banner banner banner
Краткая история почти всего на свете: экскурсия в окружающий мир
Краткая история почти всего на свете: экскурсия в окружающий мир
Оценить:
Рейтинг: 0

Полная версия:

Краткая история почти всего на свете: экскурсия в окружающий мир

скачать книгу бесплатно

Следует сказать, что пока все идет как надо. Но в долгосрочной перспективе гравитация может оказаться немного сильнее, чем надо; однажды она, возможно, остановит расширение Вселенной и заставит ее сжиматься, пока снова не втиснет ее в сингулярность, чтобы, возможно, начать весь процесс заново. С другой стороны, гравитация может оказаться слишком слабой, и в этом случае Вселенная будет расширяться вечно, пока все не окажется настолько далеко друг от друга, что не останется никакой возможности для взаимодействия материи, и Вселенная станет очень просторным, но инертным и безжизненным местом. Третья возможность состоит в том, что гравитация окажется идеально настроенной – у космологов для этого есть термин «критическая плотность», в этом случае тяготение удержит Вселенную как раз в нужных размерах, чтобы дать возможность сложившемуся порядку вещей продолжаться вечно[12 - Это не так. В случае критической плотности Вселенная тоже будет бесконечно расширяться и в конце концов опустеет. Но это будет происходить медленнее, чем в модели со слабой гравитацией. Статической модели Вселенной, которая бы перестала расширяться и не стала бы сжиматься, космология Большого взрыва не предлагает.]. Космологи в светлые моменты иногда называют это тонкой подстройкой параметров – имея в виду, что все, дескать, правильно. (Для сведения: эти три возможные вселенные известны соответственно как закрытая, открытая и плоская.)

А теперь вопрос, который в какой-то момент возникал у каждого из нас: что будет, если добраться до края Вселенной и, так сказать, высунуть голову за занавес? Где окажется голова, если она больше не будет во Вселенной? Что мы увидим за ее пределами? Ответ неутешительный: вы никогда не доберетесь до края Вселенной. И не потому даже, что добираться туда слишком долго – хотя это, конечно, так, – а потому, что если бы вы двигались все дальше и дальше по прямой линии, упрямо и бесконечно долго, то все равно никогда не достигли бы внешней границы. Вместо этого вы вернулись бы туда, откуда отправились (тут вы, по-видимому, упали бы духом и отказались от этой затеи). Объясняется это тем, что Вселенная изгибается особым образом, который невозможно как следует представить, в соответствии с теорией относительности Эйнштейна (о ней мы в свое время поговорим). А пока достаточно знать, что мы вовсе не плаваем в каком-то огромном раздувающемся пузыре. Пространство изогнуто таким образом, что остается безграничным, но конечным[13 - Конечность означает, что объем Вселенной можно выразить неким пусть и очень большим, но конкретным числом. Это возможно только в закрытой модели Вселенной. В открытой и плоской моделях объем Вселенной бесконечен. И ни в одном случае у Вселенной нет края или границы в пространстве.]. Строго говоря, неправильно даже утверждать, что пространство расширяется, потому что, как отмечает лауреат Нобелевской премии физик Стивен Вайнберг[14 - Стивен Вайнберг (Steven Weinberg, р. 1933) – американский физик, лауреат Нобелевской премии 1979 г. за разработку теории электрослабого взаимодействия, объясняющего с единых позиций электромагнетизм и слабые ядерные силы. Автор ряда научно-популярных книг, самая известная из которых – «Первые три минуты», посвященная рождению Вселенной. Книга переведена на русский язык (М.: Эксмо, 2011).], «солнечные системы и галактики не расширяются, и само пространство не расширяется». Галактики скорее разбегаются. Все это, похоже, бросает вызов интуиции. Или, как однажды замечательно отметил известный биолог Дж. Б. С. Холдейн[15 - Дж. Б. С. Холдейн (J. B. S. Haldane, 1892–1964) – британский генетик и эволюционный биолог, см. гл. 16.]: «Вселенная не только более необычна, чем мы предполагаем; она необычнее, чем мы можем предположить».

