banner banner banner
Боковой амиотрофический склероз
Боковой амиотрофический склероз
Оценить:
Рейтинг: 0

Полная версия:

Боковой амиотрофический склероз

скачать книгу бесплатно

Боковой амиотрофический склероз
Андрей Степанович Брюховецкии?

В монографии анализируются современные представления о боковом амиотрофическом склерозе. Предложена гипотеза, согласно которой БАС – это постгеномная болезнь гемопоэтических стволовых клеток, что открывает пути ранней диагностики заболевания и профилактики фатального исхода. Книга предназначена для широкого круга специалистов: врачеи?-клиницистов, научных сотрудников специализированных НИИ, молекулярных биологов, биохимиков, генетиков, преподавателей и студентов медицинских вузов.

Боковой амиотрофический склероз

Андрей Степанович Брюховецкий

The monograph analyzes contemporary presumptions about amyotrophic lateral sclerosis (ALS) and a new theory of ALS as the post-genomic disease of the hematopoietic stem cells is proposed thus opening new approaches to its early diagnostics and effective therapy. The book is intended for a wide range of specialists including clinicians of various medical specialties biochemists, molecular biologists, geneticists, cell biologists, teachers, medical students and specialists of regenerative medicine.

Издательский дом «НейроВита»

© Андрей Степанович Брюховецкий, 2022

© «НейроВита», издательский дом, 2021

ISBN 978-5-0053-0057-7

Создано в интеллектуальной издательской системе Ridero

Об авторе

Андрей Степанович Брюховецкий – доктор медицинских наук, профессор, ветеран Министерства обороны РФ, полковник медицинской службы в запасе. В настоящее время является главным научным сотрудником лаборатории молекулярной и клеточной нейробиологии Школы биомедицины Дальневосточного федерального университета, генеральным директором Клиники восстановительной интервенционной неврологии и терапии «НейроВита», ведущим научным сотрудником Научно-исследовательского отдела Центральной клинической больницы Российской академии наук (РАН). Врач-невролог высшей категории, вице-президент Международной ассоциации нейровосстановления (International Association of Neurorestoratology), член редколлегии ряда научных журналов: «Гены и клетки», Journal of Translational Neuroscience and Clinics, Journal of Neurorestoratology. Применением клеточных препаратов в клинике занимается с 1989 г. в рамках программ Министерства обороны РФ. С 1996 по 2002 г. руководил лабораторией высоких технологий НИИ трансплантологии и искусственных органов им. В. И. Шумакова Минздрава РФ. С 2003 по 2013 г. был координатором научной отраслевой программы РАМН «Новые клеточные технологии – медицине». С 2002 по 2006 г. возглавлял кафедру клеточной восстановительной медицины ГОУ ВПО «Российский государственный медицинский университет» им Н. И. Пирогова. С 2012 по 2015 г. – руководитель Центра биомедицинских технологий ФГБУ «Федеральный научно-клинический центр» ФМБА России. Автор 205 публикаций в рецензируемых российских и международных научных журналах, 10 научных монографий в области регенеративной медицины, неврологии, онкологии и 15 глав в коллективных монографиях. Автор 16 патентов РФ, 5 международных заявок PCT и патента США.

E-mail: neurovita-as@mail.ru (mailto:neurovita-as@mail.ru)

Предисловие

Боковой амиотрофический склероз (БАС) – одно из самых тяжелых заболеваний нервной системы у человека. Для любого врача-невролога или нейрофизиолога встреча с больным БАС это всегда испытание, неловкое положение, а порой и отчаяние от своего бессилия и врачебной несостоятельности. Поставить этот страшный диагноз – большая ответственность для невролога, потому что, по сути, это смертный приговор, и врач должен сообщить об этом пациенту, найти нужные слова для него и его родственников, чтобы сгладить удар трагедии, по возможности предотвратить суицид и другие необдуманные действия, не покривив при этом душой.

На первый взгляд диагностика БАС не вызывает затруднений, так как заболевание имеет характерную клиническую картину и патогномоничные изменения на электронейромиографии (ЭНМГ), обусловленные поражением мотонейронов передних рогов спинного мозга. Если, будучи неврологом или специалистом в области нейронаук, вы не разбираетесь в тонкостях ЭНМГ, вам на помощь придет опытный нейрофизиолог, который сделает это исследование и поставит правильный диагноз за вас. Клиническая манифестация БАС возникает только тогда, когда у больного погибла подавляющая часть мотонейронов (по разным данным, до 80% и более). Но даже если представить, что нам удалось диагностировать БАС на ранней стадии, все равно помочь больному мы не сможем. Как и во времена Шарко, сегодня, в конце второй декады XXI в., эффективного лечения этого заболевания не существует.

Что же сегодня мы знаем о данной болезни? Да почти все, и в то же время почти ничего! Это парадоксальная ситуация. Впервые клиническую картину этого заболевания в 1869 г. описали французский исследователь Жан-Мартен Шарко и его ученик Аликс Жоффруа, а уже в 1871 г. Шарко выделил эту болезнь как самостоятельное нервное заболевание на основании описанного им симптомокомплекса фасцикуляций и атрофии мышц языка и конечностей, наличия спастических парезов и параличей, в том числе бульбарного паралича, и обнаружения при аутопсии склерозирования и атрофии клеток передних рогов спинного мозга. Главной научной заслугой Шарко было то, что он первый сопоставил найденные на аутопсии изменения в передних рогах, которые он обозначил как «склероз», с типичной клинической картиной болезни и дал соответствующее название этой, как он считал, «спинальной» болезни. Болезнь также еще называли «мышечной сухоткой», о которой в 1885 г. русский ученый К. В. Рот написал в своей известнейшей одноименной монографии. Он описал в ней несколько случаев БАС и также обнаружил патологические изменения в передних рогах и перерождение пирамидных путей в спинном и продолговатом мозге у этих пациентов. Учение о боковом амиотрофическом склерозе возникло значительно позже, уже в самом конце XIX и начале XX в., как новый научный взгляд на полученные рядом исследователей гистопатологические факты, свидетельствующие о тяжелом системном нейродегенеративном органическом дефекте в центральной нервной системе с последующим разрушением нервно-мышечного аппарата, приводящим к быстрой смерти пациента вследствие нарушения дыхания. Основную веху в формировании нового научного мировоззрения на эту болезнь заложил еще в 1883 г. русский врач А. Я. Кожевников, который показал, что БАС это не только поражение спинного мозга, как утверждал Шарко, а болезнь, связанная с перерождением всего пирамидного тракта. Она не ограничивается только спинным и продолговатым мозгом, а вовлекает в патологический процесс варолиев мост, ножки мозга, внутреннюю капсулу и белое вещество полушарий вплоть до среднего и верхнего отдела передней центральной извилины. Именно А. Я. Кожевников сделал революционные открытия и впервые в мире доказал вовлечение всего пирамидного тракта в патологический процесс при БАС. И. П. Мержеевский и А. Ф. Эрлицкий в 1883 г., P. Marie в 1885 г., В. А. Муратов в 1889 г., Hoche в 1897 г. и многие другие отечественные и зарубежные исследователи описали самые различные дегенеративные повреждения головного и спинного мозга – от глазодвигательных нервов до передних, боковых и задних столбов спинного мозга и даже мягкой мозговой оболочки (Czylarz u.Marburg: Beitrag zur Histologie und Pathogenese der S.L.A. Z. klin. Med., 1901). Сегодня эти морфофункциональные представления об объеме поражения нервной ткани при БАС значительно расширены и систематизированы, но полного понимания этиопатогенеза БАС, равно как и патогенетического лечения как не было, так и нет.

Современные геномные, транскриптомные, протеомные, метаболомные, секретомные и прочие «омные» исследования при БАС привели нас к пониманию определенных генетических и молекулярных механизмов, лежащих в основе этой болезни. Однако все эти знания носят, скорее, описательный характер и пока не позволяют приступить к разработке эффективного патогенетического лечения этого смертельного заболевания. Новые научные данные о БАС, включающие результаты экспериментального и математического моделирования и глобального анализа электронных баз данных генома и транскриптома, выполненного в рамках глобального проекта «Геном человека», так и остались отдельными компонентами большого и непонятного «паззла» под названием БАС. Не найдено главное системообразующее начало, которое могло бы объединить все известные научные факты в единую картину, позволяющую понять природу этой смертельной болезни и предложить эффективное лечение. Мы летаем в космос, разговариваем друг с другом, находясь на противоположных точках Земного шара или даже в космическом пространстве, делаем уникальные микрохирургические операции, трансплантируем органы и ткани, создаем уникальные «умные» лекарственные препараты, обладающие адресным действием, но мы абсолютно бессильны перед БАС, как и перед целым рядом подобных ему нейродегенеративных заболеваний (болезнь Альцгеймера, БАС-деменции, болезнь Паркинсона и пр.). Современная неврология от безысходности занимается созданием стратегий паллиативной помощи этим обреченным людям, осознавая свое бессилие перед быстрым и фатальным концом этой болезни. Для кардинального решения проблемы БАС нам необходим некий интегральный стержень, на который можно будет нанизать колоссальное количество разрозненной информации, сопоставить все эти данные в некой единой системе координат и увидеть «свет в конце туннеля».

Представленная вашему вниманию книга ни много ни мало претендует на то, чтобы дать полноценное системное представление о БАС и стать первым «лучом света» в беспроглядной мгле негативных прогнозов и паллиативных клинических подходов. Можно по-разному относиться к попытке систематизации знаний о БАС, предпринятой автором, но в одном, думаю, ему не сможет отказать ни один читатель: в оригинальности подхода, низвергающего представления классической неврологии о патоморфологии и патофизиологии БАС.

Автор ищет причину болезни не в очередном патоспецифическом белке, аккумулирующемся в мотонейронах и вызывающем его дегенерацию, а пытается объяснить патогенез БАС через системные механизмы нарушения иммунного ответа. Вопреки мировому тренду уходя от анализа локальных повреждений мотонейрона, автор пытается мотивированно объяснить аутоиммунный характер этого заболевания на примере аутоагрессии клонов иммунных клеток, возникших из патологической гемопоэтической стволовой клетки (ГСК). На самом деле причин первичного и вторичного поражения нервной ткани при БАС известно действительно много. За последние полтора века предлагались десятки противоречивых теорий возникновения БАС, от инфекционно-токсической и вирусной до врожденной слабости или генетической неполноценности нервной ткани. Анализируя существующие теории, автор пытается с позиций фундаментальной науки обосновать аутоиммунную теорию возникновения болезни, которая, по его мнению, является следствием системных нарушений на уровне генома и протеома ГСК костного мозга у пациента. Автор убежден, что этиологические факторы болезни формируют геномные, транскриптомные и протеомные изменения в биоинформационной структуре ГСК и определяют модификацию ее секретома, имеющего важнейшее значение в регуляции всей иерархии потомков аутологичной ГСК, в том числе и для цитотоксических ее потомков, опосредующих аутоагрессию. Автор вводит новый научный термин специфической недостаточности иммунной системы (НИС) и демонстрирует ее проявления при БАС. По мнению автора, диагностика НИС может быть осуществлена путем протеомного анализа мембранных маркеров аутологичных ГСК пациента. Удивительным образом автору удалось показать, что в семейных формах БАС патология ГСК может возникать раньше, чем повреждение мотонейронов. Этот феномен требует детальной проверки и уточнения, но если выявленные изменения протеомного профиля мембранных белков ГСК действительно окажутся специфичными для БАС на доклинической стадии, то нам открывается уникальная возможность ранней молекулярно-биологической диагностики и, возможно, даже профилактики данного заболевания. Очень интересно изучить этот феномен и при других нейродегенерациях, например при болезни Альцгеймера, где накопление патологических тау-белков в нейронах очень напоминает патологию при БАС.

Научные объяснения молекулярно-нацеленной терапии, представленные автором в последней главе монографии, мне показались довольно точными, основанными на объективных данных иммунного статуса больного и анализе нейроспецифических белков в крови и ликворе пациента. Они открывают новые перспективы таргетного лечения неизлечимых нейродегенеративных заболеваний. Опыт автора очень интересен, но требует тщательной проверки и, в случае его подтверждения, масштабирования при других заболеваниях.

Молекулярно-биологическая диагностика БАС, предложенная автором, открывает перспективы не только ранней диагностики, но и потенциального направления терапии. Поскольку, по мнению автора, в основе болезни лежит ГСК с патологически измененным протеомом, становится понятно, почему при БАС неэффективны аутологичная трансплантация костного мозга, гормонотерапия глюкокортикоидами и терапия блокаторами цитокиновых рецепторов, которые высокоэффективны при других аутоиммунных болезнях (системной красной волчанке, ревматоидном артрите или рассеянном склерозе). Если следовать логике автора, при БАС, в отличие от перечисленных выше заболеваний, иммуносупрессия аутореактивных клонов лимфоцитов не приводит к нормализации состава иммунокомпетентных клеток, поскольку измененные ГСК по-прежнему генерируют патологические клоны. Таким образом, по мнению автора, больным с БАС может помочь лишь трансплантация аллогенного костного мозга от иммуносовместимого донора, с последующим восстановлением поврежденных мотонейронов с помощью современных нейрорегенеративных технологий. Если предположение автора верно, то такая клеточно-лекарственная иммунотерапия БАС, целенаправленно воздействующая на ключевое звено патогенеза в виде измененной ГСК, обретает логику и здравый смысл. Так или иначе, но подход, основанный на персонализированном анализе протеома и развернутого иммунного статуса, представляется правильным и заслуживает доверие. В свете гипотезы о патологической ГСК, генерирующей цитотоксические клоны, повреждение мотонейрона при БАС автор считает не причиной, а следствием. Сама по себе эта точка зрения не является новой в неврологии, но в отличие от предыдущих исследователей, высказывающих ее, автор пытается найти логическое объяснение этого факта, а не просто констатирует его. Несомненно, предлагаемая гипотеза спорна и потребуются дополнительные исследования независимых коллективов, чтобы подтвердить или опровергнуть ее, однако в любом случае это – новый, альтернативный взгляд на фатальную болезнь, с которым интересно и полезно ознакомиться любому специалисту в области нейронаук.

