banner banner banner
Другая сторона медали. Современная история допинга
Другая сторона медали. Современная история допинга
Оценить:
Рейтинг: 0

Полная версия:

Другая сторона медали. Современная история допинга

скачать книгу бесплатно

Другая сторона медали. Современная история допинга
Мадс Дранге

Допинговые скандалы регулярно сотрясают мир спорта. Ни одно крупное соревнование не обходится без разоблачений, приводящих к крахам самых звездных карьер. Но желание добиваться победы во что бы то ни стало толкает тренеров и их подопечных применять стимуляторы во время состязаний, несмотря на риск разоблачения. Возможен ли большой спорт без допинга? Мадс Дранге, бывший сотрудник антидопингового агентства Норвегии, утверждает, что да. Автор посвятил много лет всестороннему изучению проблемы и рассказал о допинговых секретах, уловках и скандалах в своей книге, которая читается как захватывающий детектив.

Мадс Дранге

Другая сторона медали: Современная история допинга

Перевод осуществлен при финансовой поддержке NORLA

Переводчик Анастасия Наумова

Редактор Александр Анваер

Главный редактор С. Турко

Руководитель проекта О. Равданис

Корректор Е. Чудинова

Компьютерная верстка М. Поташкин

Дизайн обложки Ю. Буга

Изображение на обложке alamy.com

© Pax Forlag, 2017

First published in Norway, in 2017 by Pax Forlag

Published by agreement with the Kontext Agency

© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2019

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Предисловие

Расцвет современного спорта приходится на XIX век, и с тех самых времен одной из основных характеристик спорта является его подчинение строгим правилам, как писаным, так и неписаным. К первым относятся дистанция марафона и весовые категории в боксе, а пример правил второго типа – выведение мяча из игры в футболе, если соперник получил травму.

Тема допинга зазвучала в спорте в первой половине XX века, когда невиданный ранее скачок произошел в медицине и фармацевтической промышленности. Результатом появления допинга стало создание новых правил, ограничивающих употребление препаратов, которые считались запрещенными. По сравнению с другими принятыми в спорте правилами эти новые предписания соблюдать оказалось сложнее и нарушают их значительно чаще. Начиная с 1950-х каждое десятилетие может «похвастаться» громкими допинговыми скандалами, когда обманщиков чаще всего разоблачали задним числом, – и это несмотря на формирование мощного бюрократического аппарата, целью которого стало обеспечить соблюдение этих правил.

Почему же все складывалось именно так?

Прогресс в области медицины и развитие технологий идут семимильными шагами, создавая для спорта новые сложности и ставя перед ним новые задачи. Препараты, подобные эритропоэтину и инсулину, продлили жизнь (упростили жизнь) миллионам больных, однако при этом позволили улучшить результаты всем тем спортсменам, которые в своем стремлении получить конкурентное преимущество не гнушаются противозаконными методами. Помимо этого, изобретение новых лекарственных препаратов привело к возникновению ряда сомнительных ситуаций. Действительно, что именно полагается считать допингом? Считать ли допингом использование гипоксических палаток для повышения содержания гемоглобина, а значит, и кислорода в крови? А обезболивающее, введенное футболисту, который, строго говоря, из-за травм не способен играть, – допинг ли это? И если спортсмены, страдающие от заболеваний легких, примут лекарство от астмы, сочтут ли его допингом? И как тогда поступать здоровым спортсменам, у которых просто перехватило дыхание? Кого, в конце концов, считать больным, и кого – здоровым? Задавать правильные вопросы так же нелегко, как находить на них ответы, а эта сфера является точкой пересечения множества дисциплин, таких как физиология, фармакология, законодательство, медицина и социология.

Чтобы понять, почему сегодня человечество проигрывает войну с допингом и что именно следует предпринять, чтобы ее выиграть, нужно хорошо представлять себе исторические предпосылки. Российский допинговый скандал 2016 года появился не на пустом месте – он стал результатом общей тенденции, наблюдавшейся в течении многих десятилетий. То же касается и скандала в Лахти в 2001 году, и разбирательства с командой «Festina» в 1998-м, и многих других, которым еще только предстоит разразиться. Чтобы понять проблемы допинга, с которыми сталкивается спорт и которые предстоит решать в будущем, необходимо выяснить, как именно применяли допинг в различные эпохи и какие были предприняты попытки, чтобы ограничить его применение.

В моей книге нет ответов на все эти вопросы, однако я попытался дать читателю возможность составить собственное мнение по этой теме. Описывая то, как спортсмены использовали допинг в различные эпохи, и объясняя появление всевозможных допинговых препаратов, я постарался хотя бы отчасти осветить этот непростой предмет, который в общественном дискурсе страдает от вымыслов, недопонимания и нехватки знаний.

Допинг – сфера, обделенная вниманием историков и интересная лишь тем, чья деятельность связана со спортом и антидопинговыми мерами. По этой причине к истории нередко прибегают, когда хотят представить в хорошем свете свой собственный вклад и рассказывают о «хитрых» спортсменах и добрых героях, которые борются с обманщиками. Мифы о применении анаболических стероидов нацистами во время Олимпийских игр 1936 года – наглядный пример попытки связать допинг с тоталитарным режимом. Тем не менее эти утверждения не имеют никакого документального обоснования[1 - В 2014 году Марсель Рейнхолд доказал, что рассказы о применении нацистами анаболических стероидов безосновательны, а различные журналисты просто повторили эти мифы, не проверяя достоверность информации. В 1936 году тестостерон был только что синтезирован, поэтому маловероятно, что нацисты прибегали к нему. Из статьи: Reinhold M., Hoberman J. «The Myth of the Nazi Steroid». The International Journal of the History of Sport, 2014, 871–883.].

Другой пример – датский велосипедист Кнуд Йенсен: считается, будто его смерть положила начало антидопинговой деятельности, но доказательств того, что Йенсен на момент смерти находился под воздействием допинга, не существует[2 - В 2005 году датский ученый Вернер Мёллер описал случай с Йенсеном, отсутствие доказательств, что причиной его смерти действительно стал допинг, хотя считается, что смерть Йенсена положила начало антидопинговой деятельности. M?ller, V. «Knud Enemark Jensen’s Death During the 1960 Rome Olympics: A Search for Truth?» Sport in History, 2005 25, 452–471.].

Впрочем, история применения допинга – не единственная область, в которой реальность нелегко отличить от вымысла. Нам не хватает знаний также и в тех случаях, когда мы пытаемся судить о различных допинговых препаратах и принципе их действия. Во-первых, употребление допинга запрещено, и поэтому получить необходимые сведения от тех, кто его употребляет, довольно сложно. Во-вторых, исследований в этой сфере крайне мало: средств на подобные исследования выделяется недостаточно, а кроме того, по этическим и практическим соображениям изучить воздействие допинга на организм представляется затруднительным. Первый научный труд, анализирующий увеличение мышечной массы и выносливости вследствие употребления анаболических стероидов, появился лишь в 1996 году.

В этой книге вы найдете обзор имеющейся информации о допинге, его воздействии, применении и истории. Я не стараюсь проанализировать все имеющиеся источники и литературу по данной теме и ограничиваюсь наиболее значимыми моментами и событиями.

История допинга – это всегда рассказ о событиях, ставших достоянием общественности. Зачастую лишь случайности суждено определить, кого разоблачат, а кто выйдет сухим из воды. Таким образом, история допинга не ограничивается известными допинговыми скандалами, но, несмотря на это, они позволяют понять, каким образом применяется допинг, и раскрывают известные далеко не каждому нюансы.

