banner banner banner
Создай свой VPN. Безопасное использование интернета
Создай свой VPN. Безопасное использование интернета
Оценить:
Рейтинг: 0

Полная версия:

Создай свой VPN. Безопасное использование интернета

скачать книгу бесплатно


import os

def encrypt_message(message, key):

backend = default_backend()

iv = os.urandom(16) # Инициализирующий вектор должен быть уникальным для каждого сообщения

cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)

encryptor = cipher.encryptor()

padder = padding.PKCS7(128).padder() # Для дополнения сообщения до кратности блоку

padded_data = padder.update(message) + padder.finalize()

ciphertext = encryptor.update(padded_data) + encryptor.finalize()

return iv + ciphertext

def decrypt_message(ciphertext, key):

backend = default_backend()

iv = ciphertext[:16] # Получаем инициализирующий вектор из шифротекста

ciphertext = ciphertext[16:] # Оставшаяся часть – собственно шифротекст

cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)

decryptor = cipher.decryptor()

padded_plaintext = decryptor.update(ciphertext) + decryptor.finalize()

unpadder = padding.PKCS7(128).unpadder()

plaintext = unpadder.update(padded_plaintext) + unpadder.finalize()

return plaintext

# Пример использования:

message = b"Hello, world!"

key = os.urandom(32) # Генерируем случайный 256-битный ключ

ciphertext = encrypt_message(message, key)

print("Зашифрованное сообщение:", ciphertext.hex())

plaintext = decrypt_message(ciphertext, key)

print("Расшифрованное сообщение:", plaintext.decode())

```

Этот код использует AES в режиме CBC (Cipher Block Chaining) для шифрования и дешифрования сообщения. Он также использует PKCS7 для дополнения сообщения до кратности размеру блока. Обратите внимание, что в этом примере используется генерация случайного ключа и инициализирующего вектора с помощью `os.urandom()`.

Давайте разберем код пошагово:

1. Импорт необходимых модулей:

– Мы импортируем необходимые модули из библиотеки `cryptography`: `Cipher` для создания объекта шифра, `algorithms` для выбора алгоритма шифрования (в данном случае AES), `modes` для выбора режима шифрования (в данном случае CBC), `padding` для работы с дополнением сообщения, и `default_backend` для выбора бэкенда по умолчанию.

– Также мы импортируем модуль `os`, чтобы использовать функцию `urandom()` для генерации случайных данных.

2. Функция `encrypt_message()`:

– Функция принимает сообщение и ключ в качестве аргументов.

– Генерируется случайный инициализирующий вектор (IV) длиной 16 байт.

– Создается объект шифра AES в режиме CBC с заданным ключом и IV.

– Создается объект паддинга PKCS7 для дополнения сообщения до кратности размеру блока (128 бит).

– Сообщение дополняется и шифруется с помощью AES.

– Возвращается IV вместе с зашифрованным текстом.

3. Функция `decrypt_message()`:

– Функция принимает зашифрованный текст и ключ в качестве аргументов.

– IV извлекается из шифротекста.

– Создается объект шифра AES в режиме CBC с заданным ключом и IV.

– Расшифровывается зашифрованный текст с помощью AES.

– Применяется обратное дополнение PKCS7 к расшифрованному тексту.

– Возвращается расшифрованный текст.

4. Пример использования:

– Создается случайное сообщение `b"Hello, world!"`.

– Генерируется случайный ключ длиной 32 байта (256 бит).

– Сообщение шифруется с использованием ключа.

– Зашифрованный текст выводится на экран в шестнадцатеричном формате.

– Зашифрованный текст дешифруется с использованием того же ключа.

– Расшифрованный текст выводится на экран.

Библиотека `cryptography` – это библиотека на языке Python, которая предоставляет высокоуровневые криптографические примитивы для обеспечения безопасности данных. Она предоставляет удобный интерфейс для шифрования, хеширования, генерации случайных чисел, а также других криптографических операций.

`cryptography` стремится предоставить простой и безопасный способ выполнения криптографических операций в Python, используя лучшие практики безопасности и алгоритмы шифрования. Она является одной из наиболее популярных библиотек криптографии для Python и широко используется для разработки безопасных приложений и систем.

Эта библиотека предоставляет высокоуровневые API для многих криптографических операций, что делает ее очень удобной в использовании даже для разработчиков без глубоких знаний криптографии. Она также обеспечивает нативную поддержку для многих алгоритмов шифрования и хеширования, что позволяет выбирать наиболее подходящий алгоритм для конкретной задачи.

Алгоритм RSA (Rivest–Shamir–Adleman) является одним из самых распространенных асимметричных алгоритмов шифрования. В отличие от симметричного шифрования, где для шифрования и дешифрования используется один и тот же ключ, в асимметричном шифровании используется пара ключей: публичный и приватный.

1. Публичный ключ:

– Публичный ключ используется для шифрования данных.

– Он может быть свободно распространен и доступен для всех.

– Публичный ключ обычно используется для шифрования секретной информации перед ее отправкой получателю.

2. Приватный ключ:

– Приватный ключ используется для дешифрования данных, зашифрованных с использованием соответствующего публичного ключа.

– Этот ключ должен храниться в тайне и быть известным только владельцу.

– Приватный ключ обеспечивает возможность дешифрования зашифрованных данных и доступ к оригинальной информации.

Процесс шифрования с использованием алгоритма RSA следующий:

1. Получатель генерирует пару ключей: публичный и приватный.

2. Он распространяет свой публичный ключ, а приватный ключ остается в секрете.

3. Отправитель использует публичный ключ получателя для шифрования сообщения.

4. Получатель использует свой приватный ключ для дешифрования сообщения и получения оригинального текста.

Рассмотрим пример кода на Python, демонстрирующий шифрование и дешифрование сообщения с использованием алгоритма RSA из библиотеки `cryptography`:

```python

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.primitives.asymmetric import rsa

from cryptography.hazmat.primitives.asymmetric import padding

from cryptography.hazmat.backends import default_backend

# Генерация ключевой пары RSA

def generate_rsa_keys():

private_key = rsa.generate_private_key(

public_exponent=65537,

key_size=2048,

backend=default_backend()

)

public_key = private_key.public_key()

return private_key, public_key

# Шифрование сообщения с использованием публичного ключа

def encrypt_message(message, public_key):

ciphertext = public_key.encrypt(

message.encode(),

padding.OAEP(

mgf=padding.MGF1(algorithm=serialization.NoEncryption()),

algorithm=serialization.NoEncryption(),

label=None

)

)

return ciphertext

# Дешифрование сообщения с использованием приватного ключа

def decrypt_message(ciphertext, private_key):

plaintext = private_key.decrypt(