В свете развития технологий редактирования генома с помощью CRISPR/Сas9, предлагаемая автором технология трансплантации алогенных ГСК может быть заменена на трансплантацию редактированных аутологичных ГСК. Более того, автором предлагается даже определенный сценарий такого редактирования, включающий исправление генов SOD1 и FUS.

Данная работа – итог многолетнего и кропотливого изучения бокового амиотрофического склероза автором и его коллегами и, при всей неоднозначности предлагаемых гипотез и подходов, эта интересная монография способствует расширению наших знаний о БАС и дает надежду на его успешную терапию в будущем. Пожелаем автору и нам всем дальнейших успехов в этой области и новых достижений.

Введение

Боковой амиотрофический склероз (БАС) – это тяжелое фатальное нейродегенеративное заболевание, для которого до настоящего времени не определена истинная причина и механизм формирования болезни и, к сожалению, не найдено реального способа излечения, а также не существует методов терапии даже для приостановки развития заболевания. Впервые в научной литературе БАС был описан 150 лет назад французским физиологом и врачом Жан-Мартеном Шарко (J.-M. Charcot), которому удалось связать наблюдаемую у пациентов спастичность и патологию в спинном мозге (Rowland et al., 2001, Овчинников, 2015; Брюховецкий и др., 2018). Он первый заявил о нозологической самостоятельности этой болезни в ряду нервных болезней. Шарко предложил название новой болезни: слово «амиотрофический» обозначает мышечную слабость и атрофию, слова «латеральный склероз» говорят о склеротизации передних и латеральных кортикоспинальных трактов, наблюдавшейся им у больных с БАС (Wijesekera et al., 2009). Подробное исследование БАС и разработки практических рекомендаций в нашей стране проводились выдающимися исследователями А. Я. Кожевниковым, Т. Л. Буниной, И. А. Завалишиным, М. Н. Захаровой (Бархатова и др., 1996; Бунина, 1962; Завалишин и др., 1999; Завалишин и др., 1990; Хондкариан и др., 1978; Скворцова и др., 2004, 2005; Овчинников, 2015; Брюховецкий и др., 2018).

Медиана выживаемости пациентов с диагностированным БАС составляет около 2—3 лет, в зависимости от конкретной формы и прогредиентности нервного заболевания. Очень редко (2—5%, по данным разных авторов) продолжительность жизни пациентов с БАС составляет менее 1 года, в 10—15% случаев это 7—10 лет. Описаны лишь несколько единичных случаев БАС, когда продолжительность жизни пациента составляла 25—30 лет. При этом все больные, прожившие более 20 лет, были абсолютно обездвиженными, парализованными тетраплегиками, но с полным сохранением продуктивности умственной деятельности и сохранностью интеллектуально-мнестических функций головного мозга. Наиболее ярким представителем последнего типа течения БАС является английский ученый-астроном профессор Стивен Хокинг, умерший в 2017 году, но проживший с БАС более 30 лет и активно занимавшийся фундаментальными научными исследованиями в области астрофизики. Но это больше исключение из правил, чем правило.

БАС сегодня – безусловно, летальная болезнь, которая очень быстро инвалидизирует пациента, резко ограничивает его возможности для самообслуживания, самостоятельности и жизнедеятельности и заканчивается внезапной смертью от удушья в результате паралича дыхательной мускулатуры. Тот человек, кто когда-нибудь видел, как умирают пациенты с БАС, обязательно подтвердит и скажет, что это одна из самых страшных и мучительных смертей, которая может быть у человека. В Библии написано, что болезни даются нам как испытания, и БАС – одно из самых страшных из всех существующих. Подобная смерть гораздо страшнее, чем смерть при раке или тяжелом сосудистом заболевании (инфаркте миокарда, инсульте), являющихся самыми частыми причинами смертности человечества в мире. При раке и целом ряде других злокачественных новообразований у пациента снижается уровень сознания до глубокого оглушения, сопора или комы в результате нарастающей раковой интоксикации или отека мозга, а при инсульте и инфаркте миокарда утрата сознания возникает в результате кардиогенного шока или отека (мозга или легких), так что человек спокойно уходит из жизни в бессознательном состоянии, не осознавая мучительного процесса расставания с жизнью. Смерть при БАС происходит при полном и ясном сознании, понимании и осознании всего происходящего самим пациентом. У больного, как правило, развивается паралич дыхания, и он понимает, что через несколько минут он умрет, и эти последние минуты его жизни самые страшные, когда сердце еще продолжает биться, а паралич дыхательного центра и дыхательной мускулатуры не позволяет сделать спасительный вдох. Конечно, больной может быть переведен на аппаратное искусственное дыхание (искусственную вентиляцию легких – ИВЛ) и на нем жить достаточно долго и мучительно. Однако официальная государственная медицина во всем мире не предлагает такого сценария помощи этим больным или формы лечения и поэтому не рекомендует переводить пациентов с БАС на ИВЛ. Подход простой: отсутствует действенный способ лечения, соответственно, гуманнее дать больному умереть. При этом официальная медицина не запрещает это делать родственникам, но только в 0,1% случаев родственники больных берут на себя такую ответственную миссию. В своей 30-летней неврологической врачебной практике мне пришлось видеть только четырех пациентов с БАС, родственники которых не смирились с таким исходом болезни и в течение многих лет вели борьбу за жизнь больных на аппарате ИВЛ.

Существуют ли терапевтические средства для эффективного лечения БАС в настоящее время? Ответ банален и трагичен. Нет, не существуют, так как нет понимания сущности данной болезни и ее причинно-следственных отношений. Насколько реально, даже с теоретических позиций, создать эффективное терапевтическое средство для лечения БАС? Абсолютно точно в рамках современной концепции «болезни моторного нейрона» терапевтического решения проблемы БАС нет. Волшебная пуля в виде лекарственного препарата, способного излечить больного с БАС, вряд ли будет создана в ближайшее время. Но вот новая методология понимания БАС как протеомного заболевания генома и эпигенома аутологичной гемопоэтической стволовой клетки (ГСК) человека позволяет по-новому посмотреть на возможность излечения от этой смертельной болезни и изменить взгляды на прогноз жизни у этих больных. Возможно, она приведет к разработке новой биомедицинской технологии, способной диагностировать болезнь на самой ранней стадии процесса, и, соответственно, в книге предлагается теоретическое обоснование лечения, способного остановить болезнь и даже полностью излечиться от этой болезни.

Почему мы не стали развивать это направление сами, а остановились на «половине дороги», на своих теоретических изысканиях? Наша команда работает в России на базах частных клиник, а не в государственных учреждениях, включенных в список Минздрава России. Другими словами, это связано с нововведениями и изменением законодательства нашей страны Минздравом России (приказ Минздрава России №875-н от 2018 г.) о запрете на манипуляции с ГСК, костным мозгом и проведения ТКМ в частных негосударственных организациях. Дальнейшие практические исследования в этом направлении в России будут преследоваться в уголовном порядке. Поэтому как законопослушные граждане мы остановили все работы в этом направлении. Но это не может запретить нам думать о тех возможностях и потенциале, которые открывают нам манипулирование ГСК и возможности аллогенной ТКМ или ТКМ после редактирования генома аутологичных ГСК.

Отсутствие хотя бы минимальных успехов в диагностике и лечении БАС связано со спецификой клинической манифестации данной болезни. Такая болезнь, как БАС, начавшись у человека, протекает очень длительное время бессимптомно и манифестирует клинически только тогда, когда общее морфологическое повреждение мотонейронов у человека достигает около 75—90%. Этот научный факт был подмечен еще самим Ж.-М. Шарко и подтвержден целой плеядой неврологов во всем мире. Если помните, то профессор Н. Н. Бурденко, великий отечественный нейрохирург, в 20-х гг. прошлого века подметил важный экспериментальный факт, заключающийся в том, что если у человека с повреждением спинного мозга сохранены более 10% мотонейронов в боковых столбах спинного мозга, то он способен ходить, даже не замечая этого дефекта. Так и при БАС, большая часть (до 90%) мотонейронов у больного погибает, когда заболевание еще ничем клинически не проявляется. Другими словами, асимптомность дебюта и скрытость течения БАС на ранних стадиях патологического дегенеративно-атрофического процесса в нервной и мышечной системах организма пациента приводят к тому, что клинические проявления заболевания возникают уже в случае глубокого склеротического органического и протеомного дефекта мотонейронов и других клеток нервной ткани в головном и спинном мозге человека. То есть тогда, когда обратного пути для нейрорегенерации нет и восстановление мотонейронов практически невозможно. Однако психологически манифестация неврологических симптомов БАС воспринимается заболевшим человеком как истинное начало его болезни, как возникновение болезни среди полного здоровья, «как гром среди ясного неба», то есть всегда неожиданно и трагично. Дебют болезни осознается пациентом и его родственниками только тогда, когда существующий органический дефект мотонейронов спинного и головного мозга при данном заболевании уже тотален и необратим. Неуклонно прогрессируя, долгое время болезнь развивается бессимптомно или малосимптомно, манифестация заболевания начинается, как правило, лавинообразно в виде нарастания неврологической симптоматики, инвалидизируя и разрушая моторную сферу пациента, уродуя атрофиями мышечную систему и нарушая естественную моторику движений. Мучительные фибриллярные подергивания (фибрилляции) отдельных групп мышц в разных участках тела становятся невыносимыми для больных, невротизируя их и приводя к астенизации и депрессии. В дегенеративный процесс постепенно и неуклонно вовлекается вся двигательная сфера пациента с формированием атрофий скелетных мышц и мышц гладкой мускулатуры органов на фоне массивной дегенерации мотонейронов, при полной сохранности интеллектуально-мнестической сферы у заболевшего. Именно поэтому в последние годы это заболевание стали чаще называть болезнью моторного нейрона (БМН). В первой главе монографии мы обсудим это название заболевания более обстоятельно.

Можно ли диагностировать повреждение мотонейронов на ранних стадиях заболевания? Возможно ли это хотя бы с теоретических позиций? Можно ли найти какие-то ранние маркеры диагностики БАС, когда еще сохранена большая часть мотонейронов человека? Можно ли на ранней стадии своевременно остановить дегенеративно-атрофический процесс в нервной ткани и опорно-двигательном аппарате? Мы попытаемся дать в этой монографии основные ответы на поставленные нами сложнейшие вопросы современной медицины вообще и неврологии в частности.

С современных позиций классической неврологии диагноз данного заболевания является отчасти клиническим, но в большей мере электронейромиографическим. То есть диагноз БАС должен быть обязательно подтвержден нейрофизиологическим поражением мотонейронов переднего рога спинного мозга и боковых столбов спинного мозга с использованием обычной электронейромиографии (ЭНМГ), игольчатой ЭНМГ и ЭНМГ с вызванными потенциалами. Мы считаем, что в данном раскладе ранняя диагностика БАС практически невозможна технически, так как повреждение в СМ должно быть значительным и нейрофизиологически значимым.

На сайте ALS Info (http://als-info.ru/10-krupnejshih-otkrytij-v-issledovanii-bas/ (http://als-info.ru/10-krupnejshih-otkrytij-v-issledovanii-bas/)) 24 октября 2017 г. были опубликованы 10 последних открытий в научных исследованиях о БАС за последние полтора года. Очевидно, что было совершено несколько важных научных открытий о БАС, достигнуты успехи в клинических испытаниях, созданы новые научные объединения и определены стратегические инициативы – все ради одной цели: как можно быстрее выяснить причины БАС и найти лекарство. Вот как выглядят эти 10 самых значимых научных фактов в области исследования БАС, которые дают ученым, врачам и пациентам надежду: 1. Подтверждено, что ген NEK-1 связан с наследственной формой БАС.В самом масштабном в истории изучения БАС исследовании семейных случаев заболевания участвовали более 80 ученых из 11 стран. Финансирование этого исследования стало возможно благодаря средствам, собранным во время проведения флешмоба Ice Bucket Challenge. Исследование было организовано и проведено проектом Project MinE, цель которого – собрать и расшифровать максимальное количество ДНК больных БАС и найти гены, ответственные за возникновение заболевания. 2. Одобрен новый препарат, незначительно замедляющий БАС. Управление по контролю за продуктами питания и лекарственными средствами США (FDA) разрешило применение препарата Эдаравон для терапии БАС. 3. ПЭТ-исследование пациентов с БАС. Команда ученых из департамента функциональной диагностики и визуальных методов исследования Научного клинического института неврологии в многопрофильной больнице Массачусетса во главе с доктором Наземом Атасси впервые провела ПЭТ-исследование организма человека с БАС, чтобы оценить воспалительные процессы в головном мозге. Позитронно-эмиссионная томография (ПЭТ) – активно развивающийся диагностический и исследовательский метод ядерной медицины. В основе этого метода лежит возможность при помощи специального детектирующего оборудования (ПЭТ-сканера) отслеживать распределение в организме биологически активных соединений, меченных позитрон-излучающими радиоизотопами. Считается, что показатель воспаления является важным визуальным биомаркером. Сейчас в исследовании принимает участие большое количество пациентов с БАС. 4. C9orf72 попал под прицел. При поддержке американской Ассоциации БАС (ALSA) доктор Аарон Гитлер и его команда исследователей выявили новую мишень для терапии мутаций гена C9orf72, чрезмерная экспрессия которого связана с наследственной формой БАС. 5. Генную терапию объединили с терапией стволовыми клетками.Ученые в больнице Cedars-Sinai в Лос-Анджелесе получили одобрение FDA на проведение клинического исследования по комбинации генной терапии и терапии стволовыми клетками. Ранее Ассоциация сертифицировала больницу как передовой научно-исследовательский центр по поиску лекарства от БАС. Клиника Cedars-Sinai соответствует самым строгим стандартам ALSA и в работе базируется на современном мультидисциплинарном подходе в уходе и оказании помощи пациентам.6. Завершилась вторая фаза исследования NurOwn.Инновационная биотехнологическая компания Brainstorm, которая занимается использованием стволовых клеток (СК) в терапии неизлечимых заболеваний, объявила о начале проведения третьей фазы клинических испытаний в 2017 г. NurOwn – это платформа клеточной терапии, источником которой являются мезенхимальные клетки из костного мозга пациентов с БАС. Исследователи наделяют мезенхимальные клетки способностью продуцировать факторы роста для нейронов, которые являются своего рода питанием для клеток. Исследования на животных показали, что эти факторы роста обладают также значительным защитным потенциалом.7. Обнаружены пять новых генов, ответственных за возникновение БАС.Это стало возможным благодаря суперкомпьютеру Watson компании IBM. Совместная работа IBM и Неврологического института Бэрроу в Фениксе показала, насколько структурирование и обработка больших данных, а также передовые компьютерные технологии могут ускорить процесс поиска лечения от БАС.8. В США начала работу программа GTAC.GTAC (англ. Genomic Translation for ALS Care – Генетическая расшифровка для помощи при БАС) – это одна из самых крупных и высокотехнологичных медицинских программ по расшифровке генов, связанных с развитием БАС. В программу входят девять центров в университетах и клиниках по всей стране. Ассоциация БАС выделила 3,5 млн долларов из средств, полученных во время Ice Bucket Challenge, на развитие этой инициативы. Целью медицинской программы является исследование генетического материала и клинических проявлений у больных БАС и поиск общих закономерностей. В исследованиях участвуют более 1500 пациентов.9. Завершена вторая стадия исследования препарата «Аримокломол». Исследование проводят ведущий центр исследования БАС университета Майами и фармацевтическая компания Orphazyme. «Аримокломол» исследуется для лечения быстро прогрессирующей наследственной формы БАС с мутацией гена SOD1.10. Проекты ALS ONE и NeuroLINCS объявили о начале совместной работы.ALS ONE объединяет четыре крупнейших центра по изучению БАС в США: Многопрофильный госпиталь в Массачусетсе, Институт развития терапии БАС (ALS TDI), медицинский факультет университета Массачусетса и Организацию по развитию ухода за людьми с БАС (CCALS). В новом совместном проекте исследователи будут анализировать данные, необходимые для более глубокого понимания работы нейронов и причин нейродегенеративных заболеваний.