Там, где заканчиваются возможности спортсмена

В пятницу вечером 8 июля 1998 года большинство французов были с головой поглощены полуфиналом Кубка мира по футболу, который проводился в Сен-Дени. Французская команда играла против Хорватии. Французам везло во всех отношениях, и они уже чувствовали запах золота. Физиотерапевт Вилли Воэ почти потерял интерес к игре еще на групповом этапе, когда из списка участников «вылетела» Бельгия. Позже бразильцы обыграли в полуфинале голландцев, так что теперь французские радиопрограммы, в которых рассказывалось о подготовке к решающей игре, Воэ слушал лишь вполуха. До гонки «Тур де Франс» оставалось всего несколько дней, и, проезжая Рубэ, Воэ в очередной раз перечислил про себя все необходимые приготовления. Будучи физиотерапевтом профессиональной спортивной команды и, что немаловажно, надежды всей нации Ришара Виранка, Воэ не оставлял за собой права на ошибки и недочеты, и, хотя он варился в этом уже несколько лет, к деталям Воэ относился со всей серьезностью. Велоспорт – это, прежде всего, выносливость, а обеспечить эту выносливость – обязанность физиотерапевта.

Главное – распланировать логистику, сохранять внимание и проявлять осмотрительность. Нужно дать велогонщикам все необходимое для этого, проконтролировать оборудование и действовать с определенной долей такта. Вот только в этом году организаторы гонки усложнили задачу и решили начать ее за пределами Шенгенской зоны. Паромная переправа из Кале в Дублин – задача не из легких, особенно когда на твоем автомобиле красуются логотипы «Тур де Франс» и самой команды. Съехав с шоссе E-17 к северо-востоку от французской границы, Воэ подумал, что неплохо бы организовать в Бретани дополнительный офис, – ведь после двух этапов в Ирландии они вернутся на французскую территорию.

Воэ много лет и сам занимался велоспортом на любительском уровне, поэтому успел неплохо изучить дороги Фландрии и вскоре после поворота выехал на дорогу, по которой обычно ехал до пересечения границы. Необходимости в этом не было, однако Воэ решил пересечь границу неподалеку от деревушки Нёвиль-ен-Феррен, в нескольких километрах к северу от Лилля. Руководила им, скорее, давняя привычка. Здесь французские деревушки сливались с бельгийскими, и кое-где не было даже таблички, помогающей определить, в какой стране ты находишься.

Именно поэтому Вилли Воэ немало удивился, внезапно заметив впереди, всего в сотне метров, французские полицейские автомобили и поняв, что дорога перекрыта. Сперва он решил было, что полиция, вероятно, разыскивает каких-нибудь преступников, но потом догадался, что их цель – это он сам. Полицейские открыли багажник его серебристого «седана», и поверхностного осмотра оказалось достаточно, чтобы обнаружить 250 доз эритропоэтина – и это в придачу к тестостерону, гормону роста и амфетаминам[3 - Источником данных о Вилли Воэ стала его собственная книга. Breaking the Chain: Drugs and Cycling: The True Story. Yellow Jersey Press, 1999 og Rosen, Daniel. A History of Performance Enhancement in Sports from the 19th Century to Today. Praeger, London, 2008, 100–101.].

•••

Что влияет на возможности спортсмена и зачем что-то запрещать

«Требование о том, чтобы в соревновательных видах спорта все были равны, – не самоцель, а скорее средство, при помощи которого мы можем оценить определенные виды неравенства, а именно, неравенство спортивных возможностей»[4 - Loland, Sigmund. Idrett og Etikk, en innf?ring. Akilles Forlag 2002, 55.] – так профессор Норвежской академии спорта Сигмунд Лоланд объясняет обоснование большинства правил и норм, распространяющихся на большинство соревновательных видов спорта. Мы стремимся измерить определенный вид неравенства – неравенство возможностей спортсмена. Иначе говоря, мы хотим увидеть, кто из спортсменов при равных условиях способен показать наилучший результат, и придумываем правила, позволяющие нам добиться этой цели.

Вот только что считать равными условиями? И возможна ли вообще ситуация, в которой все поставлены в одинаковое положение? Какие различия мы посчитаем приемлемыми и какие захотим устранить, призвав на помощь правила? Эти вопросы мучают представителей спортивного мира на протяжении всей истории современного спорта, и ответы на них могли бы прояснить многое в делах о допинге, в основном потому, что один из важнейших, связанных с допингом, вопросов звучит так: насколько велико влияние допинга на возможности спортсмена? Способен ли «честный» спортсмен соревноваться с теми, кто находится под воздействием допинга? И когда именно пищевая добавка или необходимое лекарство превращаются в допинг? Чтобы ответить на эти вопросы, мы должны сперва рассмотреть важнейшие факторы, влияющие на способности спортсмена.

Естественные факторы

Первое и наиболее логичное разграничение – это разделение внешних и внутренних условий. Под внешними условиями понимают все то, что окружает спортсмена, и то, что он зачастую не способен контролировать. Тем не менее эти вещи оказывают определенное влияние на его возможности. Некоторые из них элементарны, однако очень важны. Например, воздух, которым мы дышим.

Как известно, атмосферное давление обратно пропорционально высоте: чем выше, тем ниже давление и тем больше расстояние между молекулами кислорода. Легкие получают меньше кислорода, и по этой причине наше дыхание быстрее сбивается. Чтобы получить то же количество кислорода, что и внизу, дышать приходится чаще. Во многих видах спорта это ухудшает результаты: поступление кислорода – важный фактор, влияющий на физические возможности. Но это касается далеко не всех видов спорта. Чем ниже атмосферное давление, тем слабее сопротивление воздуха и тем меньше энергии затрачивается на движения и на то, чтобы сдвинуть какой-либо предмет. Если речь идет о беге, то идеальная дистанция составляет 800 метров для мужчин и 400 – для женщин. В таком случае эти два фактора – поступление кислорода и сопротивление воздуха – компенсируют друг друга[5 - Cooper, Chris. Run, Swim, Cheat. The Science behind drugs in sport. Oxford University Press, 2012, 33.]. Если бежать дольше, то низкое сопротивление воздуха не возместит низкого атмосферного давления, а если сократить дистанцию, то результат будет лучше, чем если бы спортсмен бежал на низкой высоте, несмотря на низкую концентрацию кислорода. Это объясняет тот факт, что многие рекорды в скоростно-силовых видах спорта были поставлены на определенной высоте – например, прыжок в длину на расстояние 8,90 метра, совершенный Бобом Бимоном на Олимпиаде в Мехико в 1968 году. Это же явление раскрывает нам причину, по которой большинство конькобежцев достигает наибольшего успеха на стадионах, расположенных, к примеру, в Калгари и Солт-Лейк-Сити, которые находятся на высоте более 1000 метров над уровнем моря[6 - Согласно приведенным в интернете результатам, предоставленным Международным союзом конькобежцев, все мировые рекорды среди мужчин и женщин были установлены либо в Калгари, либо в Солт-Лейк-Сити. http://www.isu.org/en/speed-skating/statistics-and-biographies #PageID%3D103171&SportID%3D103&Recordtype ID%3D10&StadiumID%3D-1&TaalCode%3D2& StyleID%3D0&Cache%3D2.html?564144 (http://www.isu.org/en/speed-skating/statistics-and-biographies#PageID=103171&SportID=103&RecordtypeID=10&StadiumID=-1&TaalCode=2&StyleID=0&Cache=2.html?564144).]. К таким природным факторам относится также сила всемирного тяготения, даже несмотря на то, что разница кажется совсем ничтожной: поблизости от полюсов сила тяготения на 0,5 % больше, чем в районе экватора. Так что, возможно, в 1987 году Патрик Шеберг со своим рекордным прыжком показал бы даже лучший результат, если бы соревнования проводились не в Стокгольме, а в Боготе[7 - О различии земного притяжения возле полюсов и на экваторе. https://snl.no/gravitasjon (https://snl.no/gravitasjon).].