Для объяснения кривизны пространства обычно приводится следующая аналогия – попробовать представить жителя вселенной плоских поверхностей, который никогда не видел шара и попал на Землю. Сколько бы он ни брел по поверхности планеты, он так и не обнаружил бы края. В конце концов он вернулся бы к тому месту, откуда начал путь, окончательно сбитым с толку. Так вот, в отношении космоса мы оказываемся в таком же положении, как и наш озадаченный флэтландец[16 - Флэтландец – обитатель Флэтландии, двумерного мира, описанного в одноименной классической книге Эдвина Эббота (русский перевод: Флэтландия. Сферландия. СПб.: Амфора, 2001).], только нас приводит в смущение большее число измерений.

Так же, как не существует места, где можно найти край Вселенной, нет и центра, где можно встать и сказать: «Вот отсюда все началось. Вот самый центр всего сущего». Мы все в центре всего этого. Хотя в действительности мы не знаем этого наверняка; не можем доказать математически. Ученые просто исходят из того, что мы не можем быть центром Вселенной – вы только вообразите себе, что бы это означало, – и потому явления должны быть одинаковыми для всех наблюдателей во всех местах. И все же точно мы этого не знаем.

Для нас Вселенная простирается на расстояние, которое покрыл свет за миллиарды лет со времени ее образования. Эта видимая Вселенная – Вселенная, которую мы знаем и о которой можем говорить, – имеет в поперечнике порядка миллиона миллионов миллионов миллионов (1 000 000 000 000 000 000 000 000 = 10

) километров. Но согласно большинству теорий Вселенная в целом – метавселенная, как ее иногда называют – еще намного просторнее. Рису считает, что число световых лет в обхвате этой большей, незримой Вселенной выражалось бы не «десятью нулями, даже не сотней нулей, а миллионами». Словом, пространство намного больше, чем вы можете представить, не утруждая себя попытками достичь чего-то еще более потустороннего.

Долгое время теория Большого взрыва имела один бросающийся в глаза пробел, беспокоивший множество людей, а именно она не могла объяснить, как здесь оказались мы. Хотя 98 процентов существующей материи создано Большим взрывом, эта материя состояла исключительно из легких газов: гелия, водорода и лития, о чем мы уже упоминали. Ни одной частицы тяжелых элементов, так необходимых для нашего существования – углерода, азота, кислорода и всех остальных, – не возникло из газового котла творения. Однако – и в этом состоит затруднение, – чтобы выковать эти тяжелые элементы, требуются тепло и энергия, сравнимые с самим Большим взрывом. Но был всего лишь один Большой взрыв, и он не произвел эти элементы. Тогда откуда же они взялись? Интересно, что человеком, нашедшим ответ на этот вопрос, был космолог, который от души презирал теорию Большого взрыва и само это название придумал в насмешку над ней.

Вскоре мы поговорим о нем подробнее, но, прежде чем мы вернемся к вопросу о том, как мы здесь оказались, хорошо бы несколько минут поразмыслить над тем, где в точности находится это «здесь».

Глава 2. Добро пожаловать в Солнечную систему

В наши дни астрономы могут делать самые поразительные вещи. Если бы кто-нибудь чиркнул на Луне спичкой, они могли бы разглядеть эту вспышку. По самым незначительным пульсациям отдаленных звезд они могут сделать выводы о размерах, свойствах и даже о потенциальной обитаемости планет, слишком далеких, чтобы их разглядеть, – настолько далеких, что понадобилось бы полмиллиона лет, чтобы попасть туда на межпланетном корабле. Своими радиотелескопами они могут улавливать излучения настолько слабые, что общее количество энергии, полученной из-за пределов Солнечной системы, с тех пор как начались радионаблюдения (в 1951 году) на всех инструментах, взятых вместе, составляет, по словам Карла Сагана[17 - Карл Эдуард Саган (Carl Edward Sagan, 1934–1996) – американский астроном, астробиолог и выдающийся популяризатор науки, автор нескольких десятков книг, среди них «Космос» (русский перевод: СПб.: Амфора, 2008), по которой телекомпанией PBS был снят одноименный научно-популярный сериал. Благодаря его усилиям были начаты научные исследования по поиску жизни и разума во Вселенной. В частности, он был учредителем Планетарного общества, которое осуществляет программу SETI.], «меньше, чем энергия одной упавшей на землю снежинки».