В этой книге мы попытались предложить свою альтернативную авторскую концепцию ранней диагностики БАС, основанную на оценке молекулярно-биологических особенностей белков мембранной поверхности гемопоэтических стволовых (CD34+) клеток (ГСК) у пациентов. Наши собственные исследования показали, что в основе ранней диагностики БАС, как и рака и других злокачественных опухолей, лежит нозоспецифическая иммунная недостаточность, обусловленная геномной, транскриптомной и протеомной трансформацией собственных ГСК как родоначальниц всех клеток иммунной системы пациента. Мы установили нозоспецифические протеомные профили белковых маркеров мембранной клеточной поверхности ГСК при БАС и раке, а также показали их кардинальное отличие их друг от друга. Поэтому мы полагаем, что постоянное мониторирование протеомного профилирования мембранной поверхности ГСК у лиц, находящихся в группе риска, может позволить диагностировать предрасположенность к БАС, семейные формы БАС и осуществлять диагностику аутоиммунного и нейродегенеративного процесса на самых ранних этапах заболевания, когда имеет место только начало заболевания без клинических и ЭНМГ-признаков болезни. Также в этой монографии мы обобщили все данные о возможности применения различных типов стволовых клеток в лечении БАС и представили собственное мнение об их эффективности при данной патологии.

Если вы введете в интернете ключевые слова «стволовые клетки в лечении бокового амиотрофического склероза», то получите 75 млн результатов и ссылок на сайты, которые активно предлагают применение СК в лечении БАС, из которых несколько сотен тысяч сайтов обсуждают или осуждают применение СК при этой болезни. Я думаю, что на самом деле большинство людей, которые писали эти сайты, никогда не занимались клеточной терапией в принципе, ввиду отсутствия у них стандартизированных продуктов из СК, так как их изготовление является очень трудоемким и высокотехнологическим процессом, который способна освоить только очень хорошо оснащенная лаборатория молекулярной и клеточной биологии. Такие лаборатории в нашей стране и за рубежом можно перечислить по пальцам. Поэтому очевидно, что авторы большинства сайтов просто переписывают информацию друг у друга и теоретизируют в публицистическом жанре. Те же ученые и исследователи, кто обсуждает недостатки и ужасы применения СК при БАС, лишь пытаются привлечь к себе пациентов на очередном «новомодном» методе реабилитационного лечения БАС, абсолютно не веря в его эффективность и не понимая смысла данного лечения. Однако сегодня следует признать, что в интернете большая часть сайтов о применении стволовых клеток при БАС дает позитивную и многообещающую информацию. Еще 10 лет назад написать статью о терапии БАС стволовыми клетками было просто дурным тоном, и чаще всего эти статьи не принимались редакциями большинства рейтинговых рецензируемых журналов как псевдонаучные.

Почему множество врачей и ученых считают, что именно клеточные технологии способны продлить жизнь пациента с БАС и добиться стабилизации его состояния? Это связано с безысходностью ситуации с БАС, а также с большими надеждами, основанными на целой серии зарубежных публикаций из стран Европы и США об эффективности клеточной терапии при БАС. В итоге это сказалось на изменении отношения к терапии БАС с использованием клеточных продуктов в России.

Мой личный научный интерес к этой проблеме существует уже давно. Более 30 лет я занимаюсь применением клеточных препаратов при лечении нервных болезней, в том числе и при БАС, и не могу разделить ни первую, ни вторую точку зрения относительно применения СК при нейродегенеративных заболеваниях. Я абсолютно уверен и точно знаю, что сама по себе технология применения клеточных препаратов для лечения нейродегенеративного заболевания действительно работает, но только тогда, когда решены фундаментальные вопросы остановки патологического процесса и прогредиентности заболевания и преодолены молекулярно-генетические проблемы нозоспецифической гистосовместимости клеточных систем и донорской нервной ткани и реципиента. Попытаюсь пояснить свой собственный, и далеко не формальный интерес к этой проблеме, а также 30-летний опыт пока еще низкоэффективных попыток применения различных клеточных систем в эксперименте и клинике при БАС. Ответ на этот вопрос лежит в истории моего личного опыта применения клеточных препаратов для лечения БАС.

Впервые в моей клинической практике я применил клеточный препарат для лечения пациента с БАС 15 апреля 1993 г. Будучи старшим ординатором неврологического отделения 32 Центрального военно-морского клинического госпиталя Министерства обороны РФ, я лично осуществил первое в мире введение препарата фетальных нервных клеток в субарахноидальное пространство больного с БАС. Препарат был изготовлен в лаборатории клинической иммунологии ГУ НИИ акушерства, гинекологии и перинатологии РАН (Москва) по биотехнологиям руководителя этой лаборатории профессора Г. Т. Сухих, изготовителем препарата был кандидат медицинских наук А. Ю. Аникин. Мы так подробно останавливаемся на деталях, чтобы вспомнить пионеров этого уникального направления развития медицины. Но это было далеко не началом истории терапии клеточными препаратами при БАС.

В течение трех лет (с 1990 г.) в рамках закрытых программ по нейротрансплантации Министерства обороны РФ на базе НИИ трансплантологии и искусственных органов Минздрава РФ (директор академик РАН и РАМН В. И. Шумаков) нашей командой военных врачей отрабатывалось применение фетальных нервных клеток для лечения боевой травмы головного и спинного мозга. Технология клеточной терапии повреждений мозга сначала была изучена в эксперименте на крысах, собаках и телятах с огнестрельными и минно-взрывными ранениями на базе ГУ НИИ трансплантологии и искусственных органов Минздрава РФ и Российского университета дружбы народов им. Патриса Лумумбы. Когда были получены первые результаты трансплантации фетальных нервных клеток в поврежденный спинной мозг экспериментальных животных и показана возможность регенерации поврежденной нервной ткани, в качестве контроля были выполнены более 50 трансфузий данных клеток в спинномозговое пространство животных. Был зарегистрирован клинико-морфологический эффект отчетливой регенерации мозга, почти такой же, как и при прямой трансплантации клеток, непосредственно введенных в ткань СМ. Главной особенностью этих исследований был подмеченный нами экспериментальный факт восстановления дегенерировавших нервных волокон боковых столбов спинного мозга при спинномозговой травме. Позже мы подтвердили эти научные факты и у человека. Однако, завершив эксперименты на животных, мы никак не могли перейти к применению клеточных препаратов на людях. Раньше до нас никто и никогда в мире не применял интратекальное введение клеточных препаратов для лечения нервных болезней. И это притом, что тогда уже более 10—15 лет в спинномозговой канал вводились антибиотики и химиопрепараты, однако клеточную суспензию вводить интратекально было страшно и опасно. Тем более, что это касалось не онкологических больных, а пациентов неврологического профиля. Необходимо было быть уверенным в том, что после цитотрансфузии клеточного препарата в спинномозговой канал не будет тяжелых витальных осложнений, связанных с возможной окклюзией ликворных путей у человека введенным клеточным препаратом. Ученый совет и Этический комитет НИИ транспланталогии и искусственных органов Минздрава России, учитывая мишень этих клеток в виде боковых столбов спинного мозга, порекомендовали нам сделать модель нейродегенеративного заболевания на 30 животных с болезнью Паркинсона и 30 крысах с моделью типа БАС. Мы выполнили эту работу и увидели потрясающий научный феномен: все фетальные нервные клетки, стереотаксически введенные в нервную ткань здорового головного и спинного мозга животных, лизировались и уничтожались, а при наличии повреждений в мозге эти клетки встраивались в зоны повреждения и частично восстанавливали функцию. Но самое интересное явление отмечалось при трансфузии суспензии фетальных нервных клеток в ликворное пространство. Эти клетки формировали конгломераты и «прилипали» к мягкой мозговой оболочке ГМ и СМ, затем вокруг конгломерата клеток формировалась новая мягкая мозговая оболочка, и конгломерат клеток становился частью нервной ткани. В дальнейшем клетки из конгломерата мигрировали в зоны повреждения ГМ и СМ и восстанавливали функцию поврежденных зон ГМ и СМ. Подробный отчет о данной работе представлен в монографии А. С. Брюховецкого «Нейротрансплантация и тканевая инженерия мозга в лечении нервных болезней», вышедшей в свет в 2003 г. Поэтому, прежде чем начать применение этих клеточных систем у раненых бойцов нашего госпиталя, было решено проверить безопасность введения суспензии фетальных нервных клеток у человека на терминальных стадиях больных с БАС, где риск был минимальным. Первым пациентом, получившим фетальные нервные клетки, стал больной мичман запаса Кар-в, 49 лет, с бульбарной формой БАС. Клетки для трансфузии в спинномозговой канал пациенту были получены из мозгового пузыря трех эмбрионов человека 12 недель гестации в лаборатории иммунологии ГУ НИИ акушерства, гинекологии и перинатологии РАМН (директор академик РАМН, профессор, доктор медицинских наук В. И. Кулаков, руководитель лаборатории иммунологии профессор Г. Т. Сухих). Весь материал предоставлялся данным академическим учреждением в госпиталь бесплатно, был стандартизирован и сертифицирован. То, что произошло с больным Кар-вым после интратекального введения клеточного препарата, можно было бы назвать только «чудом исцеления». Больной Кар-в, которому диагноз БАС был установлен ведущими неврологами страны в ГУ НИИ неврологии РАМН, с выраженным спастическим тетрапарезом, глубокими атрофиями мышц конечностей и прогрессирующими фибрилляциями мышц плечевого пояса и полной невозможностью к самостоятельному самообслуживанию, уже на пятый день после клеточной терапии отметил резкое уменьшение фибрилляций, к 14-му дню после трансфузии клеточного препарата у него стали уменьшаться атрофии мышц конечностей, и к 24-му дню после цитотрансфузии у него восстановилась функция самообслуживания: он стал сам одеваться, а к 30-му дню лечения стал сам застегивать большие пуговицы на больничной куртке. Через два месяца больной Кар-в был выписан из стационара и самостоятельно, на своих ногах, с опорой на трость, ушел из стационара. Данный случай наблюдали и обсуждали более 10 неврологов и нейрохирургов Центрального военно-морского клинического госпиталя. Мы сняли это «чудесное восстановление» на видеокамеру и демонстрировали всем желающим. После выписки из неврологического стационара у пациента Кар-ва продолжали уменьшаться атрофии мышц верхних и нижних конечностей в течение шести месяцев, значительно увеличился объем движений в них. К сожалению, мы не смогли увидеть дальнейшего «чуда полного излечения» пациента, так как через шесть месяцев после выписки он попал в автомобильную аварию и умер у себя на даче от жировой эмболии, полученной в результате переломов длинных трубчатых костей и полученных травм.

Последующие годы наша группа неоднократно пыталась повторить у других больных с БАС тот же результат нейровосстановления, как у больного Кар-ва, но, к сожалению, не удалось получить даже десятой части того успеха, полученного у самого первого пациента с применением препарата фетальных нервных клеток. Аналогичная ситуация характерна и для терапии клетками, полученными из пуповинной крови. И с 2003 г. мы полностью отказались от применения этих клеточных систем в лечении неврологических заболеваний. Если исследователь неспособен повторить собственный полученный результат, то эти исследования бесполезны и малонаучны. Я так и не смог повторить за все годы своего изучения клеточной терапии при БАС свой самый лучший результат. Однако мне стало очевидно, что в природе существует комбинация донорских клеточных и тканевых компонентов, которые способны реально восстановить поврежденные моторные нейроны и восстановить утраченные функции ГМ и СМ, даже несмотря на кажущуюся необратимость дегенеративно-атрофического процесса в нервной системе. Поэтому предложенная вам для ознакомления монография – это многолетняя попытка найти альтернативное решение в терапии БАС, используя стандартизированные клеточные продукты и лекарственные препараты, способные создать иммунные и гистотканевые предпосылки для восстановления нейроповреждений при БАС.