Еще один внешний фактор – температура. Во время физической активности человеческое тело стремится поддерживать стабильную температуру, а если температура воздуха при этом высокая, то потоотделение становится более интенсивным. В результате, во-первых, приток крови к коже увеличивается – это нужно для того, чтобы охладить тело при испарении пота, так что приток крови к напряженным мышцам сокращается. Помимо этого, потоотделение приводит к обезвоживанию, а если недостаток жидкости в организме не восполнить, давление крови понизится, что вкупе с электролитным дисбалансом ухудшит возможности спортсмена. Соревнования в более холодном климате таких сложностей не вызывают, если, конечно, температура воздуха не слишком низкая. Выделяемое телом тепло является побочным продуктом деятельности, в результате которой человек не тратит лишнюю энергию на то, чтобы согреть себя, – подобно той энергии, что мы затрачиваем на самоохлаждение при жаре. Однако если же нам чересчур холодно, у нас возникают сложности с дыхательной системой: нам приходится согревать воздух, прежде чем он попадает в легкие, и это ведет к значительной потере жидкости и раздражению дыхательных путей[8 - О раздражении дыхательных путей во время соревнований, проводимых на холоде. McArdle W., Katch F. I., Katch V. L Exercise Physiology. Energy, Nutrition and Human Performance. Lippincott & Williams, 2001, 650.].

Последние важные факторы, влияющие на спортивные результаты, по крайней мере в видах спорта, проводящихся на открытом воздухе, – ветер и погода. Ветер имеет важное значение при прыжках на лыжах с трамплина: когда он дует снизу, то подталкивает лыжника вверх, а когда сзади, то уменьшает силу скольжения. В пляжном волейболе при подаче мяча игрокам приходится принимать во внимание как ветер, дующий сзади, так и тот, что дует сбоку. Они должны заранее рассчитать подачу, не только исходя из силы броска, но и учитывая силу и направление ветра. Те же сложности возникают при стрельбе из лука и стрельбе на открытом воздухе: прицеливаясь, стрелок вынужден брать в расчет ветер. Еще один вид спорта, в котором ветер или, скорее, умение скрываться от него, играют важную роль, – это велоспорт. Это понятно каждому, кто когда-либо ездил вместе с другими велосипедистами и может сравнить те ощущения, когда ты впереди, с теми, когда ты прячешься за спиной других. Однако от других природных факторов ветер отличается тем, что в некоторых видах спорта спортсмен с большим или меньшим успехом может сделать его своим союзником. Когда на Олимпиаде в 1988 году Флоренс Гриффит-Джойнер установила мировой рекорд (который пока еще никто не побил), пробежав 100 метров за 10,49 секунды, многие заподозрили легкоатлетку в употреблении допинга. На отборочных соревнованиях Гриффит-Джойнер выдающихся результатов не показывала, а вскоре после Олимпиады оставила большой спорт, и в глазах многих это стало еще одним доказательством использования неразрешенных препаратов. Однако недавние исследования показали, что своим невероятным успехом бегунья, вероятнее всего, обязана ветру, а точнее попутному ветру. В день проведения соревнований на стадионе в Сеуле дул сильный ветер. Перед началом соревнований в беге на 100 метров у женщин и сразу после них скорость попутного ветра составляла 5 метров в секунду. Тем не менее, когда прозвучал стартовый выстрел и Гриффит-Джойнер рванулась вперед, анемометр показывал 0,0, а это значит, что на момент выстрела прибор просто-напросто был не настроен[9 - Cooper, Chris. Run, Swim, Cheat. The Science behind drugs in sport. Oxford University Press, 2012, 32.]. В легкой атлетике существует норма максимальной допустимой скорости попутного ветра в том случае, если речь идет об установлении рекорда в спринтерских дисциплинах и прыжках в длину. Она составляет 2 метра в секунду, поэтому не исключено, что установленный в 1988 году рекорд учитывать действительно нельзя.

В 2009 году в прыжках с трамплина на лыжах также были введены нормы, учитывающие фактор ветра. В этих нормах общий балл за прыжок высчитывается, исходя из балла за дальность, балла за технику прыжка, балла за скорость и фактора поправки на ветер. Эту громоздкую систему норм было непросто понять даже спортсменам, причем победителем порой оказывался вовсе не тот, кто прыгнул дальше всех[10 - Согласно статье на сайте НРК, опубликованной в 2013 году, сами спортсмены признают, что до конца не понимают новых правил расчета баллов в прыжках с трамплина. https://www.nrk.no/sport/hopp-for-komplisert-for-hopperne-1.10930265 (https://www.nrk.no/sport/hopp-for-komplisert-for-hopperne-1.10930265).]. Наиболее странным случаем применения этих норм можно считать чемпионат по лыжным видам спорта, состоявшийся в 2016 году в Кульме: после первого выступления прыгун Касай Нориаки, прыгнувший на 10 метров дальше троих своих соперников, оказался лишь на четвертом месте[11 - Результаты чемпионата мира в Кульме в 2016 году приведены согласно сайту Международной федерации лыжного спорта. http://www.fis-ski.com/ski-jumping/events-and-places/results/?season=2016&discipline=&gender=all&race_id=4464&sector=JP (http://www.fis-ski.com/ski-jumping/events-and-places/results/?season=2016&discipline=&gender=all&race_id=4464&sector=JP).]. Разработать эффективные методы для предоставления всем участникам соревнований равных возможностей непросто, однако эти правила – пример того, как именно мы пытаемся воспрепятствовать тому, чтобы природные факторы оказывали решающее воздействие на результат. Одно дело – атмосферное давление, сила тяжести и температура: они влияют на всех одинаково. А вот на ветер, который кому-то может и помешать, требуется поправка. Ну, а как же тогда быть с таким важным фактором, как спортивное снаряжение?

Снаряжение

В 1937 году австрийский лыжник Тадеуш Швабль стал чемпионом лыжной гонки Ханенкамреннен (3312 м) в Китцбюэле с результатом 3.53,1. Шестьдесят лет спустя Фритц Штробль установил новый – действующий на настоящий момент – рекорд, уложившись в 1.51,58, то есть проехав со скоростью 106,9 километра в час[12 - Победители Кубка мира в Китцбюэле. https://en.wikipedia.org/wiki/Hahnenkamm,_Kitzb%C3%BChel (https://en.wikipedia.org/wiki/Hahnenkamm,_Kitzb%C3%BChel).]. На возможности спортсмена влияет множество факторов, и причин, по которым Штробль проехал то же расстояние почти на две минуты быстрее Швабля, тоже несколько. Тем не менее можно с уверенностью утверждать, что, будь у Штробля в 1997 году деревянные лыжи, на которых выступали лыжники 1937-го, полученного результата он, скорее всего, не достиг бы. Деревянные лыжи, даже изготовленные из самой тяжелой и прочной древесины пекана, нельзя даже сравнивать с современными лыжами из стеклопластика, отличающимися низким трением и высокой износостойкостью. Несмотря на это, в слаломе деревянные лыжи использовались дольше, чем в скоростных видах спорта. Объясняется это тем, что упругость древесины более сложно воспроизвести искусственно. Даже на зимней Олимпиаде 1964 года спортсмены, занявшие все три призовых места в соревнованиях по слалому, выступали на деревянных лыжах. Тем не менее в 1970-х, благодаря разработке новых материалов для производства лыж, стеклопластик полностью заменил древесину. Как известно, последним чемпионом мира, выступившим на деревянных беговых лыжах, стал в 1974 году Магне Мюрмо.

