Джеймс Уотсон.

ДНК. История генетической революции



скачать книгу бесплатно

Научный редактор:

О. А. Гизингер, доктор биологических наук, профессор кафедры микробиологии, вирусологии, иммунологии и клинической лабораторной диагностики Южно-Уральского государственного медицинского университета


Random House, LLC. Все права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.

При подготовке обложки книги была использована фотография Джеймса Д. Уотсона из архива Лаборатории Колд-Спринг-Харбор

© Patrick Jones Photographic Studio

26 Rainford St

Surry Hills New South Wales 2010

Australia


© 2017 by James D. Watson

© Перевод на русский язык ООО Издательство «Питер», 2019

© Издание на русском языке, оформление ООО Издательство «Питер», 2019

© Серия «New Science», 2019

* * *

Посвящается

Френсису Крику



От автора

Замысел первого издания книги «ДНК. Секрет жизни» возник у меня за обедом в 1999 году во время обсуждения вариантов празднования полувекового юбилея открытия двойной спирали. Издатель Нил Паттерсон совместно с Джеймсом Д. Уотсоном предложили воплотить многогранный проект: издать эту книгу, отснять телесериал, а также реализовать еще несколько начинаний с более выраженной просветительской составляющей. Нил Паттерсон оказался в этой компании не случайно: в 1965 году именно он опубликовал первую книгу Дж. Д. Уотсона «Молекулярная биология гена» и с тех пор как добрый гений неизменно участвовал во всех его писательских работах. Дорон Вебер из Фонда им. Альфреда Слоана обеспечил финансирование на старте проекта, содействовал тому, чтобы идея успела оформиться в нечто более конкретное. В 2000 году к проекту был подключен Эндрю Берри, которому было поручено детально проработать структуру телесериала; в дальнейшем он стал регулярно курсировать между собственной научной «базой» в Кембридже, штат Массачусетс, и лабораторией Дж. Д. Уотсона в Колд-Спринг-Харборе, на северном берегу острова Лонг-Айленд близ Нью-Йорка.

С самого начала мы не собирались ограничиваться просто воспоминаниями о событиях 50-летней давности. За это время ДНК превратилась из малопонятной молекулы, интересной лишь горстке специалистов, в ядро целой научной технологии – молекулярной биологии, изменившей многие аспекты повседневной жизни, касающиеся каждого. Наряду с новаторскими изменениями появилось немало сложных вопросов о влиянии этой технологии на жизнь общества: практическом, социальном, этическом. Мы воспользовались полувековым юбилеем, увидев в этом возможность приостановить движение и подытожить проведенные за эти годы разработки. Мы предоставили откровенно субъективный взгляд как на эту научную историю, так и на связанные с ней проблемы. Более того, в издании изложена личная точка зрения Дж.

Д. Уотсона, поэтому книга написана от первого лица (в единственном числе).

Для подготовки этого полностью обновленного издания мы пригласили Кевина Дэвиса, который помог нам рассказать о многих замечательных достижениях в области генетических исследований – все эти достижения приходятся на десять лет, минувших с момента выхода первого издания. В книге появились две новые главы. В главе 8 «Время первых» рассматриваются успехи в технологии секвенирования ДНК, благодаря которым развились такие отрасли, как потребительская генетика и клиническое значение секвенирования геномов. В заключительной главе «Рак: война без конца?» мы рассмотрим, какой прогресс достигнут в исследовании и лечении рака, и задумаемся, какой ценой мы могли бы одержать победу в этой, казалось бы, безнадежной войне.


Мы с Френсисом Криком (справа) и наша модель двойной спирали


Мы постарались написать книгу для широкой аудитории, и даже те читатели, которые совершенно не разбираются в биологии, наверняка поймут в книге каждое слово. Все технические термины объясняются при первом употреблении. Кроме того, в разделе «Дополнительные материалы»[1]1
  Доступно на сайте издательства по адресу: bit.ly/DopMat


[Закрыть]
перечислены источники, важные в контексте каждой главы. По возможности мы старались не ссылаться на академическую литературу, тем не менее в перечисленных работах обсуждаемые темы рассматриваются более глубоко, чем в нашей книге.