Мы построили эту книгу достаточно традиционно для монографической научной литературы. В первой главе книги проведен анализ актуальности изучения проблемы бокового амиотрофического склероза и даны современные определения понятия БАС и (или) БМН. В ней предпринята попытка представить последние исследования в области эпидемиологии БАС, поговорить об этиологии и патогенезе данного заболевания (глава вторая). Далее обсуждается спектр морфологических изменений при данном нейродегенеративном заболевании (глава третья). В четвертой главе монографии представлены основные известные протеомные изменения при боковом амиотрофическом склерозе. Пятая глава монографии посвящена фундаментальным аспектам избирательной дегенерации и проблеме эксайтотоксичности в биологии БАС, а также анализу повреждений гематоэнцефалического барьера при БАС на основе анализа концентрации нейроспецифических белков и антител к ним. Мы впервые публикуем эти данные, которые больше свидетельствуют об аутоиммунном генезе болезни, чем о первичной нейродегенерации. В шестой главе представлены существующие классификации БАС и систематизированы основные клинические проявления этого нейродегенеративного заболевания. Представлены собственные клинические наблюдения больных с БАС. Что касается седьмой главы книги, то в ней проанализированы основные информационно-коммутационные механизмы формирования ведущих клинических симптомов и синдромов при боковом амиотрофическом склерозе. Это достаточно специфичная глава, которая дает реальные представления о молекулярно-биологических механизмах формирования ведущих синдромов заболевания. Она дает новые представления для понимания и создания новой терапевтической стратегии молекулярно-нацеленного лечения БАС.

Глава восьмая поднимает проблему диагностики БАС, и в ней обсуждаются существующие диагностические алгоритмы выявления болезни. Абсолютно новый взгляд на иммунологию БАС нами сформулирован именно в девятой главе. Несомненно, что возможное решение проблемы эффективного лечения БАС может быть теоретически найдено, если будут отработаны молекулярно-биологические маркеры ранней диагностики этого заболевания. То есть диагностика заболевания должна будет осуществляться на самых ранних этапах болезни, когда большая часть мотонейронов ГМ и СМ еще сохранена. При этом показано, что ранняя молекулярно-биологическая диагностика БАС возможна и может быть реализована по анализу специфики изменений протеомного профиля поверхностных белков мембраны ГСК больного с БАС. Полагаем, что выявленные нами специфические маркеры белков клеточной поверхности ГСК, появляющиеся при БАС, являются нозоспецифичными для данного заболевания и диагностика БАС-специфичного профиля белков мембраны ГСК при БАС может стать важнейшим критерием ранней молекулярно-биологической диагностики этого заболевания. Насколько правильны наши доказательства и предположения в этой главе по ранней иммунодиагностике БАС, покажут время и дальнейшие фундаментальные исследования в данном направлении. Но наши находки проливают свет на механизмы развития данного заболевания, которые могут стать мишенями для целенаправленной терапии этого фатального заболевания.

В десятой главе представлены существующие взгляды ученых на классический конвенциональный подход к лечению БАС. Обсуждение его отчасти является формальным перечислением спектра современных лечебных, но малоэффективных мероприятий, которые сегодня активно используются в лечении БАС.

В одиннадцатой главе книги подробно обсуждаются экспериментальные модели БАС и способы применения клеточных препаратов на основе стволовых клеток у экспериментальных животных с моделями БАС. В этой главе даны обобщающие сведения авторов и научной литературы по клиническому трансляционному применению клеточных продуктов для терапии БАС у человека. В этой же главе книги представляются научные обобщения по достаточно новому направлению лечения БАС – методам нейромодуляции и нейрореабилитации. В тринадцатой главе этой книги представлена принципиально новая стратегия лечения больных с БАС, основанная на применении специальных клеточных и лекарственных препаратов и наших собственных научных изысканиях. Эта стратегия не является панацеей и пока не позволяет полностью излечить больного, но она дает возможность приостановить болезнь и статистически достоверно продлить время жизни пациента с БАС. В четырнадцатой главе книги представлены нейровосстановительная терапия и возможности реставрации нейродегенеративных нарушений мотонейронов с использованием современных биомедицинских клеточных продуктов. В настоящее время нет другого метода лечения БАС, позволяющего реально увеличить медиану времени жизни больных БАС на 30—40%.

В заключении монографии мы обобщили все наши научные находки и инновационные решения в диагностике и лечении БАС и сформулировали предполагаемые основные направления научных исследований БАС в ближайшем будущем.

В этом кратком вступлении мне хотелось бы поблагодарить сотрудников моей клиники и лично руководителя отделения нейрореабилитации клиники «НейроВита» врача-невролога Николая Ивановича Коваленко за помощь в курировании этого крайне тяжелого контингента неврологических больных и участие в научно-исследовательском изучении данного фатального заболевания, а также выразить признательность за терпимость и понимание среднего и младшего персонала клиники.

Автор будет рад принять все замечания и предложения по содержанию и клиническому смыслу изложенной в данной книге концепции ранней молекулярно-биологической диагностики и предложенной молекулярно-нацеленной (таргетной) стратегии лечения БАС по электронной почте neurovita-as@mail.ru (mailto:neurovita-as@mail.ru).

    Профессор, доктор медицинских наук
    А. С. Брюховецкий

Глава 1. Актуальность проблемы, определения понятия и эпидемиология болезни

Впервые боковой амиотрофический склероз (БАС) был описан 150 лет назад физиологом Жан-Мартеном Шарко (J.-M. Charcot), которому удалось связать наблюдаемую у пациентов спастичность и патологию в спинном мозге (Rowland et al., 2001). Им было предложено название, которое используется до настоящего времени: слово «амиотрофический» отражает мышечную слабость и атрофию, а «латеральный склероз» обозначает склеротизацию передних и латеральных кортикоспинальных трактов, наблюдавшуюся им у больных с БАС (Wijesekera et al., 2009). В XIX в. в качестве самостоятельных клинических синдромов были описаны прогрессирующая мышечная атрофия (ПМА) (F. Aran, 1848), первичный боковой склероз (ПБС) (W. Erb, 1875) и прогрессирующий бульбарный паралич (ПБП) (A. Duchenne, 1860) (Бакулин и др., 2017). Так, Шарко рассматривал перечисленные состояния как отдельные синдромы, в то время как J. Dejerine и W. Gowers считали их проявлениями одной болезни. В статье «Проблема первичного бокового склероза», опубликованной в 1946 г., I.S. Wechsler и S. Brody отмечают, что клиника и течение ПБС, ПМА и БАС отличаются, что позволяет рассматривать их как отдельные дегенеративные состояния («склерозы») (Бакулин и др., 2017). Боковой амиотрофический склероз, или, сокращенно, БАС (англ. Amyotrophic Lateral Sclerosis, сокращенно – ALS, болезнь Шарко, болезнь Лу Герига, прогрессирующая мышечная атрофия), представляет собой фатальное заболевание двигательных нейронов, которое сегодня получило новое название – болезнь двигательных нейронов (БДН) (англ. motor neuron disease, MND). Заболевание характеризуется дегенеративными изменениями в верхних и нижних двигательных нейронах и приводит к прогрессирующей амиотрофии, фасцикуляциям, парезам, спастике, дыхательному параличу и смерти. Еще в 1933 г. W.R. Brain предложил использовать термин «болезнь двигательного нейрона» (БДН) для объединения клинически разных вариантов в одну общую диагностическую категорию. Сегодня этот термин в качестве названия заболевания является альтернативным названием БАС и достаточно прочно закрепился в современной зарубежной и отечественной клинической и научной неврологической литературе, хотя, по сути, не отражает всего диапазона известных к настоящему времени морфо-функциональных, геномно-постгеномных и информационно-коммутационных нарушений в нервной ткани, происходящих в организме пациента. Название БДН на самом деле больше отражает формальные морфологические и нейрофункциональные признаки болезни, чем ее сущность. Это название заболевания предполагает довольно примитивное понимание и представление о данной болезни как о локальном изолированном поражении первого и второго мотонейронов головного мозга (ГМ) и спинного мозга (СМ) человека. Мы считаем, что понимание патологии БАС исключительно как повреждения или заболевания моторных нейронов является фундаментальным научным заблуждением и очень ограничивает потенциальные возможности и перспективы для поиска реальной терапии. Другими словами, свести всю проблему возникновения БАС к проблеме только повреждения моторных нейронов теоретически и методологически неправильно и научно-практически неверно. Это, по сути, равносильно перестановке причины и следствия научного явления. Это понимание заболевания – не просто словесная эквилибристика, а скорее подмена понятий, и она является скорее научным тупиком, чем научным прорывом. Современное понимание БАС как болезни моторного нейрона – это проявление глобальных научных представлений устаревшего фундаментального системного анатомо-физиологического подхода к изучению нервных и психических болезней, который, к сожалению, не позволяет найти способа излечения от этого заболевания до настоящего времени. Если вы проанализируете все основные работы в области БАС за последнее время, то увидите, что новая формулировка заболевания как БМН привела к тому, что все исследователи сосредоточились на поиске внутренних, преимущественно генетических и эпигенетических причин этого заболевания, связанных непосредственно с повреждением мотонейронов, который пока не увенчался успехом. И скорее всего, это не даст нам ожидаемых результатов в будущем. Несомненно, в результате постоянных фундаментальных генетических исследований с секвенированием генома, изучением транскритомов экспрессии генов и протемного картирования моторных нервных клеток будут найдены новые, еще неизвестные патологические генетические, РНК- и протеомные патологические модификации в геноме, транскриптоме и протеоме мотонейронов, кроме уже известных 108 генетических мутаций в геноме и более 100 обнаруженных изменений белкового профиля мотонейронов у пациентов с БАС. Но это не даст нужного нам ответа и самое главное – не даст возможности найти нужное терапевтическое решение проблемы. Устаревший методологический инструментарий системного подхода в нейронауке, революционный в ХХ в., сегодня мешает пойти дальше, и понимание БАС как БДН является его классическим представлением и главным, по нашему мнению, «тормозом» учения о боковом амиотрофическом склерозе.

Повреждение моторных нейронов является исходом закономерной динамики формирования иммунных нарушений и дегенеративно-атрофического патологического процесса во всей нервно-мышечной системе пациента при БАС и следствием длительно текущей дегенерации и атрофии во всех клетках нервной ткани ГМ или СМ. Самым очевидным и демонстративным проявлением функционального и морфологического дефекта при данном заболевании является моторный дефект, но сведение всего спектра функциональных расстройств и патоморфологии к нему и определению болезни как исключительно болезни моторного нейрона ошибочно и резко ограничивает поиски средств для лечения этой страшной болезни. Нейротоксичность или эксайтотоксичность, в результате которой, как традиционно считается, идет собственно повреждение и дегенерация моторных нейронов при БАС, является только частью или важным звеном патогенетического процесса, но при этом почему-то не учитываются нарушения в других клетках нервной ткани, вовлеченных в патологический процесс в ГМ и СМ.

Но вернемся к существующим определениям понятия БАС. И. В. Моткова в своем диссертационном исследовании (2008) дает следующее определение БАС: боковой амиотрофический склероз – это нейродегенеративное заболевание, сопровождающееся гибелью центральных и периферических мотонейронов и характеризующееся прогрессирующим течением и летальным исходом. То есть в самом этом определении болезни заложена обреченность на фатальный исход болезни. Действительно, считается, что нервные клетки после дегенерации не имеют шансов на восстановление, и данное определение только констатировало факт наличия атрофического и дегенеративного процесса и его печальный исход. Сегодня работами большинства нейроученых по всему миру доказано, что нервные клетки способны регенерировать и восстанавливаться под воздействием различных типов стволовых клеток и факторов роста, поэтому летальность при БАС может быть преодолена. Однако именно очень поздняя диагностика БАС резко ограничивает возможности для подобного лечения и способствует увеличению количества больных с БАС.

Вот одно из наиболее характерных определений заболевания, найденное нами в интернете: БАС – это идиопатическое нейродегенеративное прогрессирующее заболевание неизвестной этиологии, обусловленное избирательным поражением периферических двигательных нейронов передних рогов спинного мозга и двигательных ядер ствола мозга, а также корковых (центральных) мотонейронов и боковых столбов спинного мозга. Ключевые слова в этом определении БАС – это «идиопатическое нейродегенеративное заболевание». Идиопатический (от греч. Idios – собственный, особый; pathos – страдание) означает «самостоятельный» (син. – эссенциальный). Идиопатической называют болезнь, которая возникает самостоятельно, то есть независимо от других поражений. При таких определениях болезни шансы на поиск лечения такого заболевания сокращаются до минимума.

В. И. Скворцова и Г. И. Левицкий (2004) дают свое клиническое определение этого заболевания: болезнь двигательного нейрона (БДН) – это нейродегенеративное заболевание, сопровождающееся гибелью центральных и периферических мотонейронов, неуклонным прогрессированием и летальным исходом. Клинически все строго и верно, но это определение не имеет будущего и ничего не объясняет для разработки и создания технологии лечения.

Д. Марфунин (2012) так определяет, что такое боковой амиотрофический склероз: БАС, или ALS, является фатальным, позднего начала, быстро прогрессирующим нейродегенеративным заболеванием, приводящим к мышечной слабости и атрофии, которые развиваются в паралич. Это, пожалуй, единственное определение, в котором автор определяет позднее начало заболевания как важнейший нозоспецифический фактор, и это важное качество этого определения.

