оставалась неизменной. Удивительно ли, что они приходили к одним и тем же или сходным решениям? Разве по сути они не были одними и теми же людьми? Иногда они находили решение самостоятельно; в других случаях обращали внимание на соседей и заимствовали их решение, принимали его, крали или изобретали заново. Заимствование можно истолковать по-разному, и оно значительно варьируется от всего до почти ничего или от рабского подражания до восприятия малейшего намека.

В каждом поселении имелись свои гении и свои тупицы. Однако подавляющее большинство составляли так называемые средние люди. Их количество варьировалось от поселения к поселению не только в силу наследственности, но и потому, что климатические и географические условия (в том числе доступность определенных растений и животных) в одних местах оказывались благоприятнее, чем в других. С самого начала люди очень отличались друг от друга по своим качествам и возможностям. Обитатели приозерных или приморских краев обладали определенными преимуществами по сравнению со своими дальними родственниками, которые находили убежище в горных пещерах или в оазисах в пустыне. Каждый дар природы порождал отличительные потребности. Некоторые из таких потребностей с течением времени исчезали, чем объясняются «утерянные искусства». Первобытные люди умели многое из того, на что мы не способны; кроме того, им удавалось выживать среди таких опасностей, с которыми мы больше не сталкиваемся.

Как некоторые люди выделялись среди своих сородичей, так и некоторые сообщества выделялись среди других сообществ и были способны выполнять определенные задачи, о которых другие даже не думали. Таким образом, они помогали человечеству сделать еще один шаг вперед. Следующий шаг становился возможным благодаря еще одному сообществу, в другое время, в другом месте. Так все шло с самого начала, и так было всегда. Ученые, которые занимаются эволюцией человека, не могут не заметить, что человечество трудится «посменно». Нет привилегированной «расы» или сообщества в абсолютном смысле, но для каждой задачи и в каждое время отдельные личности или отдельные народы могут превосходить остальных.

Рассвет науки не забрезжил повсеместно с одинаковой красотой и одинаковой надеждой. Возможно, одни народы развились рано, подобно вундеркиндам, которые начинают очень рано, но идут не слишком далеко. В следующих главах мы займемся древними народами, чей культурный рассвет стал лишь прелюдией к величайшим достижениям третьего и второго тысячелетий до нашей эры.

II. Египет

Выдающиеся культурные модели складывались в долинах великих рек на севере субтропических регионов. Ясно, что цивилизация большой сложности могла развиваться только там, где достаточному количеству людей удается жить относительно мирно и относительно удобно. Они сообща решают многочисленные задачи и пользуются плодами совместного проживания, поощряя друг друга. Такие реки – Нил, Евфрат и Тигр, Инд и Ганг, Хуанхэ и Янцзы. Возможно, к ним можно причислить Менам (Чаупхрая) и Меконг, хотя низовья двух последних рек (как и устье Ганга) находятся в тропиках. Все названные реки отличаются большой протяженностью (длина самой короткой из них, Менама, составляет около 1200 км, а протяженность Нила и Янцзы составляет соответственно около 5600 и 5150 км). Эти реки питают и орошают громадные территории. Такое совпадение не случайно. Реки, которые несут к морю не только воду, но и людей, товары, идеи, должны быть очень протяженными. При таком условии они обеспечивают достаточную концентрацию и конкуренцию в низовьях. Любая цивилизация, даже наименее развитая, настолько сложна, что не может быть создана небольшими группами людей. Цивилизацию создают сравнительно большие группы – тысячи или миллионы человек. Для того чтобы охватить масштаб задач, которые необходимо выполнить, представьте себе всего один элемент цивилизации – язык. Его развитие подразумевает многообразное и крайне сложное брожение в умах многих и многих анонимных носителей.

Поскольку нас главным образом занимает происхождение нашей цивилизации, в этой и следующей главах рассмотрим две цивилизации Древнего Ближнего Востока, так как они отчетливее всего повлияли на цивилизации Средиземноморья. Более того, две названные цивилизации ближе всего к средиземноморской, хотя ни одна из них не являлась ее законченной частью. Сказанное вполне очевидно для Месопотамии. Верховья Евфрата находятся довольно близко к Средиземному морю, хотя и Евфрат, и Тигр впадают в Персидский залив. Хотя Нил – единственная из названных великих рек, которая течет с юга на север – несет свои воды в Средиземное море, древнеегипетская цивилизация выросла не у моря, а в некотором отдалении от него. Главной водной артерией египтяне считали не Средиземное море, а сам Нил. Древний Египет можно сравнить с огромным речным оазисом посреди пустыни.

Во время периодических разливов удобрялась узкая долина Нила, благодаря чему там можно было выращивать обильные урожаи. Разливы компенсировали сухой, неплодородный климат; Египет пользовался самыми большими преимуществами среди всех стран Средиземноморья. Конечно, невозможно точно сказать, когда зародилась египетская цивилизация, и понять, предшествовала она цивилизациям Месопотамии и Китая или нет. Вопросы первенства не имеют большого значения для обсуждаемых здесь тем. Более того, мы не будем описывать условия, существовавшие в доисторическом Египте. На его территории не было ледникового периода, поэтому его доисторическое развитие не прерывалось, что дало Египту огромное, хотя и не поддающееся исчислению, преимущество перед другими странами. Достаточно сказать, что доисторическая культура Египта относится к концу каменного века. Древние египтяне уже освоили многие сельскохозяйственные навыки. Они выращивали ячмень, спельту (полбу) и лен, изготавливали полотно, имели годичный календарь. Когда на историческую сцену вышли правители I династии, вышеописанные культурные достижения уже существовали. Их можно считать не началом, а скорее расцветом, существование которого было бы невозможно без подготовительного периода, занявшего не одно тысячелетие.