Словом, во Вселенной происходит не так уж много такого, что астрономы не могли бы при желании обнаружить. Тем более удивительно, что до 1978 года никто не замечал, что у Плутона есть спутник. Летом того года молодой астроном Джеймс Кристи из обсерватории военно-морских сил США во Флэгстаффе, штат Аризона, просматривая фотографические изображения Плутона, вдруг заметил там что-то еще – что-то размазанное, неясное, но определенно иное, чем сам Плутон. Посоветовавшись с коллегой, Робертом Харрингтоном, он пришел к выводу, что это спутник. И не какой-нибудь спутник. Относительно своей планеты он был самым большим спутником в Солнечной системе.

В действительности это был своего рода удар по статусу Плутона как планеты, статусу, который никогда не был особенно твердым. Поскольку место, занимаемое спутником, и место, занимаемое Плутоном, раньше считалось одним целым, теперь это означало, что Плутон намного меньше, чем полагали прежде, – даже меньше Меркурия. Мало того, в Солнечной системе семь спутников, включая нашу Луну, превосходят Плутон по размеру.

Естественно, возникает вопрос, почему в нашей собственной Солнечной системе так долго не могли найти этот спутник? Ответ связан отчасти с тем, куда астрономы нацеливают свои инструменты, отчасти с тем, для каких целей они сконструированы, а отчасти с особенностями самого Плутона. Но главное – это куда направлены инструменты. По словам астронома Кларка Чапмана[18 - Кларк Чапман (Clark Chapman) – американский планетолог, специалист по астероидам и ударным кратерам в Солнечной системе. Участник научных групп межпланетных проектов Galileo, NEAR, MESSENGER. Автор ряда научно-популярных книг, в числе которых «Космические катастрофы», и большого количества научно-популярных статей.]: «Большинство людей думает, что астрономы приходят по ночам в обсерватории и разглядывают небо. Это не так. Почти все имеющиеся в мире телескопы предназначены вглядываться в крошечные участки неба, чтобы увидеть вдали квазар, или охотиться за черными дырами, или подробно рассмотреть отдаленную галактику. Единственная существующая сеть телескопов, сканирующих небо, сконструирована и построена военными[19 - На самом деле многие обсерватории работают над составлением так называемых обзоров неба в разных диапазонах излучения. Обычно для этого строится специальный телескоп, который систематически, квадрат за квадратом, снимает все доступное наблюдениям небо. Раньше такие обзоры обычно занимали много месяцев, а иногда и лет. В последнее время бурно развиваются сети широкоугольных телескопов-роботов, которые уже скоро смогут осматривать все ночное небо за несколько суток.]».

Мы избалованы рисунками художников и представляем себе четкость и разрешение снимков такими, каких на самом деле в астрономии нет. Плутон на снимке Кристи тусклый и размытый, как клочок космической ваты, а его спутник совсем не похож на романтически подсвеченный, резко очерченный шар, какой вы увидели бы на рисунке в National Geographic, скорее, это еле заметный невнятный намек на еще одно мутное пятнышко. Оно было до того неотчетливым, что понадобилось еще семь лет, чтобы хоть кто-то снова нашел спутник и тем самым независимо подтвердил его существование.

Занятно, что Кристи сделал свое открытие во Флэгстаффе, ибо именно здесь в 1930 году был впервые обнаружен сам Плутон. Это значительное для астрономии событие в значительной мере является заслугой астронома Персиваля Лоуэлла. Лоуэлл, происходивший из одной из старейших и богатейших бостонских семей (той самой, о которой поется в известной песенке, что Бостон – это родина бобов и чудаков, где Лоуэллы разговаривают только с Кэботами, а Кэботы только с Богом), финансировал создание знаменитой обсерватории, носящей его имя, но самую неизгладимую память о себе он оставил благодаря гипотезе о том, что Марс покрыт каналами, построенными трудолюбивыми марсианами с целью переброски воды из районов полюсов к засушливым, но плодородным землям ближе к экватору[20 - Лоуэлл сам активно вел наблюдения в своей обсерватории. Хотя каналы на Марсе «обнаружил» не он, а итальянский астроном Джованни Скиапарелли, именно Лоуэлл прочно увязал их с фантастическими марсианами. Впоследствии, однако, не удалось обнаружить не только марсиан, но и каналы.].