С. А. Живолупов, Н. А. Рашидов, И. Н. Самарцев, С. А. Галицкий (2011) считают, что БАС является мультисистемным церебральным нейродегенеративным процессом. И. С. Бакулин с соавторами (2017) также считают, что боковой амиотрофический склероз (БАС) – это нейродегенеративное заболевание, протекающее в типичных случаях с поражением моторной коры, кортикоспинальных и кортиконуклеарных путей и периферических мотонейронов ствола и спинного мозга.

По современным данным, боковой амиотрофический склероз занимает третье место в структуре неврологических заболеваний и является одной из самых распространенных форм болезней двигательного нейрона (Honung et al., 2017). Распространенность БАС в разных странах неодинакова и в мире в среднем составляет от 0,8 до 7,3 случая на 100 000 человек в год, заболеваемость – 0,2—2,4 случая на 100 000 человек в год, при этом в последнее время отмечены тенденции к росту заболеваемости во всех возрастных группах и к более злокачественному течению (Abhinav et al., 2007; Julien, 2007; Karussis et al., 2010). Специалисты Национального института здоровья США подсчитали, что в США около 30 000 человек одномоментно болеют БАС, ежегодно диагностируется 5000 новых случаев, причиной смерти почти 300 000 ныне живущих американцев будет БАС, затраты на уход за одним пациентом в США составляют около 200 000 долларов в год (ALS CNTF Treatment Study Group, 1996). Последнее эпидемиологическое исследование БАС в СССР проводилось О. А. Хондкарианом и Г. А. Максудовым в 1970 г. и установило средний показатель заболеваемости 0,20,5/100 тыс. человек в год (Appel et al., 2008). В России на настоящий момент эпидемиологическая обстановка по БАС неизвестна, имеются лишь данные по отдельным городам и областям (Almer еt al., 2001; Марфунин, 2012). Проблема распространенности БАС в нашей стране требует дальнейшего изучения и уточнения. По последней статистике, ежегодно в мире выявляют 2—3 новых случая на 100 тысяч человек населения. Это небольшой процент встречаемости в общей частоте, но каждому пациенту необходимо оказывать специализированную помощь. Помощь необходима на всех этапах диагностики, а также после установки клинического диагноза (Висурханова и др., 2018). При всем при этом БАС представляет собой серьезную медицинскую и социальную проблему. У больных проявляются признаки и симптомы прогрессирующей мышечной атрофии и слабости, повышение утомляемости и проблемы с глотанием, результатом которых обычно становятся респираторная дисфункция и гибель (Rowland, 1994; Sejvar, 2005). Прогрессирующий неврологический дефицит функциональности приводит к общей утрате самостоятельности (Ng, 2011), полной трудоспособности и невозможности самообслуживания. Медиана выживаемости больных с БАС в зависимости от формы заболевания составляет 2—6 лет с момента постановки диагноза. Исход БАС, как правило, мучительный и трагичный. Больной умирает в полном сознании из-за нейрогенной остановки дыхания. Попытки противостоять такому исходу заболевания приводят к тому, что родственники отдельных больных переводят их на искусственную вентиляцию легких и продляют их жизнь на годы. В моей практике один из больных прожил на искусственной вентиляции легких 7 лет, другая больная из Болгарии прожила на аппаратном дыхании 12 лет и жива по настоящее время. Однако качество жизни у полностью обездвиженных больных БАС на аппаратном дыхании оставляет желать лучшего. Особенностью этих больных является почти полное сохранение интеллектуально-мнестических функций мозга и продуктивной интеллектуальной деятельности, как правило, до летального исхода.

БАС поражает лиц преимущественного зрелого и трудоспособного возраста (20—80 лет), с высоким интеллектуальным и профессиональным потенциалом, неизбежно приводит к тяжелой инвалидности и смерти больных, что в сочетании с отсутствием эффективных методов лечения обосновывает актуальность изучения этой болезни. Прогредиентность течения заболевания, быстрая смена легких двигательных расстройств тяжелыми парезами и параличами делают проблему ранней диагностики заболевания первостепенной, прежде всего для практического здравоохранения. Большой интерес в этом плане представляет группа клинически сходных с БАС нозологий, требующих дифференциальной диагностики и принципиально иных, потенциально эффективных подходов в лечении. Кроме того, единственный препарат, показавший свою эффективность в отношении БАС, рилузол, должен назначаться пациентам с установленным диагнозом как можно раньше. Поэтому необходимы критерии, на основании которых можно с более высокой достоверностью судить о наличии у пациента БАС или синдрома БАС в его дебюте и (или) при первом осмотре.

Заболеваемость спорадическим БАС в 1990-х гг. составляла от 1,5 до 2,7 на 100 000 населения в год (средний показатель составлял 1,89 на 100 000 в год) в странах Европы и США (Worms, 2001). Частота вновь выявленных заболеваний при осмотре населения в определенный момент времени варьируется в диапазоне от 2,7 до 7,4 случая на 100 000 (средняя величина составляет 5,2 на 100 000) в странах Запада (Worms, 2001). Риски возникновения спорадического БАС к 70-летнему возрасту оцениваются в 1 случай на 1000 (Traynor et al., 1999), но более точные оценки, скорее всего, составляют 1 случай на 400 (Johnston et al., 2006). Непротиворечивые данные, полученные в результате проведения исследований, говорят о небольшом превышении количества мужчин, подверженных возникновению заболевания, над количеством женщин, при коэффициенте соотношения мужчин к женщинам, равном 1,5/1. Более свежие данные дают основания предположить, что гендерное соотношение может приближаться к равным значениям (Worms, 2001; Abhinav et al., 2008; Logroscino et al., 2008). Уровень смертности в результате БАС в 1990 г. варьировался от 1,54 до 2,55 на 100 000 в год, а проведенное в более недавнее время исследование свидетельствует о 1,84 смерти на 100 000 населения (Worms, 2001; Sejvar et al., 2005). Средний возраст начала развития случаев спорадического БАС варьируется между 55 и 65 годами, где средний возраст возникновения заболевания составляет 64 года (Haverkamp et al., 1995). Только в 5% случаев наступление заболевания выявлялось в возрасте моложе 30 лет, хотя случаи ювенального спорадического БАС регистрируются все чаще (Gouveia, de Carvalho, 2007). Бульбарные проявления заболевания более распространены среди женщин и в группах старшего возраста, где 43% больных старше 70 лет демонстрируют бульбарные симптомы в сравнении с 15% больных моложе 30 лет (Beghi et al., 2007; Forbes et al., 2004).

Глава 2. Этиология и патогенез заболевания

Несмотря на то что заболевание описано более 150 лет назад, его этиология и патогенез остаются не до конца изученными, а эффективные методы лечения отсутствуют в принципе. Это связано с тем, что мы пока не понимаем истинных причин и патогенетических механизмов возникновения и динамики этой болезни. Существует огромное количество теорий возникновения БАС, что лишь свидетельствует об отсутствии единственно правильной теории развития этой нейродегенеративной болезни. Одной из первых теорий возникновения БАС была вирусная теория, в котоhой анализировалась роль энтеровирусов, вируса ВИЧ и прионов в возникновении БАС. Другие исследователи пытались доказать участие вируса полиомиелита в формировании болезни[1 - http://zdravotvet.ru/bokovoj-amiotroficheskij-skleroz-simptomy-lechenie-diagnostika-prognoz/]. Вирусная теория была популярна в 60—70-х гг. ХХ в., но так и не нашла своего подтверждения. Ученые США и СССР проводили опыты на обезьянах, вводя им экстракты спинного мозга больных людей, но эффекта возникновения БАС отмечено не было. Применение современных противовирусных препаратов оказалось малоэффективным в лечении БАС, в связи с чем доказательность вирусной природы болезни была также опровергнута, так как новые противовирусные средства были эффективны против основных нейровирусов, диагностируемых у человека, как in vitro, так и in vivo (Левицкий, 2003; Скворцова, Левицкий, 2004).

Долгое время считалось, что в результате вирусной нейроинфекции (корь, краснуха, герпес, цитомегаловирус и т.д.) у пациента в нервной ткани головного и спинного мозга возникает аутоиммунный процесс, как и при рассеянном склерозе. При этом считалось, что аутоиммунный процесс при БАС запускался после повреждения боковых столбов спинного мозга (СМ) нейроинфекцией. В современной классической неврологии ХХ в. БАС также относили к группе аутоиммунных заболеваний и, как правило, описывали как одну из специфичных разновидностей аутоиммунного процесса в нервной системе, наряду с рассеянным склерозом и рассеянным энцефаломиелитом. Аутоиммунная теория возникновения БАС и сегодня не утратила своей актуальности. Эта точка зрения на причины развития БАС основывалась на существующем научном представлении об инфекционно-вирусном и воспалительном генезе заболевания, которые и запускают аутоиммунный процесс, в результате которого образуются аутоиммунные антитела. Но на самом деле до настоящего времени истинная природа БАС не ясна. Более того, по мнению целого ряда отечественных исследователей, аргументов в пользу аутоиммунного процесса в мозге при этом заболевании недостаточно. Основными аргументами, которые современные неврологи приводят против аутоиммунной теории БАС, является низкая терапевтическая эффективность глюкокортикоидных гормонов, неэффективность плазмофереза, низкая эффективность иммуноглобулинов и цитостатиков, неэффективность аутологичной трансплантации костного мозга (ТКМ) и неэффективность блокаторов цитокиновых рецепторов (Левицкий, 2003; Скворцова, Левицкий, 2004; Скворцова и др., 2005). Ведущие отечественные неврологи в области БАС (Скворцова и др, 2005; Скворцова, Левицкий, 2007) считают, что аутоиммунная теория не получила подтверждения в большинстве современных исследований, что аутоиммунные нарушения при БДН носят вторичный характер. На поздних стадиях болезни у пациентов может развиться вторичный иммунодефицит на фоне дисфагии и алиментарной недостаточности (Левицкий, 2003). Мы считаем (Брюховецкий, Хотимченко, 2018), что подобная точка зрения, основанная на неэффективности лекарств и методов лечения при аутоиммунном характере заболевания, правомерна, но может быть применима только в том случае, если классический аутоиммунный процесс протекает по воспалительному (экссудативному) типу и в его структуре работают эффекторные механизмы иммунокомпетентных клеток. В этом случае действительно против воспаления будут работать глюкокортикоидные гормоны, будет эффективен плазмоферез и элиминация антител и т. д. Но ведь аутоиммунный процесс может идти по пролиферативному или фиброзирующему типу, и в этом случае в генезе болезни будут задействованы эпигенетические механизмы иммунокомпетентных клеток. Двойственность аутоиммунного процесса, с одной стороны, проявляется тем, что существуют определенные стадии аутоиммунного процесса: 1) гранулематозно-воспалительная (острая), 2) диффузно-пролиферативная (подострая) и 3) фиброзная (хроническая). И тогда очевидно, что острый и подострый процесс пойдут по типу воспаления, а хронический аутоиммунный процесс при БАС обязательно пойдет по типу фиброзного процесса и может проявиться нейродегенерацией мотонейронов. С другой стороны, если в развитии болезни задействованы только периферические иммунокомпетентные клетки, то аутоиммунный процесс обязательно будет острым или подострым, по типу воспаления. Но если в генезе заболевания задействованы патологические гемопоэтические стволовые и прогениторные клеточные гемопоэтические системы, то все потомки этих клеточных систем вызовут пролиферативный (фиброзирующий) процесс, и тогда эффективность лекарственных средств, эффективных в коррекции воспаления, станет минимальной, что и возможно при БАС. Поэтому аутоиммунный генез этой болезни исключать нельзя, и мы к этому вернемся ниже.