Древнейший исторический период Египта, так называемое Древнее царство, принято ограничивать правлением шести династий (с I по VI). Он продолжался примерно с 3400 до предположительно 2475 г. до н. э., или почти тысячу лет. В данной книге я пользуюсь так называемой краткой хронологией, по которой первый фараон I династии, Менее (Мени), начал править около 3400 г. до н. э. Другие хронисты помещают его гораздо раньше; так, в соответствии с хронологией Ж.-Ж. Шампольона-Фижака, он начал править в 5867 г.! (Во избежание путаницы указание на династию обязательно.) Первая половина древнейшего периода известна не очень хорошо. Говоря о Древнем царстве, мы имеем в виду в первую очередь вторую половину этого периода, так называемую эпоху пирамид (с III по VI династии, ок. 2980 – ок. 2475, то есть около 500 лет). Эпоху пирамид обессмертили многочисленные надписи и другие письменные источники, но прежде всего огромные памятники.

Изобретение письма

Величайшим достижением древних египтян стало изобретение письма. Были ли они первыми, кто его изобрел, или им предшествовали шумеры или китайцы, – вопрос спорный. Во всяком случае, египтяне изобрели свое письмо независимо. Необходимо помнить: когда бы оно ни было изобретено, его невозможно точно отметить на временной шкале. Письмо появилось не одномоментно и не в какое-то определенное время. В Древнем Египте письмо возникло в доисторическую эпоху. Процесс его изобретения, скорее всего, завершился ближе к концу той эпохи. Самые ранние письменные источники, дошедшие до нас, относятся к Древнему царству.

Рис. 3. Перечень некоторых иероглифических знаков и их произношение. Математические фигуры

Можно предположить, что вначале египтяне использовали пиктограммы (изображения), которые олицетворяли не слова, а предметы и явления. Постепенно изображения делались более условными, упрощались и стандартизировались. Наконец, их начали ассоциировать с устными словами. Позже каждая пиктограмма стала представлять не просто какую-то идею, но определенное слово египетского языка. Скорее всего, еще позже изначальный замысел забылся, и пиктограммы сохранили лишь фонетическую ценность. Писари, имевшие в своем распоряжении достаточное количество таких пиктограмм-фонем, с их помощью записывали слова, состоявшие из одних и тех же звуков. Особенно это касается имен собственных и абстрактных понятий, которые трудно было воспроизвести с помощью картинки. Затем египтяне сделали еще один важный шаг вперед. Определенные символы стали использоваться лишь для обозначения согласных начал таких фонем. Таким образом, в эпоху Древнего царства у древних египтян сформировалась группа из 24 символов алфавита, количество которых с тех пор не росло (рис. 3).

Можно ли поэтому сказать, что египтяне изобрели алфавит? Нет, они изобрели алфавитные символы, однако, похоже, не поняли всей важности своего изобретения. Наряду с 24 выделенными ими «буквами» они продолжали пользоваться другими сложными символами – иероглифами. Такая заминка почти у самой цели может показаться странной, но в истории науки это скорее правило, чем исключение. Изобретатели редко доводят собственные творения до конца. Для завершения требуются другие люди, часто не столь значительные, зато более практичные или более радикальные. Они сознают ценность того или иного изобретения и беспощадно его эксплуатируют. Фарадеи и Максвеллы сеют семена, Эдисоны и Маркони пожинают плоды. Египтяне настолько привыкли к своим иероглифам, что не желали от них отказываться и сохраняли их на протяжении тысячелетий наряду с алфавитными знаками. Кроме того, стоит принять во внимание, что иероглифы и другие условные знаки легче читать, если знать их, чем символы алфавита. Вот почему подобные знаки часто встречаются во всех языках, особенно в языке науки. Вспомните знаки, которые используются в астрономии, химии, математике, – или хотя бы знак $ для обозначения доллара или & для «и». Недостаток всех таких знаков заключается в том, что, не зная их заранее, их невозможно понять. В то же время каждый может прочесть такие слова, как, например, «Венера», «восходящий узел» или «сурьма» или, в случае необходимости, посмотреть их значение в словаре. Финикийцы перевели изобретение египтян на более высокий уровень. Они создали первый семитский алфавит, куда входили только согласные. Греки дополнили его, добавив гласные. Процесс шел два или три тысячелетия, если не дольше.

Как египтяне все же записывали слово своего языка? Большинство иероглифов содержат два типа знаков, фонетические и детерминативы. Первые обозначают звук, вторые – грамматическую категорию слов. Египетские иероглифические детерминативы включали символы для обозначения божеств, людей, частей тела, абстрактных идей и др.; они не произносились. Фонетические знаки представлены как алфавитными символами (согласными), так и сочетаниями согласных, например мр, тм, нфр. Сочетание знаков двух видов дополняет идентификацию слова, облегчает его опознание и запоминание среди нескольких тысяч других слов. Египетское письмо, ставшее результатом свойственного ему компромисса, достаточно громоздко и часто избыточно. Впрочем, англоговорящим читателям не следует судить его слишком строго; «причуды» их собственного алфавита, вызванные сходными компромиссами, изумляют не меньше. Англоговорящим досталось в наследство чудесное орудие, но им не удалось с его помощью последовательно и недвусмысленно передавать произношение своего языка.

Прочитав мое краткое описание иероглифов, любой китаец или синолог скажет: да ведь то же самое относится и к китайским иероглифам! Египтяне и китайцы, работавшие независимо друг от друга в разных частях света, создали два обширных собрания словесных символов. Очень любопытно сравнить результаты этих гигантских экспериментов. Как и любой на их месте, они начинали с пиктограмм; более того, древние китайские и египетские пиктограммы, на которых изображались одни и те же объекты – солнце, луна, горы, вода, дождь, человек, птица, – часто похожи друг на друга. По мере того как два вида словесных символов стандартизировались, упрощались и становились все более многочисленными, оба народа пришли к одному и тому же общему выводу: каждое слово должно содержать фонетический элемент (звуковой знак) и детерминационный элемент (считывающий знак). Китайцы подошли к делу весьма последовательно. Около 80 % их иероглифов состоят из двух частей. Одну часть можно назвать ключом к звуку, а вторую (в нее входят 214 так называемых «классификаторов») – ключом к значению; в целом произношению классификатора и значения фонетического элемента не придается значения.