Второе твердое убеждение Лоуэлла состояло в том, что где-то за Нептуном должна существовать еще не открытая девятая планета, окрещенная планетой X. В своем убеждении Лоуэлл исходил из неправильностей, которые он обнаружил в орбитах Урана и Нептуна, и посвятил последние годы жизни попыткам отыскать газовый гигант, который, как он был уверен, там находился. К несчастью, в 1916 году Лоуэлл скоропостижно скончался, отчасти из-за подорвавших его здоровье упорных поисков. Поиски прервались, а наследники Лоуэлла перессорились из-за его имущества. Однако в 1929 году, отчасти для того, чтобы отвлечь внимание от эпопеи с марсианскими каналами – к тому времени она уже серьезно пятнала репутацию, – правление Лоуэлловской обсерватории решило возобновить поиски и наняло для этого молодого канзасца Клайда Томбо.

Томбо формально не имел астрономического образования, но отличался старательностью и сметливостью, и после года терпеливых поисков ему наконец удалось обнаружить Плутон – еле видимую светлую точку среди сверкающих россыпей звезд. Это была удивительная находка, тем более поразительная, что представления Лоуэлла о занептуновой планете оказались полностью ошибочными. Томбо сразу увидел, что новая планета совсем не похожа на огромный газовый шар, о котором говорил Лоуэлл, – но все оговорки о природе новой планеты, которые высказывал сам Томбо или кто-то другой, тут же отметались прочь в сенсационной горячке, сопровождавшей любую важную новость в тот легко поддающийся возбуждению век. Это была первая открытая американцем планета, и никто не хотел думать о том, что вообще-то это всего лишь далекая от нас ледышка. Ее назвали Плутоном, отчасти потому, что первые две буквы составляли монограмму из инициалов Лоуэлла. Лоуэлла повсюду посмертно прославляли как величайшего гения, а Томбо был почти забыт, о нем помнили только в среде астрономов, изучающих планеты, которые глубоко его уважают.

Некоторые астрономы по-прежнему считают, что где-то там, возможно, существует и планета X – настоящая громадина, возможно, в десять раз больше Юпитера, но она так далека от нас, что пока остается невидимой. (Она получала бы так мало солнечного света, что ей было бы почти нечего отражать.) Есть мнение, что она может оказаться не обычной планетой, вроде Юпитера и Сатурна, – для этого она находится слишком далеко, поговаривают о величинах около 7 триллионов километров, а скорее – подобна недоделанному Солнцу. Большинство звездных систем в космосе являются двойными (состоящими из двух звезд), и это делает наше одинокое Солнце немного странным.

Что касается самого Плутона, то никто точно не знает, каковы его размеры[21 - Размеры Плутона на сегодня определены довольно точно. Его диаметр составляет 2306 ± 20 км.], из чего он состоит, какая у него атмосфера и что он вообще собой представляет. Многие астрономы считают, что это вовсе не планета, а всего лишь самый крупный объект, найденный до сих пор в зоне космических обломков, известной как пояс Койпера[22 - В 2005 году группа астрономов под руководством Майкла Брауна обнаружила в поясе Койпера объект, получивший предварительное обозначение 2003 UB 313, который превосходит по размерам Плутон. Это открытие еще более обострило вопрос о планетном статусе Плутона и в итоге после длительных споров привело к лишению его статуса планеты. Это произошло 24 августа 2006 г.]. На самом деле пояс Койпера был теоретически предсказан в 1930 году астрономом Ф. С. Леонардом, однако он носит имя работавшего в Америке голландца Джерарда Койпера, который развил эту идею. Пояс Койпера служит источником так называемых короткопериодических комет – тех, которые появляются сравнительно регулярно. Самая известная среди них – комета Галлея. Ведущие более уединенный образ жизни долгопериодические кометы (среди них недавние гостьи – кометы Хейла-Боппа и Хиякутаке) появляются из намного более далекого облака Оорта, о котором разговор еще впереди.