Другая точка зрения на этиологию и патогенез развития БАС – сосудистая теория возникновения данного заболевания. В основе этой теории лежали существующие научные представления об обязательном сосудистом компоненте как фундаментальной причине возникновения БАС у человека. Сосудистый фактор в развитии БАС всегда считался и считается одним из важнейших в патогенезе заболевания. Роль сосудистых нарушений при БАС отмечали почти все классические неврологи русской школы (Карлов, 1987, 2002; Акимов, 1992). Важное значение сосудистого фактора в развитии БАС связано с анатомическими особенностями кровоснабжения боковых столбов спинного мозга, где расположено основное место повреждения СМ и где теоретически мог бы разворачиваться весь сценарий патологических нарушений. Особенностью кровоснабжения спинного мозга в целом и боковых столбов спинного мозга в частности является вхождение кровеносных питающих сосудов в проекции боковых столбов СМ каждого сегмента спинного мозга как основной питающей артерии спинного мозга (радикуло-медулярная артерия), которая на уровне шейного утолщения СМ определяется как передняя радикуло-медулярная артерия. В грудном отделе она представлена как большая передняя радикуло-медулярная артерия (а. Адамкевича), а на уровне последних сегментов спинного мозга она называется нижней дополнительной радикуло-медулярной артерией (а. Депрож-Готтерона). Эти артерии берут свое начало в межреберных артериях. Все эти артерии на всем протяжении СМ соединяет передняя спинальная артерия, которая является основным ответвлением передней спинальной артерии (а. spinalis ant.), входящей в СМ. Сзади мозг питают задние спинальные артерии. Таким образом, боковые столбы спинного мозга, наиболее сильно страдающие при БАС, первыми получают кровоснабжение в СМ, и резонно было бы предположить, что даже самые незначительные микронарушения гемостаза и кровоснабжения СМ могут сказаться на функции боковых столбов СМ, где, собственно, и расположены моторные нейроны. Ряд исследователей (Брюховецкий и др., 1996; Зубрицкий и др., 1998) предполагали возможность нарушения микроциркуляции в зоне кровоснабжения боковых столбов спинного мозга при БАС и исследовали состояние сосудов спинного мозга с использованием спинальной и церебральной ангиографии у 15 больных с БАС. Было установлено, что почти у всех больных имелся определенный вегетативный дефект иннервации церебральных и спинальных сосудов или их аномальное строение: у 8 больных были выявлены явления s-образной патологической извитости общей сонной или внутренней артерии, гипоплазия (аплазия) правой или левой позвоночной артерии у 5 пациентов, или комбинация этих признаков у 4 больных. У 2 пациентов была выявлена патологическая извитость правой позвоночной артерии, а у одного пациента с шейной формой БАС – патология развития сосудов ГМ (незамкнутость) Виллизиева круга. Было высказано предположение, что в генезе БАС сосудистые расстройства являются важным пусковым механизмом развития болезни. При травматическом, вирусном или воспалительном повреждении сосудов, кровоснабжающих СМ, токсическом воздействии на них или воздействии других этиологических факторов БАС в первую очередь формируется парез или паралич нервов автономной нервной системы, иннервирующих эти сосуды. Это приводит к нарушению вегетативного обеспечения этих сосудов, что и было зарегистрировано при церебральной или спинальной ангиографии в форме образования патологических извитостей. Вследствие этих этиопатогенетических изменений формируется кинкинг, или «провисание», участка паретичного сосуда. Появление паретичной части магистрального сосуда головы или сосуда СМ приводит к замедлению циркуляции крови в этой зоне и формированию микротромбов и микроагрегаций форменных элементов крови. Микротромбы, возникающие в крупных сосудах в зоне кровоснабжения СМ, «забивают» более мелкие сосуды, расположенные именно в зоне вхождения спинальных артерий в СМ и нарушают кровоснабжение в зоне боковых столбов СМ. Мы полагаем, что микрососудистые нарушения при БАС являются основным триггером комплекса или каскада необратимых биохимических реакций во всех клетках СМ. Косвенным фактором правомерности этого предположения были временные позитивные клинические результаты в лечении БАС при региональной перфузии спазмолитических средств (но-шпа, папаверин и т.д.) рентгенохирургически непосредственно в спинальную артерию зоны дегенерации и повреждения СМ. Мой личный последующий опыт выявления патологических извитостей магистральных сосудов шеи (преимущественно внутренней сонной артерии на стороне клинических проявлений) у всех обследуемых пациентов с БАС показал, что в 65% случаев действительно у больных БАС удается выявить патологические извитости (кинкинги) магистральных артерий, кровоснабжающих спинной мозг. Появление рентгенохирургических техник и возможность проведения малоинвазивных внутриартериальных исследований в конце 1990-х и начале 2000-х гг. позволило установить наличие реальных патологических извитостей магистральных артерий, кровоснабжающих спинной мозг, у пациентов с БАС. Однако попытки проведения рентгенохирургической программной региональной перфузии этих зон спинного мозга вазоактивными и тромболитическими препаратами не увенчались успехом и не приводили к клиническому успеху. Из 20 пациентов с БАС, имеющих патологические извитости магистральных артерий, только у 5 пациентов было отмечено незначительное и временное смягчение клинических проявлений заболевания. По-видимому, формирование патологических извитостей магистральных артерий, кровоснабжающих дегенеративные участки головного и спинного мозга, при БАС является следствием системной дегенерации тканевого модуля нервной ткани. Наиболее вероятно, появление патологических извитостей магистральных артерий, кровоснабжающих дегенеративные участки спинного мозга, является следствием, а не причиной заболевания.

Д. Марфунин (2012) в своей исследовательской работе «О боковом амиотрофическом склерозе» обсуждает варианты сочетаний вирусного начала и сосудистых нарушений при БАС. Он абсолютно верно утверждает, что верхние моторные нейроны расположены в двигательной области коры головного мозга, то есть в прецентральной извилине. Мышцы тела имеют определенную проекцию на этой извилине. Известно также, что эта извилина получает артериальную кровь из двух артерий – передней мозговой и средней мозговой. Граница зон кровоснабжения передней и средней артерии лежит приблизительно между проекцией тела и головы. Как считает Д. Марфунин, соблазнительно предположить, что поражающий агент (если такой существует) мог проникнуть в извилину извне. Учитывая вышеописанную картину прогрессии болезни, можно предполагать, что этот агент должен быть живым, способным к самовоспроизводству и мог бы лежать в основе и быть причиной болезни. Но попытки обнаружить вирусные частицы и молекулы в пределах моторных нейронов, корковых или спинальных, или в пределах тканей скелетных мышц были безуспешными. Более того, при рассмотрении пула моторных нейронов пациентов БАС в пределах пораженной области обнаруживается лишь недостаточность нейронов, но нет никакого намека на какую-либо борьбу нейрона против предполагаемого внедрившегося агента, способного его разрушить, только умеренная воспалительная реакция в окружающих тканях, главным образом основанная на наличии реактивной микроглии. Если все же предположить, что такой агент существует, то возникает несколько вопросов. Во-первых, кто он? Во-вторых, почему поражает лишь моторные нейроны? Почему поражает весь моторный тракт от терминальной пластинки до верхних моторных нейронов? Почему этот тракт поражается не одновременно, а начинается с терминальной пластинки и далее процесс распространяется вверх, создавая картину «отмирания»? И, наконец, почему моторные нейроны, не сопротивляясь, запускают процесс апоптоза? Если в качестве ответа на один из этих вопросов предположить, забегая вперед, что моторный тракт поражается с целью (если таковая существует) достижения гипокинезии, то для этого достаточно разрушить терминальную пластинку или, в крайнем случае, аксон переднего рога. Зачем же поражается весь тракт, вплоть до клеток Беца? Реального ответа нет. Ни вирусная, ни сосудистая теории не дают ответа на эти вопросы.

Другую причину возникновения БАС предлагает посттравматическая теория. Изучив анамнез более 60 пациентов с БАС, а также 20 пациентов с БАС, имеющих объективно доказанные патологические извитости магистральных артерий шеи и артерий, кровоснабжающих спинной мозг, мы обратили внимание на наличие в анамнезе этих больных серьезной закрытой травмы позвоночника или головного мозга. Этот факт подтвердился почти у половины этих больных. В трех случаях возникновение болезни отмечалось через 6—8 месяцев после минно-взрывных повреждений (боевая травма, криминальная травма при взрыве в автомобиле и т.д.), в 10 случаях удавалось выявить тяжелые повреждения позвоночника при профессиональной спортивной травме или занятиях экстремальными видами спорта: горные лыжи, единоборства, падение с высоты, падение на мотоцикле, неудачное падение спиной при прыжках с парашютом и т. д. Однако убедительных подтверждений этого феномена мы не отметили, моделирование этого феномена на экспериментальных животных не приводило к развитию клинической картины болезни БАС (Брюховецкий и др., 1998). Возможно, модель травмы спинного мозга на крысах не может служить объективной моделью хронического сосудистого фактора в возникновении БАС у человека из-за серьезных отличий анатомии сосудов и особенностей, связанных с прямохождением человека. Необходимо смоделировать эту нозологию на обезьянах и окончательно отказаться от этой теории или доказать ее состоятельность.

Существует и другая точка зрения, объясняющая возникновение БАС у спортсменов. Это теория чрезмерной физической активности. Согласно этой гипотезе, риск заболеть БАС у профессиональных футболистов в 6,5 раза выше, чем у обычного населения (Chio et al., 2005). A. Al-Chalabi, P.N. Leigh (2005) показали, что травмы, полученные при игре в футбол, являются причиной возникновения БАС у целого ряда профессиональных игроков. Напомним, что в США болезнь впервые была описана у игрока в американский футбол Лу Герига (болезнь Герига). Это связано с рядом специфических факторов: 1) с физической активностью, независимо от вида спорта; 2) с микротравмами или спецификой физических упражнений; 3) с употреблением допинга; 4) с типичными для футбола экологическими факторами; 5) с генетическими факторами, которые связаны с чрезмерной физической работоспособностью.

Есть научно обоснованная гипотеза возникновения БАС как паранеопластического процесса. Описаны случаи сочетания БАС с раком легкого, раком молочной железы, раком щитовидной железы, раком кишечника, инсулиномой и даже с мультиформной глиобластомой. Однако в последующем было доказано, что во всех этих случаях БАС был самостоятельным заболеванием. Наши собственные исследования состояния иммунной системы при различных типах рака и при БАС показали, что в основе этих заболеваний лежит хроническая или острая иммунная недостаточность, которая обусловлена разноуровневыми и разнонаправленными мультимаркерными изменениями протеомного профиля клеточной поверхности гемопоэтических стволовых клеток (ГСК) пациента. Учитывая, что ГСК у каждого человека являются основным источником образования всех типов клеток его иммунной системы, глобальные отличия протеомного профиля этих клеток между собой позволяют утверждать, что эти заболевания имеют различные нозоспецифичные иммунные нарушения. Профиль маркеров белков клеточной поверхности ГСК при раке, у больных с БАС и у здоровых доноров костного мозга имеют фундаментальные отличия между собой, и они были картированы и профилированы нами и представлены в главе 8 этой книги.

Существует также теория влияния экзогенных факторов на возникновение болезни. Экзогенными этиологическими факторами являются специфические воздействия окружающей природы. БАС даже получил название «болезнь Гуам», в которой сочетается клиника бокового амиотрофического склероза (БАС), паркинсонизма и деменции (комплекс Гуам) – редкая эндемическая патология, в основе которой лежит прогрессирующая генерализованная дегенерация нейронов центральной нервной системы (Morris et al., 2004; Скворцова и др., 2005; Яхно, 2005; Завалишин, 2009). Впервые это заболевание было описано D.R. Koerner в 1952 г. у коренных жителей чаморро на острове Гуам в Марианском архипелаге, расположенном в восточной части Тихоокеанского бассейна. Были подробно изучены воздействия ряда токсинов в природной экосистеме на острове Гуам. По данным P.A. Cox et al. (Сox et al., 2003), S.J. Murch et al. (Мurch et al., 2004), одним из природных небелковых веществ, обладающих нейротоксическим действием, является beta-Methylamino-L-alanin. Это вещество синтезируют цианобактерии, расположенные на кораллах, которыми, в свою очередь, питаются морские черепахи. Частое употребление местными жителями мяса черепах приводит к повышению его концентрации в тканях в 10—240 раз. Таким образом, в пищевой цепи на острове Гуам формируется эндогенный нейротоксический резервуар, оказывающий влияние на метаболизм белков, что способствует развитию заболевания. По мнению S. Murch et al., этот механизм приводит к развитию болезни даже через несколько лет у чаморро, покинувших Гуам (Мurch et al., 2004).

D.R. Koerner (1954) впервые обратил внимание на необычное сочетание неврологических синдромов, частота которых в 50—100 раз превышала распространенность бокового амиотрофического склероза в других странах мира, который нередко носил семейный характер (Koerner, 1952). Позднее эта патология была описана в этом же регионе на полуострове Кии в Японии и в западной части Новой Гвинеи (Hermosura et al., 2009; Kokubo, Kuzuhara, 2003). Заболевание чаще встречается у мужчин (соотношение муж.: жен. – 1,7:1) в широком возрастном диапазоне – от 30 и свыше 70 лет (Morris et al., 2001). Максимальная частота приходится на возраст 55—64 года. Болезнь чаще имеет быстрый и фатальный характер. В качестве спорадических случаев БАС и фронтотемпоральная деменция описаны в других странах мира (Егоркина, Гапонов, 2007; Dickson, 2008; Hasegawa et al., 2007). Патогенез болезни Гуам связан с формированием многочисленных нейрофибриллярных включений, преобладающих в коре, базальных ганглиях, гиппокампе, миндалевидном теле, спинном мозге, которые приводят к дегенерации соответствующих нейронов. Причиной конформационных нарушений в нейронах считают изменения в гене, кодирующем синтез микротубулярного тау-протеина (Morris et al., 2001; Hasegawa et al., 2007). Наrry Zimmerman (2001) показал, что заболеваемость БАС у коренного населения острова Гуам, расположенного в Тихом океане, составляла около 70 на 100 000 населения и была связана с питанием черепаховым мясом, которое использовали аборигены в пищу. При ограничении этой еды в пищу заболеваемость БАС на Гуам снизилась к концу века с 70 до 7 на 100 000 населения. Этот феномен получил название «комплекс острова Гуам».

Несмотря на то что удалось идентифицировать некоторые генетические факторы риска, фундаментальные причины, лежащие в основе БАС, продолжают оставаться неясными. Недавний пересмотр факторов риска внешней (окружающей) среды, выступающих в качестве этиологии БАС, не позволил прийти к установлению последовательной взаимосвязи между отдельным фактором внешней среды и риском развития болезни. За последнее десятилетие в области изучения этиологии и патогенеза БАС достигнуты определенные успехи.

Одной из красивых гипотез возникновения БАС является нейрофиламентная теория. Ее смысл заключается в том, что моторные нейронные клетки это самые большие нейроны в человеческом организме. Сохранение структуры нейрона и транспортные процессы в нем обеспечиваются цитосклелетом этой клетки. Белки цитоскелета – это в первую очередь нейрофиламенты – микроскопические системы трубочек и каркаса клетки. Мутантная СОД-1 может взаимодействовать с нейрофиламентами, что нарушает аксональный транспорт.