До какого-то времени достижения китайцев и египтян очень похожи. Однако имеются и фундаментальные различия – а что еще можно было ожидать от двух совершенно не похожих друг на друга народов, которые не одно тысячелетие жили в очень разной физической и психологической обстановке? В египетском письме гласные опускаются, а в устной речи они часто меняются – либо подчиняясь изменению грамматической формы слова, либо чтобы показать вариации значения. В Китае же гласные относятся к корню, обладают семантической ценностью и постоянны. Изучение значений китайских слов невозможно отделить от изучения составляющих их звуков. Можно без труда представить, как из древнеегипетской системы письма возникают алфавитные символы. В китайском письме такие символы появиться не могли. Хотя китайское слово концентрируется на одном иероглифе, более или менее сложном, иногда оно занимает столько же места, сколько и другие символы. Египетское слово больше похоже на слово в любом силлабическом (слоговом) письме; оно может занимать больше или меньше места.

На первых исследователей китайского и египетского языков гораздо больше впечатления произвело сходство между двумя системами письма, чем их расхождения. Обладая больше воодушевлением, чем познаниями, они охотно поспешили прийти к выводам, взывавшим к их разуму. В 1759 г. французский китаист Ж. де Гинь написал мемуары, в которых утверждал, что китайские иероглифы образованы от египетских и что Китай изначально был египетской колонией! Началась полемика, анализировать которую у нас нет времени. Но еще сто лет назад С. Берч (1813–1885) по-прежнему подходил к изучению иероглифов с китайской точки зрения. Берча никак нельзя назвать дилетантом, однако он отличался невероятным рвением; он стал составителем первого египетского алфавитного словаря (1867).

Консонантизм египетского письма стал поводом для еще одной дискуссии. Дело в том, что алфавиты, состоящие из одних согласных, – общая черта всех семитских языков. Не стоит ли в таком случае включить египетский язык в семитскую языковую семью? Вопрос оказался куда серьезнее, чем сходство и отличия китайского и египетского письма. Сходство между китайской и египетской письменностью возникло благодаря сходству задач, которые ставили перед собой древние китайцы и египтяне, и коренному сходству их природы. Сходные элементы в египетском и семитских языках появились в результате определенных контактов и заимствований. Поскольку отрицать это невозможно, дискуссия связана не с самими заимствованиями как таковыми, а с их количеством. Многие выдающиеся египтологи пришли к выводу, что древнеегипетский и семитский языки были тесно связаны, а один из них, итальянец С. Леви, издал коптско-древнееврейский иероглифический словарь, в котором свел воедино многочисленные случаи сходства, которые он обнаружил (или ему казалось, что он обнаружил) между древнеегипетским и древнееврейским языками. Прослеживаются не только параллелизмы в словах и словообразовании, но и одинаковое образование местоимений и числительных. И все же, несмотря на многочисленные случаи сходства, различий между египетским языком и семитской языковой семьей гораздо больше, чем различий между языками, входящими в эту семью.

Возьмем египетские числительные. Слова, обозначающие 1, 2, 3, 4, 5, 10, – африканские, слова, обозначающие 6, 7, 8, 9, – семитские. Что это значит? Это значит, что изначальная языковая семья, к которой принадлежал древнеегипетский язык, была африканской (хамитской), потому что слова для обозначения числительных от 1 до 5 появляются в речи одними из первых – в любом языке. Кроме того, можно сделать вывод, что египтяне считали пятерками (см. предыдущую главу). Позднейшие контакты с семитскими племенами на юге и востоке способствовали проникновению в древнеегипетский язык семитских черт, в том числе исчисления десятками. По мере роста влияния Древнего Египта (в царствование XVIII–XX династий, с конца XVI до XII в., Египет управлял всемирной империей), его язык влиял на язык ближневосточных семитских племен. Многие следы египетского влияния прослеживаются в форме и содержании Библии на древнееврейском языке. Такое взаимное влияние представляет большие проблемы для историков гуманитарных наук. Можно сделать вывод, что Древний Египет все же был неотъемлемой частью мира Средиземноморья. Хотя египетские познания дошли до нас в основном через семитские источники, египетские предания и виды искусства сохранились также на Крите и других островах.

Изобретение папируса

Ценность письма проявилась в полную силу благодаря еще одному открытию, когда появился подходящий для письма материал, легкодоступный и не слишком дорогой. Понятно, что, пока превалировали надписи, высеченные на камне (что, судя по всему, было характерно для Греции в течение многих веков), увековечивали лишь события, имевшие историческое значение. Литературные произведения были слишком длинны для того, чтобы высекать их на камне или металле; для их неустного сохранения требовался более дешевый материал.

Древние египтяне великолепно решили фундаментальную задачу, изобретя папирус. Папирус, изготовленный из мякоти (рыхлой сердцевины) стебля растения семейства осоковых (Cyperus papyrus), которое тогда обильно произрастало на болотах в дельте Нила, оказался превосходным материалом для письма. Сердцевину растения нарезали на длинные полосы, раскладывали их крест-накрест в два или три слоя, замачивали, прессовали и шлифовали. Производство папируса обходилось недорого; сырья на болотах было предостаточно, да и производственный процесс оказался достаточно простым.

Каждое изобретение требует дополнительных изобретений. Помимо подходящего материала, на котором можно писать, необходимы орудия для письма. Египтяне пользовались различными типами пигмента (или чернил), который распределялся на папирусе посредством тонкой кисточки, изготовленной из тонкого камыша (Juncus maritimus), произраставшего на тех же болотах, что и сырье для папируса.

Огромная важность папируса увековечена двумя словами, общими во многих языках: paper и bible. Правда, бумага (paper), на которой пишем мы, изготовлена из целлюлозы и изобретена китайцами; по своей сути она отличается от египетского папируса. Греки называли папирус byblos, а его полосу – byblion или biblion; позже этим словом стали называть любую книгу вообще (ср. подобную же эволюцию латинского слова liber). Слово byblos, возможно (но не наверняка), было образовано от названия оживленного базарного поселения и гавани к северу от Бейрута (Byblos = Эль-Джубайль), поскольку международная торговля папирусами в целом контролировалась финикийцами. Более того, предметы чаще назывались не по месту их происхождения, а по самому известному месту их ввоза. Место же происхождения часто могло оставаться и оставалось неизвестным (индийская тушь, арабские цифры и т. д.).