Несомненно, Плутон ведет себя не совсем так, как другие планеты. Он не только маленький и тусклый, но также настолько непостоянен в своих движениях, что никто точно не скажет, где Плутон будет находиться через столетие[23 - Орбита Плутона хорошо определена, и для астрономов не составляет труда рассчитать его движение на тысячи лет в прошлое и в будущее.]. Тогда как орбиты других планет находятся более или менее в одной плоскости, орбита Плутона наклонена на 17 градусов подобно щегольски сдвинутой набекрень шляпе. Его орбита настолько необычна, что на каждом обороте своего одинокого кружения вокруг Солнца он заметное время находится к нам ближе, чем Нептун. Большую часть 1980-х и 1990-х годов именно Нептун был самой отдаленной планетой Солнечной системы. Только 11 февраля 1999 года Плутон вернулся во внешний ряд, где проведет теперь 228 лет.

Так что даже если Плутон действительно планета, то определенно весьма странная. Совсем крошечная: ее масса составляет всего четверть процента массы Земли. Если положить Плутон на территорию Соединенных Штатов, то он не займет и половины площади сорока восьми южных штатов. Одно это является крайней аномалией; значит, наша планетная система состоит из четырех внутренних твердых планет, четырех внешних газовых гигантов и крошечного одинокого ледяного шарика. Однако есть все основания полагать, что в той части пространства мы скоро начнем находить другие, еще более крупные ледяные шары. И тогда у нас возникнут проблемы. После того как Кристи обнаружил спутник Плутона, астрономы стали активнее разглядывать этот сектор космоса и к началу декабря 2002 года нашли более шестисот транснептуновых объектов, или плутино[24 - Название «плутино» не прижилось. В настоящее время Международный астрономический союз рекомендовал использовать термины «карликовая планета» для объектов сферической формы, недотягивающих до статуса планеты, и «малое тело Солнечной системы» – для всех остальных объектов.], как их еще называют. Один из них, названный Варуной, почти такого же размера, как спутник Плутона. Теперь астрономы считают, что число таких объектов может составлять миллиарды. Трудность в том, что многие из них крайне темные. Как правило, их альбедо, то есть отражающая способность, составляет всего 4 процента, примерно как у куска древесного угля. К тому же эти куски угля находятся от нас на расстоянии более шести миллиардов километров.

А как, в сущности, это далеко? Да почти не поддается воображению. Видите ли, пространство просто громадно, если не сказать чудовищно. Чтобы осознать это, да и просто ради развлечения, представьте, что мы собираемся совершить путешествие на ракетном корабле. Мы полетим не очень далеко – всего лишь до края нашей Солнечной системы, – просто чтобы определиться, насколько велик космос и какую малую его часть занимаем мы.

Теперь плохая новость: боюсь, что к ужину мы домой не вернемся. Даже при скорости света (300 000 километров в секунду), чтобы попасть на Плутон, потребовалось бы семь часов[25 - В зависимости от положения Плутона на орбите свет идет до него от 4 до 7 часов. Сейчас этот путь занимает около 5,5 часа.]. Но мы, конечно, не можем путешествовать с такой скоростью. Придется лететь со скоростью межпланетного корабля, а это гораздо медленнее. Самая высокая скорость, достигнутая пока созданными человеком предметами, это скорость космических аппаратов «Вояджер-1» и «Вояджер-2», которые сейчас улетают от нас со скоростью 56 000 километров в час[26 - «Вояджер-1» движется относительно Солнца со скоростью более 61,2 тыс. км/ч (17,0 км/с). Скорость «Вояджера-2» на 5,8 тыс. км/ч (1,6 км/с) меньше.].

Основанием для запуска «Вояджеров» именно в те сроки (август и сентябрь 1977 года) послужило то, что Юпитер, Сатурн, Уран и Нептун выстроились тогда так, как бывает только раз в 175 лет. Это позволило обоим «Вояджерам» использовать технику гравитационных маневров, когда аппарат поочередно перелетает от одного газового гиганта к другому, будто подстегиваемый космическим кнутом. Но даже при этом им потребовалось девять лет, чтобы достичь Урана, и двенадцать, чтобы пересечь орбиту Плутона. А хорошая новость заключается в том, что если мы подождем до января 2006 года (когда предварительно намечен запуск к Плутону аппарата НАСА «Новые горизонты»), то сможем воспользоваться благоприятным расположением Юпитера плюс определенными успехами в области техники и попадем туда где-то за десять лет[27 - Зонд «Новые горизонты» был успешно запущен 19 января 2006 г. Он миновал Юпитер 28 февраля 2007 г. и достигнет Плутона летом 2015 г.] – хотя, боюсь, возвращаться домой придется значительно дольше. Короче, в любом случае путешествие выйдет довольно долгим.