Также одним из малоизученных аспектов патофизиологии БАС является функциональное состояние сегментарного аппарата спинного мозга и внутри- и надсегментарных влияний на периферический мотонейрон. Этот аспект патогенеза БАС представляется актуальным для дальнейшего исследования, поскольку изучение изменений на уровне сегмента спинного мозга может дать возможность обоснования новых методов лечения с целью оптимальной фармакологической коррекции афферентно-эфферентной дисфункции сегментарного уровня. Эта теория получила название гипотезы восходящей и нисходящей нейродегенерации. БАС традиционно рассматривается как заболевание двигательной системы. Однако существуют работы, подтверждающие мультисистемный характер БАС с поражением экстрамоторных отделов центральной нервной системы (ЦНС) (Appel et al., 2008; Ordes et al., 2011; De Vos et al., 2008; Meininger et al., 2000) и экстранейральных систем (Meininger et al., 2004). Когнитивные нарушения, отражающие экстрамоторное поражение мозга, долгое время рассматривались как исключительные клинические варианты случайного развития деменции у 3—5% пациентов с БАС (Beauverd et al., 2012). Но в настоящее время все больше подтверждений находит гипотеза, что БАС и фронтотемпоральная деменция (ФТД) имеют общие компоненты патогенеза или даже являются различными проявлениями одного заболевания. Относительно высокая частота деменций при БАС подчеркивает необходимость разработки методик для краткого нейропсихологического обследования пациентов. Кроме уточнения патогенетических моментов и коррекции ведения пациента с учетом наличия у него когнитивных расстройств и угрозы развития деменции, ментальная сфера пациентов с БАС может стать предметом тщательного обследования, если встает юридический вопрос о дееспособности пациента[2 - https://www.dissercat.com/content/bokovoi-amiotroficheskii-skleroz-kliniko-elektroneiromiograficheskii-i-neiropsikhologicheski]. Большинство авторов выступают в поддержку сложносоставных взаимодействий на уровне генетической микросреды, выступающих в качестве предполагаемого причинного фактора дегенерации двигательных нейронов (Shaw, 2005; Cozzolino et al., 2008). Были исследованы гипотетические экзогенные факторы риска БАС, и их список может быть представлен следующими экзогенными факторами риска развития спорадических форм БАС: пищевые (диетические) факторы, электрическая травма, семейный анамнез болезни Альцгеймера или Паркинсона, географическое место жительства, служба в армии, детородный возраст, количество родов (у женщин) и порядок родов, возраст при наступлении менопаузы, потеря ребенка, род занятий, физическая активность, игра в футбол на профессиональном уровне, предыдущие полиомиелитные инфекции, раса и этническая принадлежность, курение, воздействие токсинов (сельскохозяйственные химические вещества, свинец), травмы позвоночника, стаж образования.

Генетические факторы. Примерно у 10% людей с заболеванием БАС имеется по крайней мере еще один член семьи, подвергшийся воздействию данной болезни, и предполагается, что в анамнезе может быть обнаружен семейный след развития БАС. Около 20% больных с аутосомной доминантной формой семейного БАС (СемБАС) и 2% больных с формой спорадического БАС (СпорБАС) обнаруживают мутации гена супероксиддисмутазы меди цинка SOD1 (Rosen et al., 1993). Предполагается, что мутации гена SOD1 вызывают развитие заболевания посредством токсического приобретения функции, а не через механизм утраты антиоксидантной функции фермента SOD1 (Shaw, 2005). К другим генам, вызывающим развитие семейной формы БАС (семБАС), можно отнести: алсин (alsin, БАС2); сенатаксин (senataxin, БАС4 и БАС5); везикуло-ассоциированный мембранный протеин (VAPB, БАС8), ангиогенин (angiogenin) и мутацию, происходящую в подгруппе p150 динактина (dynactin) DCTN1; оптинеурин (optineurin, ALS12). В недавнее время у пациентов с семейной и спорадической формами БАС (семБАС, спорБАС) были обнаружены мутации гена TARDBP, кодирующего TAR ДНК-связывающий протеин 43 (TDP-43), расположенный в хромосоме 1p36.22. Более того, мутации гена fused in sarcoma (FUS) недавно были идентифицированы примерно у 4% больных с семейной формой БАС, негативной к гену SOD1. Некоторые мутации других видов генов, способные увеличивать восприимчивость к БАС, определялись и у спорадических пациентов, в частности, мутации в KSP повторной области гена тяжелого нейрофиламента (NEFH), кодирующего нейрофиламентные тяжелые производные единицы; мутации в генотипе аполипопротеина Е ?4 (apolipoprotein E ?4 genotype); мутации в сниженной экспрессии протеина транспортера 2 возбудительной аминокислоты EAAT2. Сообщалось также о связи трех мутаций VEGF гена с повышенным риском развития спорадического БАС (спорадических случаев заболевания), в то время как недавно проведенный многоплановый метаанализ не выявил взаимосвязи между гаплотипами гена VEGF и увеличением риска возникновения БАС у людей. Подобные вариационные изменения отмечались в генах-кандидатах или при выполнении общегеномных исследований ассоциативных связей (Dion et al., 2009).

Курение как патогенетический фактор БАС. Методы доказательной медицины подтвердили связь курения с развитием БАС (Chen Lien al., 2015).

На сегодня не существует общепризнанной гипотезы патогенеза бокового амиотрофического склероза. Согласно современным представлениям, развитие БАС обусловлено взаимодействием наследственных и экзогенных провоцирующих факторов. Множество патологических изменений в нейронах приводит к предположению о многовариантном этиологическом факторе.

Окислительный стресс считается важнейшим фактором в этиопатогенезе БАС. Известно, что окислительный стресс причастен к процессу нейродегенерации при БАС. Также известно, что скопление образцов активных форм кислорода вызывает гибель клеток. Поскольку мутации, происходящие в гене SOD1, могут привести к семейному типу БАС, этот механизм окислительного стресса дегенерации двигательных нейронов при БАС представляет научный интерес. Данная гипотеза поддерживается биохимическими изменениями, отражающими повреждения свободных радикалов и патологический метаболизм свободных радикалов в цереброспинальной жидкости и образцах аутопсий пациентов с БАС (Ferrante et al., 1997; Smith et al., 1998; Tohogi et al., 1999). Кроме того, у образцов фибробластов, культивированных у больных с БАС, выявлялась повышенная чувствительность к окислительным разрушениям по сравнению с участниками контрольных групп (Aguirre et al., 1998).

Предполагается, что перекись водорода может служить аномальным субстратом для конформированной молекулы SOD1. В результате происходит усиление пероксидантных реакций и возрастает производство токсичных гидроксильных радикалов. Существенная роль окислительного стресса в патогенезе БАС подтверждается биохимическими исследованиями, при которых у больных обнаружилась недостаточность ряда систем антиоксидантной защиты, дисфункции митохондрий, дисметаболизм глутатиона, эксайтотоксина глутамата и механизмы глутаматного транспорта. Возможно, окислительное повреждение белковых мишеней (SOD1, нейрофиламентных белков, альфа-синукленина и т.д.) может облегчать и ускорять их совместную агрегацию, формирование цитоплазматических включений, которые служат субстратом для дальнейших патохимических окислительных реакций.

Апоптоз – опосредованная каспазами гибель клеток. Предполагается, что окончательный процесс гибели двигательных нейронов при БАС напоминает апоптозный путь запрограммированной клеточной гибели. Апоптоз представляет собой механизм, посредством которого двигательные нейроны отмирают в моделях мутантных мышей с трансгенным SOD1. В этих моделях были последовательно активированы апоптозные сигналы каспазы-1 и -3. Хроническая активация каспазы-1 происходила в раннем пресимптоматическом периоде, а каспаза-3 была активирована намного позже, будучи финальным эффектором гибели клеток (Pasinelli, 2000). В соответствии с данными сообщениями, внутрицеребровентрикулярная доставка широкого ингибитора каспазы приводила к снижению mRNA уровней каспазы-1 и -3 в тканях спинного мозга мутантных мышей с трансгенным SOD1 (G93A). Кроме того, двигательные нейроны были сохранены у мышей, прошедших трансфузию ингибитором каспазы, в сравнении с мышами, получившими трансфузию носителя-растворителя. Также удалось задержать начало развития заболевания и его прогрессирование (Li et al., 2000). Биохимические маркеры апоптоза определяются в терминальной стадии БАС пациентов и животных моделей. Ключевые элементы пути здорового апоптоза вовлечены в гибель клеток при БАС, в том числе семейство каспаз протеолитических ферментов, Bcl2 семейство онкопротеинов (антиапоптозные и проапоптозные онкогены) и ингибирующее апоптоз семейство протеинов. Что касается дополнительного подтверждения, говорящего в пользу апоптозного механизма гибели нейронов, было замечено, что избыточная экспрессия антиапоптозного протеина Bcl-2 (Kostic et al., 1997) и удаление проапоптозного протеина Bax (Gould et al., 2006) способны удерживать и сохранять двигательную функцию и продлевать выживаемость мутантных мышей с трансгенным SOD1 (G93A). Таким образом, токсичность мутантного SOD1, по всей видимости, опосредуется, по крайней мере частично, каспазами и другими апоптозными факторами.

Рис. 1. Установленные негенетические молекулярно-биологические механизмы развития бокового амиотрофического склероза

В интернете мы нашли очень познавательную схему патофизиологических нарушений и молекулярно-биологических механизмов, происходящих в нервной ткани при БАС, и приводим ее для иллюстрации всего вышесказанного (рис. 1).

Представленная схема позволяет очень наглядно увидеть все основные молекулярно-биологические механизмы патогенеза данного заболевания (рис. 2).

Рис. 2. Схема локальных молекулярных повреждений в двигательном нейроне при боковом амиотрофическом склерозе

Как видно на рисунке 2, локальные молекулярные повреждения в мотонейроне связаны с ослаблением поступления глютамата из астроцитов с формированием экситоксичности глютамата, что приводит к митохондриальной дисфункции в мотонейроне, нарушению обмена внутриклеточного Са

и возникновению повышенного окислительного стресса, появлению мутантного фермента СОД-1 и, как следствие, появлению мутаций в других генах ядра нейрона. Эти молекулярно-биологические нарушения приводят к появлению в цитоплазме мотонейрона агрегатов СОД-1, которые усиливают процессы мутагенеза. Освобождение воспалительных медиаторов из клеток микроглии приводит к локальному повреждению структуры аксонов и нарушает их информационную проводимость путем нарушения их цитоскелета.

Все большее число исследований указывают на то, что воспаление в центральной нервной системе, а также повышенная концентрация иммунных клеток, вызывающих воспалительные реакции, обнаруженная в центральной нервной системе пациентов с БАС, являются ключевыми этиопатогенетическими факторами при БАС. Клинические исследования выявили периферическое воспаление в БАС; были обнаружены такие маркеры воспаления, как Т-клетки, цитокины и хемокины. Китайские ученые из Университета Минзу в Китае (Minzu University of China; Пекин) провели систематический обзор и метаанализ 25 исследований, включая исследование 812 пациентов с БАС и 639 человек в контрольной группе. Это было сделано для устранения противоречивых результатов. Сравнивались уровни воспалительных цитокинов пациентов с БАС и пациентов контрольной группы, затем данные клинических исследований объединялись и анализировались. Метаанализ выявил значительную гетерогенность для 8 из 14 цитокинов. Интерлейкин (IL) -2, IL-4, IL-17, фактор роста эндотелия сосудов (VEGF) показали умеренные уровни гетерогенности, тогда как фактор некроза опухоли-? (TNF-?), моноцитарный хемоаттрактантный белок-1 (MCP-1), интерферон гамма (IFN?), IL-5 показали высокие уровни гетерогенности. Анализ в подгруппах показал, что уровни TNF-? в крови были значительно увеличены у пациентов с БАС по сравнению с пациентами в контрольной группе. Ученые отметили: предыдущие данные показали, что уровни TNF-?, IL-6 и IL-1? в крови повышены у пациентов с болезнью Альцгеймера и болезнью Паркинсона, в то время как рецептор фактора некроза опухоли 1 (TNFR1) увеличен при болезни Паркинсона, что дает представление об общем механизме у различных нейродегенеративных нарушений. Авторы пришли к выводу, что метаанализ впервые использовался для исследования изменений уровней воспалительных цитокинов у пациентов с БАС и показал увеличение уровней TNF-?, TNFR1, IL-1?, IL-6, IL-8 и VEGF в периферической крови у пациентов с БАС по сравнению с пациентами в контрольной группе. В исследовании подчеркивается, что периферические уровни цитокинов могут быть биомаркерами для БАС, что может быть интересным для медицинских работников, стремящихся преодолеть разрыв между постановкой диагноза и появлением симптомов. Исследование было опубликовано 22 августа 2017 г. в журнале Scientific Reports (https://studfiles.net/preview/1818013/page:92/).

Роли дисбаланса трофических факторов в этиопатогенезе БАС в последнее время придается большое значение, и эти инновационные молекулярные исследования оформились в новую теорию трофической недостаточности. Это связано с тем, что нейрональное развитие и выживание нейронов в нервной системе человека зависят от сбалансированной и строго управляемой поддержки, исходящей от трофических факторов. Подобные факторы способны регулировать и управлять такими важными физиологическими процессами, как нейрональная дифференциация, поддержка синапсов, нейрональное выживание, осуществляемое через ингибирование апоптоза, нейрогенез и аксональное прорастание (Korsching, 1993; Boonman, Isacson, 1999; Hou et al., 2008). Кроме того, они создают условия для формирования определенных экологических ниш, пригодных для выживания нейронов (Mud? et al., 2009). Трофическая поддержка имеет первостепенное значение для нейронов спинного мозга и обеспечивается из многочисленных различных клеточных источников, включая астроциты, микроглии, нейроны и эндотелиальные клетки (Ikeda et al., 2001; Bеchade et al., 2002; Dugas et al., 2008; Su et al., 2009; Hawryluk et al., 2012). Следовательно, трофическая поддержка рассматривается как перспективная терапевтическая стратегия при нейродегенеративных расстройствах (Kotzbauer, Holtzman, 2006) и способна играть важную роль в клеточных методах лечения, нацеленных на реиннервацию утраченных нейромышечных синапсов (Casella et al., 2010).

