banner banner banner
120 практических задач
120 практических задач
Оценить:
Рейтинг: 0

Полная версия:

120 практических задач

скачать книгу бесплатно


# Загрузка данных. Предположим, что у нас есть CSV файл с историческими ценами на акции.

data = pd.read_csv('stock_prices.csv')

# Выбираем интересующие нас столбцы, например, 'Close'

prices = data['Close'].values.reshape(-1, 1)

# Нормализация данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_prices = scaler.fit_transform(prices)

# Создание последовательностей для обучения модели

def create_sequences(data, sequence_length):

sequences = []

targets = []

for i in range(len(data) – sequence_length):

sequences.append(data[i:i + sequence_length])

targets.append(data[i + sequence_length])

return np.array(sequences), np.array(targets)

sequence_length = 60 # 60 дней

X, y = create_sequences(scaled_prices, sequence_length)

# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)

# Шаг 3: Построение модели RNN

model = models.Sequential()

model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))

model.add(layers.LSTM(50, return_sequences=False))

model.add(layers.Dense(25))

model.add(layers.Dense(1))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam', loss='mean_squared_error')

history = model.fit(X_train, y_train, batch_size=32, epochs=10,

validation_data=(X_test, y_test))

# Шаг 5: Оценка модели

predictions = model.predict(X_test)

predictions = scaler.inverse_transform(predictions)

# Визуализация результатов

plt.figure(figsize=(10, 6))

plt.plot(data.index[:len(data) – len(y_test)], scaler.inverse_transform(scaled_prices[:len(scaled_prices) – len(y_test)]), color='blue', label='Исторические данные')

plt.plot(data.index[len(data) – len(y_test):], scaler.inverse_transform(scaled_prices[len(scaled_prices) – len(y_test):]), color='orange', label='Истинные значения')

plt.plot(data.index[len(data) – len(y_test):], predictions, color='red', label='Прогнозы')

plt.xlabel('Дата')

plt.ylabel('Цена акции')

plt.legend()

plt.show()

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки, включая TensorFlow, Keras, pandas и matplotlib.

2. Подготовка данных: Загружаются данные о ценах акций из CSV файла и нормализуются с помощью MinMaxScaler. Создаются последовательности для обучения модели.

3. Построение модели RNN: Модель строится с использованием двух LSTM слоев. Первый слой LSTM возвращает последовательность, которая передается следующему слою. Второй слой LSTM возвращает конечный выход, который подается на полносвязные слои для получения прогноза.

4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь mean_squared_error. Затем модель обучается на обучающей выборке.

5. Оценка и тестирование модели: Прогнозы модели сравниваются с реальными данными, и результаты визуализируются с помощью графика.

Этот подход может быть расширен и улучшен, например, путем настройки гиперпараметров модели или добавления дополнительных слоев для повышения точности прогнозов.

Построение модели RNN

Использование двух LSTM слоев

Для анализа временных рядов и прогнозирования цен на акции мы будем использовать два слоя LSTM. LSTM (Long Short-Term Memory) слои являются разновидностью рекуррентных нейронных сетей, специально разработанных для запоминания долгосрочных зависимостей в последовательных данных. В отличие от обычных RNN, которые могут страдать от проблем затухающих градиентов, LSTM могут эффективно обучаться на долгосрочных зависимостях.

Первый слой LSTM

Первый слой LSTM принимает последовательность данных на вход и возвращает последовательность, которая будет передана следующему слою. Возвращение последовательности (return_sequences=True) необходимо, чтобы каждый временной шаг предыдущего слоя был передан на вход следующего слоя LSTM. Это позволяет следующему слою LSTM дополнительно обрабатывать временные зависимости.

```python

model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))

```

– 50 нейронов: Это количество нейронов в первом слое LSTM. Число нейронов определяет способность сети к обучению сложным паттернам.

–return_sequences=True: Указывает, что слой должен возвращать полную последовательность выходов для каждого временного шага, а не только последний выход.

– input_shape=(sequence_length, 1): Определяет форму входных данных, где `sequence_length` – это длина последовательности (например, 60 дней), а `1` – это количество признаков (в данном случае, только одно значение цены закрытия).

Второй слой LSTM

Второй слой LSTM принимает последовательность от первого слоя и возвращает конечный выход для всей последовательности. Здесь параметр `return_sequences` установлен в `False`, что означает, что слой будет возвращать только последний выходной элемент последовательности.

```python

model.add(layers.LSTM(50, return_sequences=False))

```

– 50 нейронов: Количество нейронов в втором слое LSTM, аналогично первому слою.

– return_sequences=False: Указывает, что слой должен возвращать только последний выход, который будет использоваться для прогнозирования.

Полносвязные слои

После обработки данных слоями LSTM, выходной вектор передается полносвязным слоям для окончательной классификации или регрессии. Полносвязные слои обеспечивают соединение каждого нейрона предыдущего слоя с каждым нейроном текущего слоя, что позволяет сети обучаться сложным нелинейным зависимостям.

```python

model.add(layers.Dense(25))

model.add(layers.Dense(1))

```

– Первый полносвязный слой:

– 25 нейронов: Полносвязный слой с 25 нейронами. Этот слой может использоваться для дополнительного обучения сложным паттернам в данных.

– Выходной слой:

– 1 нейрон: Выходной слой с одним нейроном, который будет выдавать прогнозируемую цену акции.

Эта архитектура сети, состоящая из двух слоев LSTM и двух полносвязных слоев, позволяет модели эффективно обрабатывать временные ряды и делать прогнозы на основе предыдущих данных. Первый слой LSTM возвращает полную последовательность, позволяя следующему слою LSTM дополнительно обучаться на временных зависимостях. Второй слой LSTM возвращает конечный выход, который затем передается через полносвязные слои для получения окончательного прогноза. Такая архитектура позволяет модели обучаться на длинных временных зависимостях и выдавать точные прогнозы цен на акции.

6. Создание LSTM сети для обработки текстовых данных

– Задача: Анализ настроений в текстах.

Для анализа настроений в текстах с использованием LSTM сети можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как создать и обучить модель LSTM для анализа настроений на основе текстовых данных.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели LSTM.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.

Пример кода:

```python

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models