Итак, первое, что вы, вероятно, уяснили, так это то, что космос весьма удачно назван (одно из значений английского space – пустое место. – Примеч. пер.) и ужасно беден событиями. Наша Солнечная система, пожалуй, самое оживленное место на триллионы миль вокруг, однако все, что мы видим в ней: Солнце, планеты со спутниками, миллиард или около того кувыркающихся камней пояса астероидов, кометы и разные другие плавающие обломки, – занимает менее одной триллионной части имеющегося пространства. Вы также легко поймете, что ни на одной из встречавшихся вам карт Солнечной системы масштаб даже отдаленно не соответствует реальному. На большинстве школьных схем планеты изображены рядом, вплотную одна к другой – на многих иллюстрациях планеты-гиганты даже отбрасывают друг на друга тени, – но это неизбежный обман, дабы поместить их все на одном листе бумаги. В действительности Нептун расположен не чуть позади, а далеко позади Юпитера – в пять раз дальше, чем сам Юпитер от нас, так далеко, что получает лишь 3 процента солнечного света, получаемого Юпитером.

Расстояния эти таковы, что на практике невозможно изобразить Солнечную систему с соблюдением масштаба. Даже если сделать в учебнике большую раскладывающуюся вклейку или просто взять самый длинный лист бумаги для вывесок, этого все равно будет недостаточно. Если на масштабной схеме Солнечной системы Землю изобразить размером с горошину, Юпитер будет находиться на расстоянии 300 метров, а Плутон – в двух с половиной километрах (и будет размером с бактерию, так что в любом случае вы не сможете его разглядеть[28 - Это преувеличение. Плутон лишь в 5,5 раза меньше Земли. В описанном масштабе он будет размером около миллиметра.]). В том же масштабе ближайшая звезда, Проксима Центавра, будет находиться в 16 000 километров от нас. Если даже вы ужмете все до такой степени, что Юпитер станет размером с точку в конце этого предложения, а Плутон не больше молекулы[29 - В этом масштабе размер Плутона будет около 5 микронов. Это размер крупной бактерии, что во много тысяч раз больше размеров молекул.], то и в этом случае Плутон будет находиться на расстоянии больше десяти метров.

Так что Солнечная система действительно огромна. Когда мы достигнем Плутона, то окажемся так далеко, что Солнце – наше родное, теплое, дающее нам загар и жизнь солнышко – сожмется до размера булавочной головки. Немного больше яркой звезды[30 - В действительности Солнце на Плутоне значительно ярче полной Луны на Земле. При его свете вполне можно читать.]. В такой навевающей тоску пустоте вы начнете понимать, почему даже весьма значительные предметы, например спутник Плутона, ускользали от внимания. В этом смысле Плутон не одинок. До полета «Вояджеров» считалось, что у Нептуна два спутника; «Вояджер» нашел еще шесть. Когда я был мальчишкой, считалось, что в Солнечной системе имеется тридцать спутников. Теперь их насчитывается по меньшей мере девяносто, примерно треть из них обнаружена за последние десять лет. Отсюда следует, что, когда мы судим о Вселенной в целом, надо помнить, что мы, по существу, не знаем, что происходит в нашей собственной Солнечной системе.