Превосходство папируса над прочими материалами для письма, которыми египтяне пользовались в то или иное время (например, кость, глина, слоновая кость, кожа, полотно), вполне недвусмысленно. Однако одна его сторона не столь очевидна, хотя для нас именно она наиболее важна. Счета, записанные на кусочках кости, кожи и проч., на протяжении многих веков так и оставались отдельными фрагментами; их не удавалось объединить. Изобретательные создатели папируса вскоре поняли, что почти любое количество отдельных листов можно соединить, приклеив каждый следующий к углу предшествующего. Так получался свиток (volumen, отсюда во многих языках появилось слово volume, «том»), способный вместить текст любой длины. Кроме того, тексты на свитке сохранялись в нужной последовательности. Ширина свитка варьировалась от 7,6 до 47 см. Естественно, длина свитка зависела от текста. Самый длинный из известных – так называемый Папирус Харриса № 1 (Британский музей, № 9999); его длина составляет 40,5 м, а ширина – 40 см. Благодаря изобретению свитка, многие древние тексты дошли до нас целиком.

Изготовители папируса снабдили древний мир Запада превосходным, привлекательным и дешевым средством для распространения своих главных культурных достижений. Конечно, его дешевизна лишь относительна. Папирус никогда не был таким же дешевым и никогда не имелся в таком же изобилии, как бумага, даже изготовленная вручную. Что уж говорить про современную бумагу! Она настолько дешева, что ее постоянно тратят напрасно. Папирус же всегда считался роскошью. Большинство свитков, которыми мы располагаем сейчас, были найдены в гробницах. Свитки сохранились благодаря сухому египетскому климату. Таким образом, значительная часть древней литературы дошла до нас благодаря чудесному совпадению великого изобретения и необычайного климата. Без помощи природы усилия человека оказались бы растрачены впустую. Данное положение иллюстрирует применение пальмовых листьев для письма на Цейлоне (Шри-Ланке) и в Индии. Там пользовались листьями талипотовой пальмы (Corypha umbraculifera), которая произрастает на Цейлоне и Малабаре (юго-западном побережье Индостана). Из листьев и изготавливали нечто похожее на папирус в виде узких полос, которые назывались олла. К сожалению, климат Индии не столь благоприятствовал сохранению олла, как климат Египта – папирусов. Хотя сейчас нас главным образом занимает Древний Египет, литературное наследие которого сохранялось почти исключительно на папирусах, следует отметить, что тому же материалу мы обязаны сохранением большого числа других документов – библейских, греческих и римских. Без папируса в распоряжении римлян оказалось бы гораздо меньше накопленных знаний, а история науки, скорее всего, развивалась бы совершенно по-другому.

Конечно, люди писали и на других материалах, но единственные представлявшие сравнительную ценность, пергамент и бумага, получили распространение позже. Глиняные таблички, которыми пользовались в Месопотамии, можно считать превосходными с точки зрения сохранения отдельных памятников. Однако там не изобрели ничего, сравнимого со свитком; поэтому целостность длинных документов подвергалась большому риску. Если верна легенда, которая связывает изобретение пергамента с Пергамской библиотекой, изобретение пергамента можно отнести лишь ко II в. до н. э. Бумагу же изобрели в Китае в начале II в. н. э. Таким образом, и пергамент, и бумага появились гораздо позже Египта фараонов; можно с уверенностью утверждать, что даже древнейшие пергамент и бумага изобретены более чем через 27 веков после папируса! Иными словами, в течение очень долгого периода времени папирус был не только лучшим, но и, за исключением глиняных табличек, единственным пригодным материалом для распространения культуры.

Более того, папирус был настолько хорош, что им продолжали пользоваться до XI в. (например, папские буллы издавали на папирусе до 1022 г.), хотя китайская бумага известна в Египте примерно с 800 г. н. э., а сто лет спустя ее там уже производили. Тонкий пергамент (или пергамон) – материал превосходный, однако его производство обходилось гораздо дороже, что не позволяло применять его для повседневных нужд.

До тех пор пока письмо требовалось лишь в монументальных, увековечивающих целях, писали очень медленно. Трудно высекать надписи, особенно на твердом граните. Впрочем, данная трудность не служила серьезным препятствием, так как подобные надписи сравнительно коротки. С художнической точки зрения краткость была достоинством. Мастер выказывал отвагу, старался как мог и часто превосходил себя. Отдельные монументальные надписи, высеченные в твердом камне, выбитые или просто нарисованные, принадлежат к числу сокровищ древнеегипетского искусства. Однако после появления папируса писцам приходилось работать гораздо быстрее, чему мешали старые иероглифы. Постепенно выработался новый, более легкий шрифт, скоропись, получившая название иератической (ок. 1900 г. до н. э.). «Иератический» = жреческий, так как почти все писцы были жрецами. Позже (ок. 400 г. до н. э.), по мере того как письмо распространялось все шире, даже иератический шрифт стал слишком медленным, и его заменили своего рода стенографией, которая получила название демотического (народного) письма (рис. 4).

Рис. 4. Переход от иероглифического к демотическому письму

Разумеется, сходную эволюцию претерпел каждый шрифт, но эволюция египетского шрифта была масштабнее: египетские иероглифы можно назвать самыми продуманными из всех когда-либо изобретенных символов. С ними сравнимы лишь китайские иероглифы, которые, впрочем, были гораздо проще. Кроме того, изначально они не были такими красивыми. С течением времени китайская каллиграфия достигла собственных вершин красоты, но всегда была более абстрактной, чем красота иероглифов.