Конькобежный спорт – еще один вид спорта, полностью претерпевший изменения благодаря новому снаряжению. Коньки с отрывающейся пяткой были созданы в Нидерландах еще в начале ХХ века, но завоевали популярность лишь к концу 1990-х, несмотря на все биомеханические и физические преимущества, получаемые конькобежцем. Новая технология позволяет коньку дольше соприкасаться со льдом, облегчая тем самым скольжение. Кроме того, у конькобежца появляется возможность приподнять лодыжку, как на беговых лыжах, и увеличить мощность отталкивания. Впервые коньки с подвижной пяткой использовались на Кубке мира в 1984 году, но стали по-настоящему популярны лишь после Олимпиады в Нагано в 1998-м, где нидерландский конькобежец Джанни Ромме побил рекорды, установленные Юханом Улавом Коссом в Лиллехаммере на дистанциях 5000 и 10000 метров[13 - Результаты соревнований по конькобежному спорту приведены в соответствии с данными на http://www.speedskatingstats.com/ (http://www.speedskatingstats.com/).].

Почти таким же «урожайным» на рекорды был чемпионат мира по плаванию, проводившийся в 2009 году в Риме, на котором было установлено 29 мировых рекордов. Производитель спортивного снаряжения Speedo в течение многих лет работал над созданием нового костюма для плавания, который позволял бы увеличить выталкивающую силу и уменьшил трение, и к 2008 году костюм был готов. По сравнению с прежними костюмами, «LZR Racer» закрывает большие участки тела, а его достоинства трудно переоценить[14 - Статья на сайте Tv2 о новых плавательных костюмах от Speedo: http://www.tv2.no/a/1715930 (http://www.tv2.no/a/1715930).].

В отличие от коньков с отрывающейся пяткой и лыж из стеклопластика, этот костюм вызвал не только одобрение. Например, норвежский пловец Александер Дале Уэн в знак протеста отказался надевать его, ведь подобные технологии доступны не всем. Вскоре по решению Международной федерации плавания использование этих костюмов попало под запрет, а кроме того, появились более строгие нормы, касающиеся купальных костюмов. Нормы, согласно которым все должны быть равны, появились и здесь. Спорт не отвергает технологии, однако ситуации, в которой отдельные спортсмены получают решающее преимущество благодаря эксклюзивному снаряжению, необходимо исключить. В данном случае снаряжение, как и попутный ветер, относится к тем влияющим на результаты факторам, которые требуется устранить.

Техника

В 1968 году в Мехико Боб Бимон был не единственным, кому слабая сила всемирного тяготения и разряженный воздух помогли выиграть. Другой американский спортсмен, прыгун в высоту Ричард Фосбери, тоже обошел своих соперников. Своей победой Фосбери обязан особой технике, значительно отличавшейся от техники других спортсменов. Если российские и итальянские прыгуны совершали рывок, повернувшись лицом к планке, и двигались с поворотом набок, то Фосбери начинал прыжок, повернувшись к планке спиной. Поэтому прыгун проходит над планкой головой вперед и спиной к земле, используя законы физики с выгодой для себя. Точка тяжести тела всегда расположена в центре, так что, например, при наклоне точка тяжести тоже смещается далеко вперед. Дугой изогнувшись над планкой, Фосбери заставлял тело двигаться вперед, не смещая при этом центр тяжести, в отличие от тех, чье тело оставалось прямым. Сперва к этой новой технике отнеслись с недоверием, однако за следующие четыре года большинство убедилось в том, что «фосбери-флоп» – техника более совершенная, так что на Олимпиаде в Мюнхене в 1972 году 28 из 40 прыгунов уже выступали этим же стилем[15 - Из статьи о Дике Фосбери в журнале The Guardian. https://www.theguardian.com/sport/blog/2012/may/08/50-stunning-olympic-moments-dick-fosbury (https://www.theguardian.com/sport/blog/2012/may/08/50-stunning-olympic-moments-dick-fosbury).].

Если снаряжение и сторонние факторы относятся к так называемым внешним условиям, то техника представляет собой внутреннюю характеристику, а именно, способ, которым спортсмен, используя собственные способности, выполняет поставленную задачу. Во время тренировок принято учитывать такие координационные способности, как равновесие, ритм, динамика, зрительно-моторная координация, а также ориентация в пространстве. Требования к этим способностям зависят от техники. Обычно различные техники формируются, развиваются и приживаются в течение продолжительного времени, но порой, как в случае с «фосбери-флопом», спортсмены сами придумывают собственную технику, таким образом двигая вперед спортивную дисциплину.

Спустя несколько лет после «революции прыжка» техническая революция ждала и лыжный спорт, и первой ласточкой стал коньковый ход в беговых лыжах. Сама техника ничего нового собой не представляла: первые сторонники конькового хода начали участвовать в соревнованиях еще в 1930-х. Среди них был Улф Хоффсбаккен из Снертингдала, который в 1938 году пробежал коньковым ходом весь маршрут лыжной гонки Биркебейнерренне и стал первым одолевшим дистанцию менее чем за четыре часа[16 - Согласно историку Туру Гутосу, существует множество источников, посвященных технике конькового хода в первой половине ХХ века. Проводились даже особые гонки «в свободном стиле». Об этом, например, написано в статье на сайте НРК: https://www.nrk.no/sport/forste-skoyterenn-for-82-ar-siden-1.7522607 (https://www.nrk.no/sport/forste-skoyterenn-for-82-ar-siden-1.7522607)]. Тем не менее с успехом применять подобную технику возможно только на ровном и твердом снегу, поэтому широкое распространение она получила лишь в 1970–1980-х, когда были усовершенствованы способы выравнивания лыжни. Тенденция к изменению техники наметилась на чемпионате мира в Осло, когда Билл Кох завоевал бронзовую медаль благодаря тому, что одной ногой шел коньковым ходом, а другой – классическим. Вскоре его примеру последовали и соперники, и хотя Международная федерация лыжного спорта сперва ввела запрет на коньковый ход, в 1986 году было решено разделить соревнования по лыжным гонками по стилю – на гонки классическим стилем и гонки свободным стилем.

Шведскому прыгуну с трамплина Яну Боклёву пришлось сложнее: дебютировав на чемпионате мира в Зеефельде в 1985 году, он показал совершенно новую технику, во время прыжка широко разводя носки лыж в стороны. Сперва над шведом лишь посмеялись, но, увидев результаты, спортивное сообщество подвергло спортсмена жесткой критике, в первую очередь, за неэстетичность выбранной техники: так с трамплина еще никто не прыгал. Несмотря ни на что, Боклёв продолжал экспериментировать с техникой, благодаря которой дальность прыжка увеличивалась по сравнению с соперниками. Оценки за технику исполнения прыжка долго оставались низкими, но со временем дальность прыжка стала компенсировать низкие оценки за технику, а в 1989 году Боклёв завоевал Кубок мира. Через год большинство прыгунов тоже освоили «V-стиль», и судьям пришлось пересмотреть отношение к нему. Боклёв вскоре оставил спорт, но благодаря ему техника прыжков с трамплина навсегда изменилась[17 - Из статьи о Яне Булёве на сайте НРК: https://www.nrk.no/sport/da-hoppsporten-skiftet-stil-1.6539781 (https://www.nrk.no/sport/da-hoppsporten-skiftet-stil-1.6539781).].

Спортивные результаты во многом зависят от техники – в этом сомнений нет, и описанные выше примеры это подтверждают. Техника также относится к внутренним факторам, и большинство согласится с тем, что технические возможности являются частью тех способностей спортсмена, которые оцениваются в спортивных соревнованиях. Именно по этой причине попытки запретить коньковый ход и «V-стиль» потерпели неудачу: эти техники были лучше прежних, а освоить их мог каждый. Когда аргументы о неэстетичности утратили убедительность, были сделаны попытки обосновать запрет потенциальной опасностью травм. В 1980-х годах высказывалось мнение, что коньковый ход опасен для бедренных костей лыжниц. Это мнение было ничем не обосновано, однако мы знаем примеры того, как некоторые техники все же попали под запрет по медицинским причинам – например, переднее сальто при прыжках в длину или переднее сальто со сведенными ногами при прыжках в высоту. По той же причине в могуле запрещено двойное заднее сальто: чересчур велика вероятность, что спортсмен не успеет его завершить. Независимо от того, как оцениваются реальные риски в этих техниках, подобные запреты лишь подчеркивают важнейшую причину запрета техники – а именно, потенциальную опасность тяжелой травмы. Желание неоправданно рисковать вовсе не относится к качествам, высоко оцениваемым в спортивных соревнованиях. Технические же возможности, напротив, относятся к факторам, которые в первую очередь подлежат оценке.