В конце книги, в разделе «Благодарности», перечислены люди, внесшие тот или иной вклад в реализацию этого проекта. Однако четверых из них хотелось бы отметить особо. Это Георге Андреу (George Andreou), необычайно терпеливый редактор из издательства Knopf, – при его участии написан большой объем данной книги. Кайрин Хаслингер (Kiryn Haslinger), ассистент Дж. Д. Уотсона из лаборатории Колд-Спринг-Харбор, которая внесла неоценимый вклад в редактирование и написание книги, – мы считаем, что без нее книга бы попросту не состоялась. Ян Витковски (Jan Witkowski) из лаборатории Колд-Спринг-Харбор проделал огромную работу за рекордное время над главами 10, 11 и 12 и руководил ею на протяжении всего проекта. Ассистент Дж. Д. Уотсона Морин Берейка (Maureen Berejka) превосходно проявила себя в том искусстве, которое дано не каждому человеку, – разобрала почерк Дж. Д. Уотсона.

– Дж. Д. Уотсон
Колд-Спринг-Харбор, штат Нью-Йорк
– Эндрю Берри
Кембридж, штат Массачусетс
– Кевин Дэвис
Вашингтон, округ Колумбия
От издательства

Ваши замечания, предложения, вопросы отправляйте по адресу comp@piter.com (издательство «Питер», редакция компьютерной и научно-популярной литературы).

Мы будем рады узнать ваше мнение!

На веб-сайте издательства www.piter.com вы найдете подробную информацию о наших книгах.

Введение
Тайна жизни

Субботним утром 28 февраля 1953 года я, как обычно, явился на работу в Кавендишскую лабораторию Кембриджского университета раньше Френсиса Крика. Я неспроста встал с утра пораньше – знал, что мы уже близки к цели, хотя и не представлял насколько. Мы пытались расшифровать структуру молекулы, которая в тот момент была еще малоизвестна: ДНК, или дезоксирибонуклеиновой кислоты. Как мы с Криком и предполагали, это была не какая-то второстепенная молекула: в ней хранится ключ к природе всего живого и содержится наследственная информация, передаваемая от поколения к поколению, организуется работа невероятно сложных внутриклеточных механизмов. Мы надеялись, что если сможем построить объемную структуру этой молекулы, то сможем прикоснуться к «тайне жизни» – Френсис любил эту метафору и произносил ее почти всерьез.

В тот момент мы уже знали, что молекула ДНК состоит из многочисленных экземпляров одних и тех же базовых элементов – нуклеотидов, в этой молекуле их всего четыре вида: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Накануне я провел вечер, вырезая из картона шаблоны этих разнообразных компонентов, а теперь, субботним утром, когда мне никто не мешал, мог повозиться с деталями нашего «трехмерного пазла». Как они стыкуются? Вскоре я понял, что схема удивительно проста: А отлично сочетается с Т, а Г – с Ц. Оставался вопрос, правильна ли конструкция молекулы? Но молекула ДНК действительно состояла из двух цепочек, связанных парами: А – Т и Г – Ц, и в результате у меня получалось так просто и красиво, что модель почти наверняка должна была оказаться верной. Поскольку ранее я уже ошибался, то, прежде чем воодушевляться, решил дождаться Крика, для того чтобы убедиться, что моя парная модель выстоит перед его строгой критикой. Я ждал его, образно выражаясь «сидя как на иголках».

Впоследствии оказалось, что волновался я зря: Крик сразу понял, что моя парная структура подсказывает и форму молекулы, которая должна была выглядеть как двойная спираль, где две молекулярные цепочки тянутся в противоположных направлениях. Все, что нам было известно ранее о ДНК и ее свойствах, факты, над которыми мы корпели, пытаясь решить задачу, теперь обретали смысл в контексте изящных, комплементарных друг другу завитков. Важнее всего оказалось то, что предложенная структура молекулы сразу же давала ключ к разгадкам двух биологических тайн: как хранится и как реплицируется генетическая информация? Однако, когда мы с Криком, как обычно, зашли на обед в паб «Игл» и Крик стал заверять, что нами открыта «тайна жизни», мне это показалось несколько нескромным, особенно в Англии, где нарочитая скромность считается нормой. В дальнейшем оказалось, что Крик был прав. Наше открытие завершило спор, древний, как само человечество: обладает ли жизнь какой-то магической, мистической сущностью либо она напоминает самую обычную химическую реакцию, которую можно воспроизвести в лаборатории и которая выглядит как результат физических или химических процессов? Есть ли в недрах клетки нечто божественное, наполняющее ее жизнью? Открытие двойной спирали ДНК позволило ответить на этот вопрос – однозначно нет.