Астрономия

Знакомство египтян со звездами восходит к самым отдаленным доисторическим временам. Здесь нет ничего удивительного, так как их безоблачное небо и приятная ночная прохлада располагали к размышлениям о движении небесных тел. Древние египтяне не могли не заметить, что звезды распределены на небе неравномерно и образуют скопления (или созвездия) узнаваемой формы. Согласно древнейшим мифам, небо представлялось окруженным телом богини (Нут), стоящей на руках и ногах (рис. 5 и 6). Первые астрономы привыкли рассматривать небо невооруженным глазом и скоро научились распознавать созвездия (в тех широтах они кажутся крупнее, чем в наших). У самого длинного из них, созвездия Нехт, уходило почти 6 часов на то, чтобы пересечь меридиан. Для простоты египтяне разделили широкий пояс вдоль экватора на 36 частей. В каждую часть входили самые яркие звезды и созвездия (или части созвездий), восход которых можно было наблюдать в течение каждого последовательного 10-дневного периода или декады (he decas); поэтому каждая такая группа звезд называлась декан (ho decanos). До нас дошли древние таблицы деканов, где перечисляются звездные характеристики каждого.

Самым важным событием в жизни Египта был ежегодный разлив Нила, богатого плодородным илом, на котором основывалось процветание крестьян (или, если разлива не было, голод). Это событие совпадало или почти совпадало (ибо не отличалось регулярностью) с гелиакическим восходом (первым после некоторого периода невидимости восходом небесного светила непосредственно перед восходом Солнца) ярчайшей звезды на небе, Сириуса, который египтяне называли Сотис (Сопдет). Сотис = Сириус = субп = Собачья звезда. «Собачьи дни», или «каникулярные дни», относятся к самому жаркому периоду, который начинался с гелиакического восхода (то есть первого наблюдаемого восхода Сотис на рассвете). Дата такого восхода различается в зависимости от широты и медленно изменяется с течением времени. Во времена Древнего Рима это было 19 июля, а сейчас 21 июля по юлианскому календарю («3 августа по григорианскому календарю) для Мемфиса. Мне неясно, насколько хорошо можно наблюдать гелиакический восход, так как это подразумевает способность отличить звезду, когда ее элонгация составляет меньше 1°.

Сначала египтяне пытались вести счет проходящему времени при помощи Луны, но, к счастью для них, они обнаружили недостатки такого метода до того, как успели к нему привыкнуть благодаря религиозным церемониям. Поэтому они отказались от лунного календаря в пользу солнечного. Вначале их год разделялся на 12 месяцев по 3 декады в каждом (что соответствует 36 деканам), но вскоре они добавили праздничный пятидневный сезон (hai epagomenai sc. hemerai). Гражданский или календарный год начинался с первого дня месяца Тот; сотический, или астрономический, год начинался с гелиакального восхода звезды Сотис. Должно быть, продолжительное многолетнее наблюдение за восходом этой звезды приводило египетских астрономов в недоумение. В самом деле, их гражданский год состоял из 365 дней, в то время как гелиакальный восход Сотис повторялся после более длительного интервала, составляющего примерно 3657

дня. Через каждые четыре года (tetraeteris) разница увеличивалась на 1 день, то есть звезда Сотис появлялась не в первый день нового гражданского года, а днем позже. Сорок лет спустя разница составляла уже 10 дней. Видимо, нетрудно было прийти к выводу, к которому пришли древние, что через 1460 лет сотический цикл завершится (так как 365 ? 4 = 1460).

Рис. 5. Нут и Шу. Колоссальная фигура Нут, богини неба, поддерживаемой Шу, богом воздуха, на кенотафе Сети I (1313–1292, XIX династия) в Абидосе. Нут каждый день рождает Солнце и звезды. На ее теле размещены названия небесных деканов, а под ней, а также на ее руках и ногах выбиты дни и месяцы, в которые происходит утренний, ночной или вечерний восход соответствующего созвездия.

Сходную аллегорию можно видеть на гробнице Рамзеса IV (1167–1161, XX династия) в Фивах. См. диаграмму и комментарий в: Heinrich Brugsch. Astronomische und astrologische Inschriften altaegyptischer Denkmaeler (Leipzig, 1883). C. 174

Рис. 6. Богиня неба, Нут, поддерживает небо, стоя на руках и ногах. На земле распростерт бог земли, Геб. Посередине изображен бог Шу, который обеими руками поддерживает Нут. Лист 87 Папируса Гринфилда, самого длинного папируса в фиванском тексте Книги мертвых (до разделения на 96 разделов длина свитка составляла около 37 м, а высота – почти 0,5 м)

К. Шох доказал, что продолжительность сотического цикла составляла не 1460, а 1465 лет; он учел вековое ускорение солнца, собственное движение Сириуса и уточненные расчеты arcus visionis. Следующая таблица, основанная на доводах Шоха, показывает, что дата по юлианскому календарю, соответствующая первому дню месяца Тот, гражданского Нового года, в начале четырех сотических циклов в истории Египта передвинулась с 16 на 19 июля; гелиакальный восход Сотиса, в соответствующие дни июля, выпадал на 1-й день месяца Тот в четыре tetraeterides, указанные во втором столбце таблицы.

Сотический (или юлианский) год, состоящий из 3657

дня, был введен в Риме в 45 г. до н. э. Юлием Цезарем с помощью александрийского астронома Созигена. Начало нового сотического цикла (четвертого в вышеуказанной таблице), то есть совпадение первого дня Тота с гелиакальным восходом Сотиса, на самом деле наблюдали в Египте в 140–143 гг. н. э. Произведя обратный отсчет от этой даты и неверно предположив, что сотический цикл составляет 1460 лет и постоянен, Дж. Г. Брэстед определил то, что он назвал «древнейшей фиксированной датой в истории», эпоху сотического календаря, 4241 г. до н. э. Приняв во внимание поправки Шоха, можно прийти к выводу, что «древнейшей фиксированной датой» был не 4241 г., а 4229–4226 гг. Во всяком случае, необходимо помнить, что эта дата стала результатом обратной экстраполяции, и не придавать ей слишком большого значения.