Физиологические данные

Другой внутренний фактор, влияющий на спортивные результаты, – это физические или физиологические данные. К ним можно отнести силу, выносливость, подвижность и быстроту, которые, в свою очередь, тоже зависят от ряда условий. Прежде всего, любые физические упражнения предполагают сокращение мышечных волокон, производящее движение в суставах (клеток, что заставляет суставы двигаться). Эта механическая работа требует энергии, которую мышцы получают, в частности, благодаря расщеплению особого химического соединения, аденозинтрифосфата (ATФ). Запас АТФ в клетках отсутствует, поэтому они вырабатывают его при возникновении потребности. Наиболее эффективный синтез АТФ происходит в результате сжигания жира или углеводов, при котором помимо АТФ вырабатываются углекислый газ, вода и тепло. При расщеплении одной молекулы глюкозы образуются до 36 молекул АТФ, однако это возможно только в присутствии кислорода. При отсутствии кислорода мышечные клетки получают энергию преимущественно из креатинофосфорной кислоты (молекулы резервной энергии, образующиеся в печени и содержащиеся в мышцах) или расщеплением глюкозы до лактата (молочной кислоты). Эти процессы быстро обеспечивают мышечные клетки энергией, но этот эффект непродолжителен, так как количество креатинофосфорной кислоты в мышечных клетках ограничено, а также потому, что в результате расщепления одной молекулы глюкозы до лактата синтезируется всего две молекулы АТФ, что крайне мало, если сравнить с 36 молекулами, появляющимися в присутствии кислорода. Таким образом, при выполнении упражнений различной силы и продолжительности необходимо учитывать два этих способа получения энергии (аэробный и анаэробный), а кроме того, они также играют важную роль в ситуациях, когда различные физиологические возможности ограничены. Бег, велоспорт и бег на лыжах – виды физической активности, при которых человеческий организм зависит, в первую очередь, от аэробного пути выработки энергии, то есть от поступления питательных веществ, в особенности углеводов, но невозможен без притока кислорода. Чем больше кислорода поступает в организм, тем более тяжелые нагрузки берет на себя организм, не переходя при этом к анаэробному способу выделения энергии. Приток кислорода, в свою очередь, зависит от количества кислорода, поступающего в легкие, количества эритроцитов, переносящих его по телу, количества крови и быстроты кровообращения, а также от того, каким образом клетки мышц усваивают кислород.

В тех же случаях, когда мы пробегаем 100-метровку или толкаем ядро, значение кислорода менее важно: мышцы получают энергию, выделенную анаэробным способом, а так как само упражнение выполняется быстро, ограниченная продолжительность анаэробной реакции роли не играет. Поэтому в данном случае особое значение приобретают другие факторы, например, особенности мускулатуры, способность задействовать все клетки мышцы и виды мышечных волокон. Вообще говоря, существует два вида мышечных волокон – быстрые и медленные. Быстрые обладают высокой скоростью сокращения, но не отличаются выносливостью, а медленные способны выполнять продолжительную работу.

Насколько важны эти физиологические особенности для спортивных результатов, если сравнить их с техникой, снаряжением и другими внешними условиями? Чтобы ответить на этот вопрос, необходимо проанализировать требования, предъявляемые различными видами спорта человеческому организму. В некоторых дисциплинах, например в стрельбе, спортсмен выполняет достаточно простое действие, и в этом случае результаты в большей степени зависят от технических способностей. Очевидно, что стрелку желательно сохранять хорошую физическую форму, но побеждают вовсе не те, кто отличается хорошей аэробной выносливостью, или те, кто может похвастаться самыми большими мышцами. К тому же спортсмены используют стандартное снаряжение, поэтому в большинстве соревнований все стрелки находятся в одинаковых условиях, а важнейшим фактором, влияющим на спортивные результаты, становится техника стрельбы.

С тяжелой атлетикой дело обстоит иначе, однако и здесь спортсмен выполняет относительно однородные упражнения. Безусловно, жим лежа или приседания требуют определенных технических навыков, но в сравнении с другими дисциплинами движения здесь достаточно простые. Снаряжение тоже не играет значительной роли, так как существуют четкие правила относительно костюмов и спортивных бандажей. Решающее значение здесь имеет физическая сила, которая нужна тяжелоатлету при поднятии штанги. Несложными можно также считать движения в беге на длинные дистанции, правда, в этом виде спорта важны также снаряжение и тактика. Нельзя недооценивать и технику бега, и тем не менее ни один из этих факторов не будет решающим, если бегун не отличается выносливостью. Именно по этой причине победителями в беге на длинные дистанции выходят те, кто потребляет больше всего кислорода.

И все же большинство видов спорта значительно сложнее стрельбы, бега на длинные дистанции и тяжелой атлетики. Такие виды спорта, как футбол, теннис и хоккей на льду, требуют от спортсмена не только физической силы, выносливости и техники, но и тактических способностей, вовсе не обязательных в стрельбе и тяжелой атлетике. Здесь нельзя отрицать и роль снаряжения: несмотря на четкие правила, остается возможность выбора, иначе у этих видов спорта просто не было бы таких крупных спонсоров, производящих спортивное снаряжение. Несмотря на сложность требований, в важности физиологических данных сомневаться не приходится. Можно быть гением футбольной тактики, но какой в этом смысл, если ты при этом не можешь бегать 45 минут подряд, а потом еще столько же? Возможно, у вас прекрасный удар слева, однако если после первого сета левая рука отказывает, то теннисистом вам не стать. Таким образом, в большинстве дисциплин спортивные результаты зависят преимущественно от физиологических данных, причем чем проще упражнения, тем важнее физиологические способности. Но от чего же зависят физиологические данные? Что влияет на нашу мышечную силу и выносливость?

Во-первых, важен пол спортсмена. У мужчин мышечная масса от природы больше, как и предпосылки для ее увеличения. То же касается и выносливости, хотя в этом случае разница не настолько велика. Еще один значительный фактор – генетика, определяющая соотношение типов мышечных волокон и, следовательно, выносливость и мышечную силу. Как сказано выше, мышечные волокна делятся на быстрые и медленные. Медленные волокна сокращаются медленнее, чем быстрые, но способны дольше выдерживать нагрузки. Быстрые волокна быстрее реагируют на силовые упражнения, их масса увеличивается почти в два раза по сравнению с медленными волокнами. Если сравнить соотношение различных типов мышечных волокон у лучших спортсменов, то становится ясна следующая тенденция: у тех, в чьих видах спорта требуется выносливость, медленных волокон значительно больше, а у спринтеров и тяжелоатлетов преобладают быстрые волокна. Например, у американца Франка Собера, завоевавшего золотую олимпийскую медаль в марафоне, около 80 % мышечных волокон составляют медленные волокна, у большинства же обычных людей таких волокон бывает чуть больше половины[18 - Об особенностях строения мышечной ткани у спортсменов, выступающих в различных дисциплинах. Epstein, David. Idrettsgenet. Vitenskapen bak store idrettsprestasjoner. Flint Forlag 2016, s 135–136.]. Но меняются ли мышцы в процессе тренировок или же это врожденные особенности влияют на выбор спортсменом определенной дисциплины? Если верить одному из последних исследований в этой сфере, то даже несмотря на то, что медленные волокна при силовых тренировках начинают реагировать быстрее, а быстрые при тренировках на выносливость становятся способны к более длительным нагрузкам, тип волокон в целом меняется лишь незначительно[19 - Статья об изменении мышечной ткани при тренировках. Andersen, J., Aagard, P. (2010) «Effects of strength Training on Muscle FIber Types and size, Consequences for Athletes Training for High Intensity Sports». Scandinavian Journal of Medicine and Science in Sports. 20: 2, 32–38.]. Генетические предпосылки также относятся к факторам, влияющим на предрасположенность к определенным видам спорта.