БАС (ALS) вызывается выборочной и прогрессирующей потерей спинальных, бульбарных и кортикальных двигательных нейронов, что приводит к необратимому параличу, речевым, глотательным и респираторным нарушениям и, в конечном итоге, гибели индивидуумов при быстром течении болезни. БАС преимущественно спорадичен, и 90% случаев происходят при отсутствии семейной истории заболевания. Тем не менее за последние годы стало очевидно, что многие спорадические случаи сопровождаются изменениями белков, мутации которых были выявлены в семейных случаях, что может по меньшей мере повышать вероятность развития БАС (Deng et al., 2010). Многие из подобных мутаций включают изменения в TAR ДНК-связывающем белке 43 (TDP43) и Fused (FUS) белках в генах саркомы, которые соединяют RNA молекулы (Gordon, 2013; Sreedharan, Brown, 2013), в то время как большинство семейных случаев с паттерном преобладающей аутосомной наследственности вызываются мутациями, происходящими в супероксиддисмутазе 1 (SOD1; Rosen et al., 1993). Трансгенные мыши, выделяющие мутантную форму человеческого SOD1, представляют собой наиболее широко используемую модель для изучения БАС in vivo (Gurney et al., 1994). Трофические факторы рассматриваются в качестве терапевтических мишеней при БАС, когда лечение направлено на восстановление утраченных нейромышечных синапсов и защиту двигательных нейронов от токсичности.

Существует целый ряд хорошо охарактеризованных трофических факторов для ЦНС, таких как нейротрофический фактор головного мозга (BDNF), инсулиноподобный фактор роста 1 (IGF1), цилиарный нейротрофический фактор (CNTF), глиальный нейротрофический фактор (GDNF), фактор нервов (NGF), гормон роста и васкулярный эндотелиальный фактор роста (VEGF). Многие из них тестировались на наличие нейропротекторных свойств в различных экспериментальных моделях БАС. В действительности вирусные векторы, кодирующие факторы роста, являются одним из наиболее эффективных способов сдерживания прогрессирования дегенеративных процессов и пролонгации выживания мышей с БАС (Wang et al., 2002; Kaspar et al., 2003; Azzouz et al., 2004; Dodge et al., 2008).

Недостаток специфических трофических факторов приводит к нарушению дифференцировки двигательных нейронов, а отсутствие какого-либо трофического сигнала приводит к нарушению развития разнообразных субпопуляций двигательных нейронов. Отсутствие глиального нейротрофического фактора видоизменяет местоположение развивающихся двигательных нейронов, иннервирующих конечности (Haase et al., 2002; Kramer et al., 2006), а также выборочно подавляет иннервацию интрафузальных мышечных веретен (Gould et al., 2008). Любопытен факт, что чрезмерная экспрессия данного фактора в мышцах при их развитии вызывает гипериннервацию нейромышечных соединений (Nguyen et al., 1998). В противоположность этому нейротрофический фактор головного мозга может и не оказывать большого влияния на двигательные нейроны, так как, несмотря на то что недостаток этого фактора оказывает существенное негативное воздействие на нормальное развитие сенсорных нейронов, двигательные нейроны способны развиваться без крупных изменений (Ernfors et al., 1994a; Jones et al., 1994). Более того, отдельные субпопуляции двигательных нейронов обнаруживают признаки различной степени чувствительности к недостатку нейротрофинов. Так, отсутствие нейротрофина-3 приводит к полной потере спинальных двигательных нейронов (Ernfors et al., 1994b; Gould et al., 2008), тогда как двигательные нейроны лица остаются незатронутыми, а отсутствие цилиарного нейротрофического фактора CNTF не вызывает изменений в развитии двигательных нейронов на спинальном или краниальном уровнях (DeChiara et al., 1995), хотя потеря рецептора ? этого фактора (CNTFR?) приводит к значительному дефициту моторных нейронов, и мыши, испытывающие недостаток в этом рецепторе, погибают в перинатальном периоде (DeChiara et al., 1995). Возможным альтернативным или дополнительным лигандом для этого рецептора может служить димер, образованный кардиотрофиноподобным цитокин/цитокиноподобным фактором 1, истощение которого способно вызывать существенное снижение количества двигательных нейронов (Forger et al., 2003). Также было обнаружено, что отсутствие иных факторов, таких как кардиотрофин-1, вызывает существенную потерю двигательных нейронов (Oppenheim et al., 2001; Forger et al., 2003), а отсутствие инсулиноподобного фактора роста-1 (IGF1) вызывает значительное сокращение численности тригеминальных и лицевых двигательных нейронов (Vicario-Abejоn et al., 2004). Наконец, в то время как недостаток фактора эндотелиального роста сосудов (VEGF) носит летальный характер, истощение элемента гипоксической ответной реакции в промотерном отделе гена VEGF вызывает снижение экспрессии этого фактора, что приводит к приобретенной прогрессирующей потере двигательных нейронов в мышиных моделях (Oosthuyse et al., 2001). После этого открытия стало известно, что определенные VEGF гаплотипы (-2578С/A, -1154G/A и -634G/C) передавали повышенную восприимчивость к БАС в работах с людьми, но позднее, при проведении метаанализа с участием более 7000 испытуемых, собранных из как минимум 8 различных популяций, не было выявлено какой-либо взаимосвязи между этими гаплотипами и возникновением БАС (Lambrechts et al., 2009). Кроме того, у больных с БАС не были выявлены мутации ни в элементе гипоксической ответной реакции промотерного отдела VEGF (Gros-Louis et al., 2003), ни в VEGF рецепторе 2 (Brockington et al., 2007).

Нейротрофические факторы оказывают большое воздействие не только на ход развития, они также управляют сохранением и поддержанием, выживанием двигательных нейронов на протяжении длительного времени даже после дифференцировки. Таким образом, они могут запускать активирование эндогенных регенеративных процессов. Помимо синтеза трофических факторов в локальной спинальной микросреде, синаптические мишени двигательных нейронов также играют важную роль в механизмах трофической обратной связи. На самом деле этот факт представляется первостепенным для развития ЦНС, так как при этом трофические элементы тканей мишеней достигают формирующиеся нейроны, что позволяет им преодолевать эндогенно закодированную гибель клеток (Oppenheim, 1991). В случае с двигательными нейронами подобные эффекты преимущественно достигаются при помощи факторов, происходящих из скелетных мышц (Oppenheim et al., 1988; Grieshammer et al., 1998; Kablar and Rudnicki, 1999).

Среди всех трофических факторов, протестированных в экспериментальных моделях БАС, фактор VEGF оказался одним из наиболее действенных защитников двигательных нейронов. Фактор VEGF замечательным образом замедляет прогрессирование заболевания и отмирание двигательных нейронов в семейных (Azzouz et al., 2004; Zheng et al., 2004; Storkebaum et al., 2005; Wang et al., 2007), а также спорадических (Tovar-Y-Romo et al., 2007; Tovar-Y-Romo, Tapia, 2010, 2012) опытных моделях моторной нейродегенерации. Активация VEGF рецептора 2 запускает фосфорилирование внутриклеточных путей, управляемых фосфатидилинозитол-3-киназой (PI3-K), фосфолипазой C-? и митоген-активированной протеинкиназой (MEK), которые способствуют ингибированию проапоптозных факторов, в том числе Bad (Yu et al., 2005), каспазы 9 (Cardone et al., 1998) и каспазы 3 (Gоra-Kupilas, Jo?ko, 2005; Kilic et al., 2006). Активация подобных внутриклеточных сигнальных путей была тщательно изучена применительно к ЦНС (Zachary, 2005). VEGF-зависимая активация PI3-K/Akt считается достаточной для предотвращения моторной нейрональной гибели в семейных моделях БАС in vitro (Li et al., 2003; Koh et al., 2005; Tolosa et al., 2008), а также в опытных моделях эксайтотоксической нейрональной гибели in vitro (Matsuzaki et al., 2001). Более того, активация PI3-K/Akt требуется для выживания двигательных нейронов и аксональной регенерации после спинномозгового поражения (Namikawa et al., 2000). Было доказано, что сигналинг, опосредованный PI3-K, критическим образом связан с защитным воздействием фактора VEGF против AMPA-индуцированной эксайтотоксической спинальной нейродегенерации в условиях in vivo (Tovar-Y-Romo, Tapia, 2010).

VEGF также выступает посредником в нейропротекции, осуществляемой через ингибирование стресс-активируемых протеинкиназ, в том числе p38 митоген-активируемой протеинкиназы. Повышенные уровни фосфорилированной p38 отмечались в моторных нейронах и в глии в моделях семейных случаев БАС на мышах (Tortarolo et al., 2003; Holasek et al., 2005; Veglianese et al., 2006; Dewil et al., 2007), даже в пресимптоматической стадии (Tortarolo et al., 2003). А также p38 является важным фактором для пути клеточной гибели, специфическим для двигательных нейронов (Raoul et al., 2006). Заслуживает внимания то, что ингибирование p38 может предотвращать гибель двигательных нейронов в in vitro семейной модели БАС (Dewil et al., 2007). Несколько групп исследователей доказали, что VEGF может подавлять активацию p38 как в семейных, так и в эксайтотоксичных моделях (Tovar-Y-Romo, Tapia, 2010) спинномозговой нейродегенерации.

Повышенная экспрессия VEGF-индуцирующего гипоксия-индуцированного фактора 1 (HIF-1?), наблюдаемая в спинном мозге, может быть вызвана взаимосвязанными гипоксическими состояниями спинальной микросреды, хотя моторные нейроны не кажутся способными к полномасштабному ответу на повышенный уровень нижележащих эффекторов, таких как VEGF (Sato et al., 2012). Одним из возможных объяснений этого обстоятельства, а также снижения экспрессии VEGF, наблюдаемой у пациентов (Devos et al., 2004), может быть тот факт, что индуцирующие факторы, такие как HIF-1?, не допускаются и исключены из процесса перемещения в ядро, несмотря на то что их концентрации увеличиваются в цитоплазме (Nagara et al., 2013). Подобная неспособность задействовать полную ответную реакцию синтеза VEGF во время гипоксии не носит специфический характер для клеточных типов, и такая неспособность отмечалась в моноцитах, полученных у больных БАС (Moreau et al., 2011).

В отличие от хорошего защитного потенциала фактора VEGF, другие факторы, в том числе BDNF, не оказывали защитное воздействие в разных экспериментальных условиях. Фактор BDNF синтезируется посредством активированной микроглии на ранних стадиях заболевания, когда глиальная ответная реакция преимущественно оказывает противовоспалительное и защитное воздействие, однако выработка этого фактора утрачивается при приобретении микроглией токсических элементов на более поздних стадиях (Liao et al., 2012). Кроме того, BDNF не защищает двигательные нейроны от эксайтотоксичности в экспериментальных моделях in vitro (Fryer et al., 2000) и in vivo (Tovar-Y-Romo, Tapia, 2012). Возможно, это объясняется секвестрацией лиганда, которая происходит за счет усеченной изоформы рецептора высокой аффинности, о котором известно, что он выделяется двигательными нейронами, поскольку устранение этого усеченного рецептора значительно замедляет начало болезни в семейной модели на мышах (Yanpallewar et al., 2012). Несмотря на это, BDNF может оказаться фактором риска для нейронов, либо ввиду того, что он увеличивает их чувствительность к эксайтотоксичности (Fryer et al., 2000), либо за счет механизма активации NADPH оксидазы – фермента (Kim et al., 2002), участвующего в патологии двигательных нейронов посредством разрушения путей выживания, активируемых трофическими факторами (Wu et al., 2006). Было показано, что другие факторы роста также оказывали благотворное воздействие, хотя и в меньшей степени.

Экспрессия фактора GDNF, осуществляемая астроцитами, повышается на фоне спинномозговой ишемии, и это может служить механизмом защиты по отношению к моторным нейронам против эксайтотоксической гибели (Tokumine et al., 2003). Фактор GDNF оказывает свое нейропротекторное воздействие преимущественно на нейрональные сомы, нежели на нервные окончания в нейромышечных синапсах, будучи задействованным непосредственно в спинном мозге (Suzuki et al., 2007). Напротив, при воздействии непосредственно на мышцы фактор GDNF сохраняет мышечно-нервный синапс и стимулирует функцию моторных нейронов и их выживание в семейной модели БАС (Suzuki et al., 2007), что дает основание предположить, что защитные свойства, осуществляемые фактором GDNF, носят довольно ограниченный характер и распространяются в пределах трофического источника. Тем не менее GDNF может ретроградно транспортироваться вдоль моторных нейрональных аксонов (Leitner et al., 1999), что создает условия для изучения маршрута доставки, который мог бы влиять как на сомы, так и на нервные окончания. Любопытно, что у людей с БАС выявляются признаки повышенной экспрессии фактора GDNF в мышцах (Grundstr?m et al., 1999), а сверхэкспрессия данного фактора в мышцах, но не в астроцитах приводит к увеличению продолжительности жизни у мышей с моделью БАС (Mohajeri et al., 1999). Комбинированная терапия с использованием факторов роста может оказаться альтернативой, заслуживающей должного изучения, о чем свидетельствует недавнее сообщение о трансгенной модели БАС на крысах, на которой было показано, что факторы VEGF и GDNF, вводимые через имплантат мезенхимальных стволовых клеток человека, оказывают синергическую защиту нервных синапсов мышц (Krakora et al., 2013).

Что касается фактора CNTF, хотя и сообщалось, что блокировка его экспрессии приводит к потере моторных нейронов (Masu et al., 1993) и развитию двигательных симптомов, подобное воздействие носит сравнительно легкий характер в сравнении с действием, индуцируемым потерей других факторов, в частности VEGF. Интересно также то, что у больных БАС выявляется избирательное снижение экспрессии CNTF в тех отделах ЦНС, которые подверглись негативному воздействию болезни (Anand et al., 1995). Напротив, сывороточные уровни CNTF обычно повышены у больных БАС, особенно у пациентов с формой люмбального начала заболевания (Laaksovirta et al., 2008).

Глава 3. Генетические аспекты бокового амиотрофического склероза

В настоящее время доминирует генетическая теория происхождения БАС. Приблизительно 5—10% случаев заболевания являются семейным БАС (FALS), остальные 90—95% случаев – спорадические БАС (SALS). Известно, что около 20% семейного и 5—7% спорадического БАС связаны с мутациями в гене медь-цинк зависимой супероксиддисмутазы (СОД-1) – фермента, утилизирующего свободные радикалы.