Дарвиновская теория эволюции, показавшая, насколько взаимосвязаны все живые организмы, была огромным достижением на пути к пониманию окружающего мира в материалистическом, то есть физико-химическом, контексте. Прорывные открытия биологов Теодора Шванна и Луи Пастера, сделанные во второй половине XIX века, также стали важными шагами вперед. В гниющем мясе не происходит самозарождения личинок мух; эти личинки появляются в результате деятельности вполне известных и изученных биологических агентов и развития ранее известных процессов. В данном случае мухи просто откладывают яйца в мясо. Идея самозарождения жизни была развенчана.

Несмотря на достижения в области молекулярной биологии, сохранялись различные формы витализма – убеждений, что одних физико-химических явлений недостаточно, чтобы объяснить жизнь и биологические процессы. Ряд биологов не спешили признавать естественный отбор единственным двигателем эволюционного развития и пытались объяснить адаптацию некой всевидящей духовной силой, которую и сами при этом определяли весьма туманно. Физики, привыкшие иметь дело с миром четких физических законов и явлений, терялись перед запутанной сложностью биологии. На тот момент они, возможно, полагали, что процессы, происходящие в глубинах клетки и управляющие основами жизни, выходят за рамки привычных законов физики и химии.

Вот почему открытие двойной спирали ДНК было так важно. Это означало революцию в материалистических представлениях о клетке, которую по значимости можно было сравнить с преобразованиями эпохи Просвещения. Интеллектуальное путешествие в науке, начавшееся с Коперника, свергнувшего человека с его центрального места во Вселенной, и продолжившееся дарвиновским утверждением, что люди – просто видоизменившиеся мартышки, привело нас к самой сути жизни: двойная спираль – это обычное химическое соединение, несмотря на сложность ее строения и тонкость организации.

Мы с Криком быстро осознали интеллектуальную значимость нашего открытия, но даже не могли предположить, какое влияние двойная спираль окажет на науку и общество. В изящных кривых этой молекулы таился ключ к молекулярной биологии – новой науке, которая достигла ошеломительного прогресса за следующие 64 года. Она не просто разродилась многочисленными поразительными откровениями о фундаментальных биологических процессах, но и радикально изменила медицину, сельское хозяйство и право. Ныне ДНК интересует не только ученых-теоретиков, скрывающихся в полутемных университетских лабораториях, – она влияет на каждого из членов социума.

К середине 1960-х годов исследователями уже были проработаны базовые принципы функционирования клетки, и нам уже было известно, каким образом четырехбуквенный алфавит последовательностей ДНК на уровне «генетического кода» транслируется в двадцатибуквенный алфавит белков. Дальнейший прорыв молекулярной биологии произошел в 1970-е годы прошлого века, когда появились новые методы изучения ДНК и считывания пар последовательностей ее оснований. Уже минули времена, когда приходилось лишь наблюдать за природой со стороны и довольствоваться только созерцанием, появилась возможность непосредственно анализировать ДНК живых организмов и изучать базовый сценарий жизни. Для науки это было открытием новых экстраординарных перспектив: исследователям наконец-то удалось подступиться к лечению генетически детерминированных болезней – от муковисцидоза до рака; совершить революцию в уголовном праве, применяя генетическую дактилоскопию. Ученые смогли коренным образом пересмотреть наши взгляды на происхождение человека – кто мы, откуда мы пришли, – заглянув в далекое прошлое благодаря исследованию ДНК останков человека и животных. Кроме того, удалось модифицировать важнейшие хозяйственно ценные виды с такой эффективностью, о которой прежде можно было только мечтать.

Апогея первый полувековой период генетической революции, произошедшей благодаря изучению ДНК, достиг в понедельник, 26 июня 2000 года, когда президент США Билл Клинтон объявил о завершении чернового секвенирования человеческого генома: «Сегодня мы изучаем язык, посредством которого Бог создал жизнь… Вооружившись этими глубокими новыми знаниями, человечество готовится обрести безграничные и совершенно новые возможности врачевания». Когда был реализован проект «Геном человека», молекулярная биология вступила в период зрелости – превратилась в «науку с большой буквы» с серьезным финансированием и серьезными практическими результатами. Изучение и внедрение достижений молекулярной биологии стало не только выдающимся технологическим достижением, поскольку объем информации, извлекаемый из полного хромосомного набора человека (двадцать три пары), просто ошеломляет, но и знаковым событием на нашем пути к полноценному осознанию того, что же такое «быть человеком». Именно наша ДНК отличает нас от других видов, превращает нас в творческих, сознающих, властных или деструктивных существ, каковыми мы и являемся. Проект «Геном человека» позволил полностью прочесть молекулу ДНК – «свод законов» по генетическому устройству человека.