Формирование подобных генетических предпосылок на протяжении долгих лет остается предметом научных споров и околонаучных изысканий. Ямайские спринтеры и восточноафриканские бегуны на длинные дистанции – наиболее известные примеры, когда в определенной дисциплине преобладают спортсмены с конкретным этническим происхождением, даже несмотря на то, что сам по себе этнос крупным назвать нельзя. В октябре 2011 года кенийцев, принадлежащих к этнической группе календжин, которые пробежали марафон менее чем за 2 часа 10 минут, было больше, чем американцев, показавших такие же результаты за всю историю (32 кенийца и 17 американцев соответственно)[20 - О представителях народности календжин, кенийцах и марафонцах: Epstein, David. Idrettsgenet. Vitenskapen bak store idrettsprestasjoner. Flint Forlag 2016, s 228.]. Анализируя результаты спринтов за последние 20 лет, сложно не заметить того факта, что среди победителей преобладают спортсмены из Западной Африки, причем как среди мужчин, так и среди женщин. При попытках объяснить эти явления было создано множество моделей, где учитывались как культурные, так и физиологические аспекты. Некоторые из создателей этих моделей основывались на достоверных научных исследованиях, а другие руководствовались более сомнительными источниками и мотивами. В одном из генетически обоснованных исследований говорится, что эпидемии малярии, свирепствовавшие на западноафриканском побережье (то есть там, где жили предки ямайских спринтеров), привели к изменениям в генах, повлиявшим на формирование в организме веществ, которые позволяют спортсменам достигать лучших результатов в скоростно-силовых видах спорта. В другом исследовании приводится развернутое сравнение кенийских бегунов с датскими. Это исследование показало, что по выносливости кенийские спортсмены не превосходят датских, однако у кенийцев толщина голени в среднем на 15–17 % меньше, чем у датчан, что усиливает выносливость и улучшает спортивные результаты в циклических видах спорта. Среди более сомнительных объяснений, где за основание берутся культурные аспекты, – теория о том, что представители кенийского этноса календжин издавна воровали скот, а для этого им приходилось часто бегать по ночам. Лучшие бегуны крали больше всего скота и чаще всего рожали детей, передавая им по наследству свою выносливость[21 - О генетических различиях. Спринтеры с Ямайки и кенийские бегуны: Epstein, David. Idrettsgenet. Vitenskapen bak store idrettsprestasjoner. Flint Forlag 2016, kapitel 10–12.].

Сейчас не существует единого мнения относительно причин, по которым ямайцы и кенийцы показывают лучшие результаты в определенных видах спорта. Очевидно, что, помимо генетических аспектов, определенную роль играет также культура. Лучшие лыжники рождаются в Норвегии вовсе не потому, что норвежцы более генетически предрасположены к катанию на лыжах, нежели французы и итальянцы, а потому, что наиболее выносливые спортсмены Норвегии выбирают именно лыжи, а не велоспорт и не бег, как другие европейские спортсмены. Сходную ситуацию можно наблюдать на Ямайке и в Кении. Тем не менее мы можем с уверенностью утверждать, что генетические предпосылки у всех людей разные и от национальности это не зависит. Это касается также антропометрических различий, таких как рост и вес.

Если ваш рост – всего 1,60 метра, а вы хотите стать баскетболистом, придется попотеть, а у боксера весом 55 килограммов довольно мало шансов победить 90-килограммового здоровяка. Однако во многих видах спорта представления об идеальной комплекции постоянно меняются. Долгое время считалось, что спринтер должен быть невысоким и мускулистым, но потом появился ямаец Усэйн Болт ростом 1,94 метра, вышедший победителем в спринтерских дистанциях на трех Олимпиадах подряд. Болт доказал, что на самом деле высокий рост – преимущество при условии, что у тебя достаточно силы и технических навыков, чтобы выдерживать темп более низкорослых соперников. Потому что, когда шаги у тебя шире, а темп тот же, до цели ты, без сомнения, доберешься быстрее. Во время Олимпийских игр в Пекине на преодоление 100-метровки Болту понадобился 41 шаг, при том что другим спортсменам потребовалось в среднем 44[22 - Cooper, Chris. Run, Swim, Cheat. The Science behind drugs in sport. Oxford University Press, 2012, 44.].

Итак, благодаря генетике мы наделены физиологическими и анатомическими особенностями, по отношению к которым часто употребляют не вполне научное понятие «талант». Уравнять возможности в этом случае мы пытаемся, вводя весовые категории в тяжелой атлетике и боевых видах спорта, возрастные категории в детском спорте, а также проводя соревнования по отдельности среди женщин и мужчин во всех видах спорта за исключением конкура. Причина, по которой пол, возраст и вес используются в качестве критериев, помогающих уравнять возможности спортсменов, заключается в том, что эти факторы имеют большое значение для спортивных результатов, а также в том, что их, в большинстве своем, несложно определить. Существуют и другие генетические различия, влияющие на возможности спортсменов, но разделить спортсменов на категории, исходя из других генетических предпосылок, было бы затруднительно по научным, этическим и практическим соображениям. Это касается даже тех случаев, когда речь идет о необычных генетических мутациях, которые потенциально могут обеспечивать спортсмену преимущество.

Финскому лыжнику Ээро Мянтюранта, завоевавшему золотые медали как на Олимпиаде в Скво-Вэлли в 1960 году, так и в Инсбруке в 1964-м, необычайно повезло с родителями. Благодаря генетической мутации, концентрация красных кровяных клеток в его организме была необычайно высокой. Если обычная норма для мужчин соответствует 13,5–16,5 грамма гемоглобина на децилитр крови (молекулы кислорода вступают во взаимодействие с красными кровяными клетками), то у Мянтюранта этот показатель соответствовал 20–24 граммам на децилитр. Данная мутация привела к тому, что рецепторы, с которыми взаимодействует эритропоэтин, гормон, контролирующий образование эритроцитов, то есть красных кровяных клеток, приобретают повышенную чувствительность. Из-за этого в организме формируется намного больше эритроцитов, а способность крови к кислородному обмену резко возрастает. Естественно, что у финского бегуна имелось явное физиологическое преимущество, которое, однако, привело к проблемам со здоровьем. Такая густая кровь может оказаться опасной, и большинству тех, кто страдает подобными заболеваниями, необходимо регулярно делать кровопускания, чтобы снизить риск возникновения тромбов[23 - Из статьи о Мянтирана, написанной физиологом Дэвидом Эпстейном и опубликованной на сайте sportscientist.com (http://sportsscientists.com/): http://sportsscientists.com/2013/12/eero-manty-ranta-finlands-champion-1937–2013-obituary/ (http://sportsscientists.com/2013/12/eero-manty-ranta-finlands-champion-1937%E2%80%932013-obituary/).].