Астрономические способности древних египтян доказывают не только их календарь, таблицы зенита звезд и восхода звезд, но и некоторые их инструменты, например искусные солнечные часы или сочетание отвеса с раздвоенной рейкой; с помощью этого инструмента они рассчитывали азимут той или иной звезды. Образцы древнеегипетских инструментов хранятся в Каирском и Берлинском музеях, а их точные копии можно осмотреть во многих египтологических и астрономических коллекциях.

Архитектура и строительство

Пирамиды настолько хорошо известны, что их описание не требуется. Впрочем, читатели в своей массе, как правило, представляют лишь три пирамиды Гизы, самые большие, но ни в коей мере не единственные – и не самые ранние. Старейшая из них была построена для фараона Джосера из III династии (XXX в.) в Саккаре, рядом с древней столицей Египта, Мемфисом, к югу от Каира. Пирамида Джосера представляет собой так называемую ступенчатую пирамиду; ее высота составляет около 62 м. Столетие спустя была возведена Великая пирамида Хуфу (Хеопса, IV династия), самая высокая пирамида в Гизе. Пирамида Хеопса считается самой масштабной постройкой Древнего мира и одной из самых высоких, созданных человеком. Высота каждой ее стороны составляет около 236 м; в прошлом ее высота составляла около 146 м. Пирамиды, служившие вместилищем и защитой для гробниц фараонов, сложены из известняковых блоков. Они возведены целиком, за исключением погребальной камеры и ведущих к ней хитроумных, извилистых проходов.

Сооружение таких огромных построек 49 веков назад вызывает множество чисто технических вопросов, ответы на многие из которых не получены до наших дней. Их масштабность поражает! Как архитекторы времен Хеопса могли создать, а его подданные – построить такие сооружения? Хотя древнеегипетское общество можно назвать высокоразвитым по сравнению с неграмотными дикарями, их техническое оснащение значительно уступало нашему. Великие пирамиды настолько чудесны, что некоторые ученые, пытавшиеся познать их тайны, пали жертвами легкой формы безумия и приписывали античным строителям оккультные и метафизические намерения и эзотерические знания, обладание которыми было бы еще чудеснее, чем познания в механике и строительстве, которыми они, безусловно, обладали. Как бы там ни было, древние египтяне построили пирамиды; они стоят в пустыне, самые внушительные свидетельства Древнего мира, лучшие памятники их строителям по сей день. Возможно, они переживут многие постройки, которыми так гордится современный человек.

Достижения строителей пирамид часто обесцениваются утверждениями вроде: «Египтяне пользовались трудом многих тысяч людей, которые работали долгие периоды времени. Они заменяли силу механизмов мускульной силой человека в неограниченных количествах». Конечно, египтяне привлекали к строительству огромное количество людей, но это не только не решает главные архитектурные и строительные загадки, но и предлагает новые, человеческие, – почти столь же сложные. Как можно привлечь к задаче 30 тысяч человек и заставить их работать вместе, слаженно? О таком легко только говорить. Как именно это было сделано? Количество людей, которое можно с пользой привлечь к выполнению определенной задачи в заданном пространстве, ограничено. И даже если представить, что удалось привлечь очень большое количество, скажем, несколько десятков тысяч человек, для одновременной работы, руководство их усилиями требовало значительного искусства и прозорливости. Для удовлетворения же их естественных потребностей требовались немалый административный опыт и развитая система снабжения. Независимо от того, выполняется ли задача с помощью механизмов или армии людей, для ее планирования и решения требуются незаурядные знания, ум и гибкость.

Невозможно перечислить здесь все проблемы, задействованные в египетской архитектуре, ибо имя им легион. Остановимся на одной задаче: возведении гранитных обелисков. Для того чтобы говорить об обелисках, нам придется совершить большой скачок, от так называемого Древнего царства к Новому. Великие пирамиды восходят ко временам IV династии (2900–2750); эпоха обелисков относится к XVIII–XIX династиям (1580–1205); интервал между двумя эпохами составляет 14 веков! Для того чтобы увидеть пирамиды, необходимо поехать в Египет, но обелиски можно видеть во многих европейских странах и даже в Нью-Йорке. Как они создавались? Гранитные глыбы добывались в асуанских каменоломнях, расположенных неподалеку от первого порога Нила. Те самые гранитные каменоломни можно осмотреть и в наши дни. Они служат важной достопримечательностью, главным образом потому, что туристы могут увидеть прямо на месте гигантскую глыбу, заготовку для обелиска, которую пришлось забросить из-за образовавшихся в граните трещин. Если бы оказалось возможно извлечь и воздвигнуть этот обелиск, он стал бы самым большим из всех: его высота достигает почти 40 м, а весит он 1168 тонн. Благодаря этому заброшенному обелиску удалось понять, как древние инженеры удаляли верхние слои гранитного слоя, чтобы определить массу камня для извлечения и выбрать грунт вокруг основной породы. На основании свидетельств в Асуане и других местах Р. Энгельбах объяснил, как протекала работа, в подробностях; он же объяснил, как извлеченный обелиск транспортировали на санях к Нилу, грузили на судно, затем выгружали, доставляли к месту возведения и, наконец, воздвигали. И все же, несмотря на опыт механика и археолога, Энгельбаху не удалось объяснить всё. Например, какими орудиями египтяне резали очень твердую породу? Возможно, для того, чтобы отколоть глыбу от скалы, они не вырезали, а выбивали ее с помощью долеритовых шаров (многие такие орудия найдены на месте), но им нужны были и другие орудия, возможно, металлические. Какими именно орудиями они пользовались? Как высекали сложные и длинные иероглифические надписи на твердом граните?