Так вот, с того субботнего утра в Кембридже исследования ДНК ушли очень далеко. Несомненным осталось понимание того, что наука под названием «молекулярная биология», описывающая строение и роль ДНК, находится еще начале пути. Пока не побежден рак; предстоит разработать и внедрить эффективные методы лечения генетических болезней, да и возможности генной инженерии по улучшению питания всего населения Земли реализованы далеко не в полной мере. Безусловно, все озвученные нами задачи будут со временем достигнуты. Первые 60 лет генетической революции, связанные с ДНК, уже изобилуют примечательными научными достижениями; эти достижения уже начинают применяться на практике для решения стоящих перед человечеством проблем. В будущем предстоит увидеть еще массу реализованных научных достижений, но магистральный путь развития заключается в усилении роли ДНК и открытий в области молекулярной биологии в жизни каждого из нас.


Ключ к триумфу Менделя. Генетическая изменчивость у гороха


Глава 1
Зарождение генетики: от Менделя до Гитлера

Моя мама Бонни Джин верила в гены. Она гордилась шотландским происхождением своего отца Лафлина Митчелла и усматривала в нем истинно шотландские добродетели: честность, трудолюбие и бережливость (хотя анализ ее родословной по ДНК, проведенный более чем 100 лет спустя, показал, что на самом деле она наполовину ирландка). Мама также обладала вышеупомянутыми мной качествами и не сомневалась в том, что получила их исключительно от отца. Его смерть была безвременной, и единственным сохранившимся у нее негенетическим наследием отца был набор маленьких девичьих килтов, которые он заказал для нее в Глазго. По моему мнению, неудивительно, что моя мать гораздо больше ценила биологическое наследие отца, нежели материальное.

Взрослея, я постоянно спорил с мамой о том, в каком соотношении вносят вклад в формирование человека как врожденные качества, так и воспитание. Отдавая приоритет воспитанию над природой, на тот момент я фактически подписывался под убеждением, что мог бы сам сформировать себя таким, каким душе угодно. В тот момент я не мог знать о роли генов, предпочитая думать, что бабушка по линии Уотсонов такая тучная лишь потому, что переедает. Ведь если тучность фигуры возникла у нее по генетическим причинам, то и я вполне мог обрюзгнуть в будущем. При этом, уже будучи подростком, я не отрицал очевидной роли наследственности, считая, что подобное порождает подобное. В наших с мамой спорах мы обсуждали сложные личностные качества, передающиеся по наследству, а не простые признаки, которые, с моей точки зрения (поскольку я был упрямым подростком), могли бы передаваться из поколения в поколение, формируя «семейное» сходство: я унаследовал нос от своей мамы, впоследствии такой же нос унаследовал мой сын Дункан.

Некоторые признаки формируются и исчезают всего за несколько поколений, а некоторые сохраняются из поколения в поколение. Одним из таких наиболее известных примеров является так называемая Габсбургская губа. Характерная продолговатая челюсть и выпяченная нижняя губа превратили европейских правителей из династии Габсбургов в настоящий кошмар для многих поколений придворных художников, которым приходилось их изображать. Габсбургская губа отлично сохранялась на протяжении как минимум двадцати трех поколений членов Габсбургской фамилии.


Мне одиннадцать. На этом снимке моя сестра Элизабет и мой отец Джеймс


Династия Габсбургов усугубила свои генетические проблемы, перероднившись друг с другом, то есть вступая в близкородственные браки. Не вызывает сомнения, что браки между представителями различных ветвей клана Габсбургов, зачастую между близкими родственниками, были оправданны с политической точки зрения как средство для заключения альянсов и сохранения династии, но с генетической точки зрения это было совершенно неблагоразумно. Подобное «близкородственное кровосмешение» вызывает генетические болезни, которые Габсбургам пришлось испытать из поколения в поколение: так Карл II, последний король Испании и представитель династии Габсбургов, не просто имел фамильную губу, но даже не мог толком пережевывать пищу, был инвалидом и не оставил потомства, хотя два раза был женат.