Южноафриканка Кастер Семеня, специализирующаяся на дистанции 800 метров, – еще один пример того, как генетическая мутация может влиять на спортивные результаты. Ее особенность носит собирательное название «гиперандрогения». Причины его возникновения бывают разными, однако результатом всегда является избыточная секреция тестостерона. Тестостерон – гормон, регулирующий ряд процессов и присутствующий как в мужском, так и в женском организмах, но у мужчин его показатели значительно выше. Тестостерон отвечает, в частности, за мужские половые признаки и мышечную массу, поэтому для женщин с гиперандрогенией нередко характерны явно выраженные мышцы и избыточный рост волос на теле. Такое отклонение неопасно и встречается достаточно часто, но Семеня пришлось пережить немало неприятных эпизодов. Международная ассоциация легкоатлетических федераций (IAAF) посчитала несправедливым тот факт, что исключительных результатов Семеня добилась благодаря своей генетической особенности, и потребовала от спортсменки медикаментозной коррекции уровня тестостерона. Тем не менее требование IAAF было немедленно обжаловано в Спортивном арбитражном суде (CAS), постановившем, что подобное требование противоречит международным нормам[24 - Физиолог Сильвия Капмореси написала объемную научную статью о спортсменах и гиперандрогенизме. Статья опубликована в журнале Clinics in Sports Medicine. Camporesi S. «Ethics of Regulating Competition for Women with Hyperandrogenism». Clinics in Sports Medicine, 35: 2, 2016, 293–301.].

Мы согласны принять даже самые крайние проявления генетически обусловленных различий, влияющие на спортивные результаты. Во-первых, заболевание или генетическая особенность возникают не по вине спортсмена, вынужденного переживать связанные с этим этические сложности, а во-вторых, никто, независимо от генетических особенностей, не рождается чемпионом. Одно дело – хорошие предпосылки, и совсем другое – научиться обращать их себе на пользу[25 - Статья в British Journal of Sports Medicine о генетической предрасположенности и тренировках. Tucker R., Collins M. «What makes champions? A review of the relative contribution of genes and training to sporting success.» British Journal of Sports Medicine, 2012; 46: 555–56.]. Кроме того, когда речь идет о выносливости и мышечной силе, существует еще один фактор, даже более важный, чем генетика, а именно, способность использовать, наверное, величайшее эволюционное достижение – невероятную способность человеческого организма приспосабливаться.

Тренировка

Милон Кротонский – один из наиболее знаменитых спортсменов античности. Он жил на побережье Адриатического моря (территория современной Италии) за 500 лет до нашей эры и с самого раннего возраста мечтал стать победителем Олимпиады в Афинах. Будучи юношей, он купил новорожденного теленка, которого таскал на плечах под палящим солнцем до тех пор, пока окончательно не выбивался из сил. Милон проделывал это упражнение ежедневно, год за годом. Теленок рос, но и Милон тоже, а когда теленок превратился в быка, Милон стал настоящим силачом.

Пример Милона еще раз доказывает, что человеческое тело способно приспосабливаться к внешним нагрузкам и что постепенное увеличение физической нагрузки укрепляет мышцы. Тренировка – это простой биологический механизм приспособления: если давать организму нагрузку, со временем он к ней привыкает. При этом нагрузку необходимо постепенно увеличивать, иначе этот эффект пропадет. Кроме того, между нагрузками организму необходимо отдыхать – в противном случае перенапряжение приведет к ухудшению показателей.

В целом принцип действия тренировок несложен: если достаточно часто бегать, то со временем сердце увеличится и начнет при каждом ударе перекачивать больший объем крови. Помимо этого, вокруг мышц станет больше мелких капилляров, так что приток кислорода к мышечным волокнам увеличится. Количество митохондрий (компонент клетки, в котором происходит синтез АТФ) тоже вырастет, так что общая способность тела вырабатывать энергию увеличится. В результате мы становимся более выносливыми и можем сохранять высокий темп бега дольше, чем до тренировок.

Так же дело обстоит и с силовыми тренировками. Если мы регулярно поднимаем тяжелые гири, мышцы привыкают к нагрузке, а их объем увеличивается – в основном потому, что существующие мышечные волокна увеличиваются в размерах, но также и благодаря образованию новых волокон. Нервная система также приспосабливается, так что вы приобретаете способность задействовать одновременно большее количество мышечных волокон, увеличивая таким образом и силу, с которой эти волокна сокращаются. Общим результатом этих процессов становится увеличение мышечной силы.

Эти механизмы достаточно простые, но тем не менее за последние 70 лет тренировка превратилась в настоящую науку. Профессиональный спорт развивается с невероятной быстротой, и теперь лучших от «почти лучших» отделяет уже не такая четкая грань, как в 1950-х. Основополагающие принципы тренировок изменились незначительно, но сейчас мы лучше понимаем, как можем избавиться от сдерживающих факторов, и поэтому тренировки стали намного сложнее, чем прежде.

Примером этого может служить тщательное планирование тренировок. До 1950-х тренировки проходили примерно одинаково, независимо от времени года. Тем не менее российский физиолог Лев Павлович Матвеев, проанализировав дневники советских легкоатлетов, тяжелоатлетов и пловцов, заметил важную деталь, характерную для победителей Олимпиад 1952 и 1956 годов: лучшие результаты показывали те, кто менял нагрузку в зависимости от времени года. На основании этих наблюдений Матвеев начал разрабатывать методику спортивных тренировок, основываясь на принципе периодизации. Он разделил год, отдельные сезоны и недели на несколько циклов с различной тренировочной нагрузкой и установил, каким образом при помощи так называемых круговых тренировок можно привести спортсмена в форму, которая обеспечит ему лучшие результаты на соревнованиях[26 - Из статьи немецкого физиолога Арндта Крюгера о развитии теории тренировок.Kruger, A. «Training Theory and Why Roger Bannister was the First Four-Minute Miler». Sport in History, 2006: 26, 305–324.]. Так Матвеев усовершенствовал методику тренировок сперва в СССР, затем – в Восточной Германии, а потом и по всему миру. Расцвет спортивной физиологии пришелся на период Второй мировой войны. В это время были проведены исследования факторов, влияющих на выносливость и мышечную силу, а также изменений этих параметров в зависимости от возраста и пола и под влиянием заболеваний. Были разработаны приборы, измеряющие объем кислорода, потребляемого при физических нагрузках, и человечество ближе познакомилось с процессами, воздействующими на способность быстро бегать и поднимать тяжести. Помимо этого, ученые постепенно выяснили, каким образом организм приспосабливается к тренировкам и какие механизмы при этом работают. Главную роль в этих исследованиях сыграли научные сообщества Скандинавии и, в частности, такие ученые, как Пер-Улоф Остранд, Бенгт Салтин и Бьорн Экблум[27 - Больше о развитии спортивной физиологии в первой главе книги Exercise Physiology. Energy, Nutrition and Human Performance]. Благодаря полученным данным о реакции человеческого тела на физические нагрузки, методика тренировок также претерпела изменения. Усовершенствование основывалось на опыте, однако чем лучше мы понимаем особенности воздействия тренировок на организм, тем проще улучшать методы тренировки.

Выяснилось, например, что физиологический эффект тренировки на выносливость связан не только с главными факторами – в основном, со способностью сердца перекачивать кровь, но и с периферийными – в частности, со способностью мышц потреблять доставленный кислород. Некоторые факторы требуют тренировок, в которых нагрузка распределяется по-разному. Чтобы увеличить ударный объем сердца, необходимы интервальные тренировки с непродолжительными физическими нагрузками высокой интенсивности. Если же нужно, наоборот, повлиять на такие периферийные факторы, как количество митохондрий и капилляров в мышечных волокнах, для этого требуются более долгие, но менее интенсивные тренировки. Зная это, можно разработать индивидуальную программу тренировок, сочетающую различные методы и ориентированную на соответствующий вид спорта и данные конкретного спортсмена. При помощи напульсника возможно установить уровень лактата в крови во время тренировок и тем самым проверить правильность выбранных нагрузок с учетом желаемого результата.