Искусство египетских архитекторов подтверждается небольшим энтазисом Луксорского обелиска, стоящего в центре Парижа. Этот обелиск относится к эпохе XIX династии (1350–1205). Возведение обелиска было делом чрезвычайно тонким; в случае неудачи архитектор рисковал своей репутацией и, скорее всего, жизнью. Судя по всему, обелиск не поднимали с земли до перпендикулярного положения – это было бы непрактично. Его тащили вверх по длинной наклонной насыпи, пока он не достигал высоты, находящейся значительно выше точки равновесия или центра тяжести; затем из-под него осторожно вырезалась земля, пока обелиск не оказывался на пьедестале; его край опирался о выемку в пьедестале, прислонившись к насыпи. Из этого положения его тянули вверх. Если обелиск падал недостаточно мягко, он раскалывался, и в таком случае годы тяжелого труда были потеряны впустую. Или, если его недостаточно прочно соединяли с основанием, ущерб оказывался непоправимым и архитектурный эффект был испорчен. (Обелиск царицы Хатшепсут (1495–1475) в Карнаке стоит на пьедестале неровно, но неровность очень мала и не портит общего вида.) Задача была сложной и включала столько скрытых трудностей, что невольно задаешься вопросом, не экспериментировали ли египтяне с масштабными моделями, подобно современным архитекторам, чтобы рассчитать вес и точки равновесия обелисков, отрепетировать процесс возведения и таким образом избежать роковых ошибок. Как бы там ни было, египетские архитекторы и их царственные заказчики всецело сознавали свои достижения и с гордостью увековечивали их. Несколько архитекторов обелисков известны нам поименно, потому что их награждали гробницами в Фиванском некрополе и статуями в храме. Надписи на гробницах и статуях свидетельствуют о возведении обелисков, но, к сожалению, не объясняют, как это было сделано. Может быть, объяснение заняло бы слишком много места и не представляло интереса ни для кого, кроме других архитекторов? Впрочем, другим архитекторам наверняка требовались не общие слова, а технические подробности. И в наши дни на памятных табличках, на тех или иных сооружениях никто не пытается даже вкратце объяснить, как был сооружен, например, тот или иной мост.

Позвольте вспомнить двух из этих архитекторов. Первый, Сенмут, был главным архитектором женщины-фараона Хатшепсут (1495–1475). Он воздвиг ее обелиски и обелиски в большом храме в Дейр-эль-Бахри. На статуе он держит на коленях старшую дочь Хатшепсут, Нефрура, чьим воспитателем он был (рис. 7). Второй – Бекнехонс, живший на столетие позже, создатель Луксорского обелиска и, возможно, изобретатель энтазиса; его статуя с высеченной биографией сейчас находится в Мюнхенской глиптотеке.

Рис. 7. Статуя Сенмута, зодчего женщины-фараона Хатшепсут (1495–1475); Сенмут держит на коленях старшую дочь Хатшепсут, Нефрура, свою воспитанницу. Высота статуи – 60 см

Многие обелиски перевезли из Египта в Рим, Константинополь, позже в Париж, Лондон и другие города, и даже через Атлантику в Нью-Йорк. Римляне, известные знатоки строительных трудностей, переместили больше всего обелисков. Так, Латеранский обелиск, самый большой из тех, которые можно видеть сегодня, находится на площади Сан-Джованни в Риме. Его сооружение для Карнакского храма начато при Тутмосе III и завершено при Тутмосе IV (1420–1411). По приказу Константина Великого его перевезли в Александрию в 330 г. н. э., но в 357 г. по приказу его сына Константина II обелиск перевезли в Рим и установили в Большом цирке. В 1587 г. его там обнаружили расколотым на три части; на следующий год под руководством Доменико Фонтана его водрузили на прежнем месте. Тот же Фонтана добился большей славы, воздвигнув еще один обелиск, Ватиканский. Он ниже Латеранского, но зато не был разбит. Обелиск не был завершен египтянами, так как на нем нет иероглифической надписи (поэтому его раннюю историю мы не знаем). Его привезли из Гелиополя по приказу императора Калигулы (37–41) и поставили в цирке, который позже получил название Цирка Нерона. Папа Сикст V распорядился, чтобы его перевезли на площадь Святого Петра, что и было сделано под руководством Фонтана в 1586 г. (рис. 8). Это событие привлекло к себе много внимания; его подробно описал сам Фонтана в своей книге[4 - Fontana Domenico. Della trasportazione dell’ obelisco vaticano (Rome, 1590).].

Луксорский обелиск был перевезен в Париж, на нынешнее место, морским инженером А. Леба в 1836 г. Нью-йоркский и Лондонский обелиски изначально стояли вместе в Гелиополе, где их воздвигли при Тутмосе III (1501–1448). Оба обелиска около 22 г. до н. э. римляне перевезли в Александрию. Абдул-Латиф ибн Юсуф аль-Багдади, ученый, живший в XIII в., видел оба эти обелиска; П. Белон (1517–1564), посещавший Александрию около середины XVI в., видел только один. В промежутке один из обелисков упал; к счастью, груды песка, накопившиеся вокруг него за века, смягчили падение, и обелиск остался целым. В 1878 г. его перевезли в Лондон. Стоящий же обелиск перевезли в Нью-Йорк и воздвигли в Центральном парке в 1881 г. За перевозку обелиска в Америку и повторное его воздвижение в Нью-Йорке отвечал уроженец Барбадоса инженер Г.Х. Горриндж (1841–1885), который издал великолепный рассказ о своем достижении, содержащий сведения обо всех остальных обелисках. Его труд по-прежнему считается образцовым по данной теме.

Уже упоминалось, что заброшенный Асуанский обелиск весил бы 1168 тонн. Остальные вышеназванные обелиски (перечисляю их снова, начиная с самого высокого) – Латеранский, Ватиканский, Парижский (Луксорский), Нью-йоркский, Лондонский – весят, соответственно, 455, 331, 227, 193 и 187 тонн. Древние египтяне могли работать с обелисками гораздо большими, чем теми, что сейчас можно видеть на Западе; Асуанский обелиск был бы почти в шесть раз тяжелее Лондонского. О воздвижении обелисков под руководством Фонтана в 1586 г. и Горринджа в 1881 г. говорили как о девятидневном чуде, и все же рабочие лишь повторяли часть работы, которую проводили их египетские предшественники за тысячелетия до них.