Мы знаем, что генетические болезни издавна преследуют человечество. В некоторых случаях, как в приведенном здесь примере с Карлом II, они оказали непосредственное влияние на историю Европы. Другим историческим примером является Георг III – английский король, прославившийся в первую очередь тем, что именно в годы его правления Англия потеряла американские колонии в результате войны за независимость. Георг III страдал порфирией, наследственным заболеванием, из-за которого у него временами случались приступы безумия. По мнению многих историков, преимущественно британских, именно всеобщее раздражение болезнью Георга III обеспечило американцам победу при безнадежном для них тактическом и численном раскладе. Конечно, большинство наследственных болезней не имели таких серьезных геополитических последствий, но не менее жестоко и зачастую трагически уродовали жизнь целых пострадавших фамилий, иногда на много поколений вперед. Понимание генетических механизмов развития человека – это не осознание того, отчего мы похожи или не похожи на своих родителей. Понимание генетики помогает «узнать в лицо» некоторых древнейших врагов человечества, например ущербные гены, из-за которых возникают генетические заболевания.

Вполне вероятно, что наши предки должны были задумываться и, скорее всего, задумывались о наследственных механизмах передачи генетической информации с тех самых пор, как наш мозг развился в достаточной степени, чтобы правильно сформулировать подобный вопрос. Вполне очевидная закономерность, почему близкие родственники похожи друг на друга, может натолкнуть на далеко идущие выводы, если генетические открытия (как в случае наших предков) имеют сугубо прикладное значение, например помогают вывести более качественные породы скота (скажем, повысить надои) и сельскохозяйственные культуры (допустим, с более крупными плодами). Для достижения поставленной цели целые поколения растений и животных подвергались тщательной селекции. Сначала перспективный вид разводили только ради одомашнивания, а потом размножали приплод лишь от самых плодовитых коров и саженцы от деревьев с самыми крупными плодами. Так были получены животные и растения, имеющие полезные для человека свойства и отвечающие его нуждам. В основе этих колоссальных проектов человека, письменных свидетельств о которых почти не осталось, лежало эмпирическое правило: самые плодовитые коровы будут рожать исключительно плодовитых телят, а из семян деревьев с крупными плодами будут вырастать столь же изобильные деревья. Несмотря на успехи генетики последнего столетия, необходимо констатировать, что генетические достижения у человечества встречались гораздо раньше и авторами генетических проектов являются безымянные древние земледельцы. Практически вся наша сегодняшняя пища – крупы, фрукты, мясо, молочные продукты – это наследие тех древнейших и наиболее долговечных генетических манипуляций, при помощи которых человек решал встававшие перед ним проблемы. В 1905 году британский биолог Уильям Бэтсон окрестил науку о наследственности генетикой.

Понять сам принцип действия генетических механизмов оказалось не так-то просто. Грегор Мендель (1822–1884) опубликовал свою знаменитую работу на эту тему в 1866 году, но его статья оставалась без внимания научного сообщества на протяжении последующих 34 лет. Почему же так долго внимание научного мира не было обращено в сторону генетических механизмов наследственности? В конце концов, наследственность – важнейший аспект существования естественного мира, признаки, изменяющиеся в поколениях, легко наблюдать, и любой заводчик собак знает, что будет, если скрестить бурую и черную собаку; родители осознанно или неосознанно отыскивают свои черты у родных детей. Ответ на вопрос тривиален – генетические механизмы оказались очень сложными, а решение Менделем поставленной в статье задачи оказалось неочевидным, поскольку черты родителей не отражаются в детях произвольным образом. По всей видимости, крупнейший просчет, допущенный биологами в древности, заключался в неумении различать два принципиально разных процесса: наследственность и эволюционное развитие. На сегодняшний день становится понятным, что в оплодотворенной яйцеклетке содержится генетическая информация, полученная от обоих родителей, и именно данная информация определяет предрасположенность к наследственным заболеваниям, например порфирии. Мы говорим о факторах наследственности, и весь дальнейший процесс от развития новой особи из единственной клетки – это реализация данной информации. С академической точки зрения предметом изучения генетики является информация, а предметом изучения биологии развития – использование этой информации для построения алгоритмов развития. Объединяя наследственность и развитие в единый научный феномен, древние ученые так и не сформулировали те ключевые вопросы, которые бы могли натолкнуть их на разгадку тайны наследственности. При этом мы должны констатировать, что такие работы велись с самого зарождения западной цивилизации.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13