Концентрация эритроцитов в крови также влияет на выносливость, но от тренировок не зависит. Тем не менее в этом случае можно прибегнуть к еще одному механизму приспособления: на формирование эритроцитов влияет атмосферное давление. При низком давлении, на больших высотах или в камере с разреженным воздухом (со сжатым воздухом) синтез эритропоэтина (ЭПО) увеличивается, и со временем это приводит к увеличению концентрации эритроцитов. По этой причине спортсмены, выступающие в циклических видах спорта, начинают тренироваться на больших высотах не только для того, чтобы акклиматизироваться перед соревнованиями, но также и для того, чтобы потом иметь преимущество на низких высотах, где поступление кислорода в организм выше.

Знание физиологии человеческого организма позволило также усовершенствовать методику тренировки мышечной силы. В результате различных экспериментов было установлено, как именно мышцы меняются в зависимости от различных форм нагрузки. Рост мышц – сложный процесс, который регулируется рядом гормонов и факторов роста, среди которых самую важную роль играют тестостерон, инсулин и гормон роста. Впоследствии ученым удалось определить два важнейших фактора, стимулирующих рост мышц, – механическое растяжение и метаболический стресс (ограниченный доступ к питательным веществам и кислороду). Благодаря этой информации изменились методы тренировок. Исследования показали, что силовые тренировки, целью которых является однократное увеличение силы, как, например, при толкании ядра и поднятии штанги, необходимо проводить с использованием больших тяжестей и с малым количеством повторов. Максимальные тяжести важны при тренировках упругости и силы, однако в скоростно-силовых видах спорта значительную роль играет также и время, поэтому в таких случаях необходимо использовать при тренировках низкие нагрузки, но повысить скорость движений.

Со временем спортивные физиологи, совершенствуя методы тренировок, стали обращаться к другим научным дисциплинам. Например, диетология позволяет нам понять, какие типы питания наилучшим образом влияют на человеческий организм при определенных видах деятельности, а также как правильно питаться, чтобы быстрее восстановиться между тренировками. В этой сфере до сих пор проводятся исследования, в которых физиологи изучают взаимосвязь между временем потребления энергии и особенностями питания, а также его количеством. Иными словами, когда именно нужно принимать пищу, что следует есть и сколько, для того, чтобы добиться лучшего эффекта от различного вида тренировок.

Биомеханика – еще одна дисциплина, которая при помощи анализа моделей движения и физиологических параметров помогает улучшить методику и технику тренировок. Практический пример – взмахи лыжными палками в лыжных видах спорта. В 2013 году ученые Норвежской академии спорта установили, что традиционная техника широких взмахов менее эффективна, чем короткие и частые взмахи. Раньше большинство считало широкие взмахи более эффективными, потому что чем дальше спортсмен отводит палку, тем острее угол между палкой и поверхностью и тем больше энергии переносится в направлении движения. Однако измерив силы, воздействующие на поверхность, и энергию, необходимую для того, чтобы повернуть тело в различных направлениях, ученые выяснили, что короткие и частые взмахи более эффективны: хотя при них меньше энергии прикладывается в направлении движения, спортсмен совершает не так много движений корпусом, и, таким образом, затрачивает меньше энергии. В итоге оказалось, что короткие взмахи приводят к лучшему результату, и вскоре норвежские спортсмены начали отрабатывать эту новую технику[28 - Научная статья о технике одновременного хода в Scandinavian Journal of Medicine and Science in Sport. Rud B., Secher N. H., Nilsson J., Smith G., Hallеn J. Metabolic and mechanicalinvolvement of arms and legs in simulated double pole skiing. Scandinavian Journal of Medicine and Science in Sports. 2013.]. Впрочем, вскоре эту же технику стали осваивать лыжники в других странах, так что, если сравнить фотографии лыжников, сделанные до и после 2013 года, изменения очевидны.

Эти данные, полученные благодаря новым научным дисциплинам, позволяют постоянно улучшать полученный результат, а родственные дисциплины дали нам возможность улучшить методику тренировок, разработать различные методы в зависимости от вида спорта и даже учесть индивидуальные особенности и потребности спортсмена. Но неужели возможности тренировок безграничны?

Однозначный ответ на этот вопрос дать нелегко, так как спортивные результаты непросто разделить на отдельные, поддающиеся измерениям элементы – за исключением, конечно, результатов, полученных во время соревнований, но в этом случае результат отражает совокупное действие всех факторов. Лучший способ оценки – это наблюдение адаптивных изменений в организме, различных его тканях, что проявляется перестройкой их структуры и свойств. Необходимо, однако, учитывать, что результаты измерений могут быть неточными, а, кроме того, исходное состояние может быть различным у разных спортсменов. Тем не менее, в определенной степени, результаты таких оценок все же отражают влияние тренировок на физические способности спортсмена.

В написанной в 1984 году обзорной статье, автор которой проанализировал многочисленные исследования, посвященные соотношению массы мышц и их максимальной силы, говорится, что когда силовые тренировки начинает человек нетренированный, то в первое время его сила с каждой тренировкой будет увеличиваться на один процент. Но такая тенденция не продолжается бесконечно, и спустя много лет силовых тренировок человек достигает пика своих возможностей. Случаи, когда штангист международного уровня бьет собственные рекорды более чем на несколько процентов ежегодно, очень редки[29 - McDonagh M.J., Davies C.T. «Adaptive response of mammalian skeletal muscle to exercise with high loads.» European Journal of Applied Physiology and Occupationally Physiology. 1984; 52 (2): 139–55.]. Анализируя зависимость размера мышц от тренировок, можно сказать, что у нетренированных людей мышцы увеличиваются на 3–25 % за 12 недель тяжелых силовых тренировок. При измерении мышечной массы в похожих исследованиях было выявлено увеличение на 2 килограмма за 14 недель. Такая тенденция со временем тоже прекращается, а кроме того, не все мышцы равномерно увеличиваются по массе, однако это свидетельствует о способности мышц человеческого тела к адаптации[30 - Truls Raastad, Per Egil Refsnes, G?ran Paulsen, Bent R?nnestad, Alexander R. Wisnes. Styrketrening i teori og praksis. Aschehaug, 2010.].

Что касается выносливости, ее тоже можно значительно повысить при помощи тренировок. Во-первых, тренировки на выносливость влияют на способность сердца перекачивать кровь. Это происходит, потому что размер сердца увеличивается, как и эластичность сердечной мышцы. Ударный объем тоже становится больше, в первую очередь потому, что между сердечными сокращениями в желудочки поступает больше крови (в диастолу), и так называемый конечный диастолический объем (объем желудочков сердца в конце диастолы) вследствие тренировок может увеличиться на 30 %. Тренировки влияют и на количество кровеносных капилляров, снабжающих кровью мышечные волокна. Проведенные исследования показывают, что у профессиональных спортсменов, занимающихся циклическими видами спорта, число таких капилляров в два раза больше, чем у нетренированных людей. Благодаря количеству капилляров и увеличенному ударному объему, у тренированных спортсменов, участвующих в циклических видах спорта, объем циркулирующей крови может быть на 1,5 литра больше, чем у нетренированных людей, сходных с ними по комплекции.

Благодаря механизму адаптации, не только увеличивается количество переносимого кровью кислорода – меняется также количество митохондрий в мышцах, то есть энергетическая «база» мышечных клеток, в которой вырабатывается аэробная энергия. Доказано, что за несколько месяцев эффективных тренировок на выносливость объем митохондрий можно увеличить почти на 100 %. Сумма всех этих периферических и центральных изменений приводит к тому, что потребление кислорода – возможно, наиболее точный показатель выносливости – у профессиональных спортсменов может составлять 6,5 литра в минуту, а у людей, прошедших обычные тренировки, составляет около 3,5 литра в минуту[31 - Более подробно о физиологической адаптации в работе Fysiologisk adaptasjon til utholdenhetstrening профессора Юстейна Халлена Норвежской академии спорта.]


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 10 форматов)