Рис. 8. Повторное возведение египетского обелиска в Ватикане в 1586 г., произведенное Доменико Фонтана

Лучшим подтверждением гениальности древнеегипетских инженеров могут служить хвалебные рассказы современных инженеров (в частности, О. Монферрана о сооружении Александровской колонны в Санкт-Петербурге). В распоряжении современных инженеров и архитекторов имеются мощные механические орудия, появившиеся в результате многовековых усилий; древнеегипетским инженерам удалось выполнить сходные задачи без подобных средств. С этой точки зрения современным египтянам не стоит жалеть о том, что много обелисков увезли из их страны. Каждый из «ссыльных» обелисков – почти вечный памятник славы Древнего Египта.

Математика

Архитектурные и строительные достижения Египта подразумевают хорошие знания арифметики и геометрии. Во-первых, необходимы были простые средства для того, чтобы вести сложные подсчеты. Такие потребности удовлетворились рано. В Эшмоловском музее в Оксфорде можно видеть булаву эпохи фараона Нармера, правившего до I династии (то есть до 3400 г. до н. э.); на ней сообщается о захвате 120 тысяч пленных, 400 тысяч быков и 1 миллиона 422 тысяч коз. Это большие цифры; они записаны способом, напоминающим римские цифры: символы для каждого десятка (вплоть до миллиона) повторяются по мере необходимости. Так же римляне записали бы 2304 в виде ММСССШ. Самые большие разряды записывались первыми, а остальные по мере их важности, но так было не всегда; разряды могли группировать в любом порядке. Позже появился упрощенный способ, когда вместо 10 100 000 записывали 100 000 ? 101.

Что касается геометрии, необходимость в ней была очевидна даже при сооружении таких простых памятников, как пирамиды, что возвращает нас в XXX в. Строители пирамид должны были точно вырезать известняковые блоки перед тем, как поднимать их на их место; самые крупные блоки укладывались в сложную конструкцию над усыпальницей фараона с целью уменьшить давление на потолок; 56 таких потолочных блоков имеются над усыпальницей в Великой пирамиде; в среднем они весят 54 тонны. По свидетельству археолога Ф. Питри, точность, которой достигли при строительстве пирамиды Хеопса (IV династия), почти невероятна.

Обтесывание камней, которые должны были плотно прилегать друг к другу, требовало некоторого знания стереометрии (далее мы увидим, что в этой области египтяне зашли поразительно далеко). Можно утверждать, что такие работы требовали и познаний в области описательной геометрии и стереотомии. Недостаточно было решать такие задачи в общем плане, поскольку резчику по камню необходимо было точно показать, как следует резать известняковые блоки. Однако такие познания оставались эмпирическими и, скорее всего, несформулированными.

Хотя можно с уверенностью утверждать, что архитекторы пирамид обладали серьезной математической подготовкой, без которой не могла быть выполнена теоретическая часть их задачи, у нас нет математических текстов эпохи Древнего царства, как и других царств вплоть до XII династии (2000–1788). Хотя два самых важных текста дошли до нас в позднейших редакциях, вероятнее всего, они появились именно в ту эпоху.

Арчибальд[5 - Chace, Bull, Manning, Archibald. The Rhind mathematical papyrus. Vol. 2. P. 192–193.] перечисляет около 36 оригинальных документов, связанных с египетской математикой; они написаны на древнеегипетском, коптском и древнегреческом языках и датируются от около 3500 г. до н. э. до 1000 г. н. э. (разброс составляет 45 веков). Всего насчитывается 16 документов до 1000 г. до н. э., причем два из них затмевают все остальные.

Давайте рассмотрим их подробнее. До нас дошли два сборника математических задач. Их можно назвать трактатами – древнейшими из существующих учебников математики. Они существуют в виде свитков папируса, которые называются соответственно (по фамилиям первых владельцев) папирусом Голенищева (или Московским математическим папирусом, так как он находится в Москве) и папирусом Ринда (он хранится в Лондоне). На самом деле папирус Ринда состоит из двух свитков папируса (они находятся в Британском музее и хранятся под номерами 10057 и 10058), но фрагмент, связывающий два этих свитка, был обнаружен в Нью-Йоркском историческом обществе. Два свитка из Британского музея и нью-йоркский фрагмент составляли один свиток или один трактат. Папирус Голенищева древнее; он относится к XIII династии (начавшейся в 1788 г. до н. э.), однако в нем отражены способы решения задач, принятые в эпоху предыдущей династии. Папирус Ринда относится к эпохе правления гиксосов (примерно XVII в. до н. э.), но является копией более старого документа времен XII династии. Таким образом, два этих почтенных трактата, хотя и появились в разное время, представляют одну и ту же эпоху, эпоху XII династии (2000–1788), или, грубо говоря, XIX в. до н. э. Период XX–XVII вв. до н. э. считался временем научного расцвета в Древнем Египте, в то время как период, следовавший непосредственно за ним, примерно XVI–XII вв. до н. э., отмечен расцветом политическим, когда Египет стоял во главе всемирной империи. Любопытно, что интеллектуальный расцвет предшествовал политическому, а не совпадал с ним и не следовал за ним, как можно было бы ожидать.

Как ни странно, два этих выдающихся папируса имеют одну и ту же длину (544 см), но, в то время как папирус Ринда имеет полную ширину (33 см), папирус Голенищева – своего рода карманное издание, и его ширина составляет лишь четверть от папируса Ринда (8 см). Хотя последний, видимо, является более ранним, удобно вначале рассмотреть папирус Ринда.

Огромное строительство, предпринятое в эпоху пирамид, требовало деятельности клерков, которые сохраняли и увековечивали традиции в виде методов и рецептов, задач, расчетов и таблиц – а также того, что соответствовало нашим копиям чертежей. Можно предположить, что такие традиции, постепенно обогащавшиеся, сохранялись до конца расцвета Древнего Египта. Так, сооружение множества обелисков при XVIII и XIX династиях предполагает, что архитекторы передавали результаты многочисленных экспериментов, полученных методом проб и ошибок, своим ученикам; данные также передавались от двора одного фараона к другому. Вероятно, сохранению научных традиций очень способствовали жрецы, самые образованные люди для своего времени. Так, судя по вступительным словам на папирусе Ринда, его написал писец по имени Ахмес.