А теперь еще одна вещь, которую следует учесть: пролетая мимо Плутона, мы лишь пролетаем мимо Плутона. Если заглянете в план полета, то увидите, что его цель – путешествие к краю Солнечной системы, но боюсь, что мы еще не добрались до него. Плутон может быть последним объектом, отмеченным на школьных схемах, но сама система здесь не кончается. На самом деле ее конца еще даже не видно. Мы не доберемся до края Солнечной системы, пока не пройдем сквозь облако Оорта, огромное царство кочующих комет, а облака Оорта мы не достигнем раньше чем – прошу прощения – через десять тысяч лет. Плутон отмечает всего лишь одну пятидесятитысячную пути, а вовсе не край Солнечной системы, как бесцеремонно указывается на школьных схемах[31 - Поскольку облако Оорта остается гипотетическим объектом, астрономы обычно склонны считать границей Солнечной системы так называемую гелиопаузу – область, где солнечный ветер (поток заряженных частиц, испускаемых Солнцем) сталкивается с межзвездной средой и перемешивается с ней. Расстояние до гелио-паузы примерно вдвое больше, чем до Плутона, и межпланетная станция «Вояджер-1» начала пересекать гелиопаузу в середине 2012 г.].

У нас, конечно, нет шансов совершить такое путешествие. Даже поездка в 386 000 километров до Луны пока еще довольно сложное предприятие. Полет людей на Марс, к которому в краткий момент головокружения призывал президент Буш, потихоньку отложили в сторону, когда кто-то подсчитал, что он обойдется в 450 миллиардов долларов и, возможно, кончится гибелью всего экипажа (их ДНК разнесло бы в клочья солнечными частицами высокой энергии, от которых они не могли бы защититься).

Исходя из того, что мы теперь знаем и можем вообразить, оставаясь в пределах разумного, нет абсолютно никаких шансов, что человек когда-либо достигнет края Солнечной системы. Это просто слишком далеко. В нынешних условиях даже с помощью телескопа Хаббла нельзя увидеть облако Оорта, так что мы, по существу, не знаем, что там находится. Его существование весьма вероятно, но остается лишь гипотезой[32 - Правильнее было бы называть его облаком Ёпика – Оорта. Эстонский астроном Эрнст Ёпик выдвинул эту гипотезу в 1932 году, а голландский астроном Ян Оорт восемнадцать лет спустя уточнил расчеты.].

Все, что можно с уверенностью сказать об облаке Оорта, так это то, что оно начинается где-то за Плутоном и тянется примерно на два световых года в космос. Основной мерой длины в Солнечной системе является астрономическая единица, обозначаемая а. е., которая соответствует расстоянию от Солнца до Земли. Плутон находится от нас примерно в 40 а. е., сердцевина облака Оорта – приблизительно в пятидесяти тысячах. Словом, далековато.

Но давайте снова представим, что мы добрались до облака Оорта. Первое, что вы заметите, – здесь царит полное спокойствие. Мы забрались очень далеко – так далеко, что даже наше Солнце не является самой яркой звездой на небосводе[33 - Это не так, в пределах гипотетического облака Оорта Солнце все-таки остается самой яркой звездой. По блеску оно будет сравнимо с планетами Венерой и Юпитером, как они видны на земном небе.]. Поразительно, что такой крошечный далекий огонек обладает достаточной силой тяготения, чтобы удерживать на орбите все эти кометы. Эти узы не очень крепкие, так что кометы плывут величаво, со скоростью всего несколько сотен километров в час. Время от времени одна из этих одиноких комет сходит со своей обычной орбиты под действием какого-нибудь слабого гравитационного возмущения – возможно, от пролетающей мимо звезды. Иногда их выбрасывает в пустоту космического пространства, и мы их уже никогда больше не увидим, но порой они переходят на вытянутую орбиту вокруг Солнца. Ежегодно через внутренние области Солнечной системы пролетают три-четыре такие долгопериодические кометы[34 - Имеются в виду кометы, доступные для любительских наблюдений. На самом деле каждый год регистрируются сотни долгопериодических и непериодических комет. Большинство из них проходят так близко от Солнца, что полностью разрушаются его теплом. Такие кометы регистрируются космической солнечной обсерваторией SOHO, которая постоянно следит за ближайшими окрестностями Солнца.]. Изредка эти случайные гостьи врезаются во что-то твердое, вроде Земли… Так вот зачем мы здесь оказались! Комета, на которую мы прилетели посмотреть, только-только начала свое долгое падение к центру Солнечной системы. Она направляется – подумать только! – к городку Мэнсон, штат Айова. Ей еще долго добираться сюда – по меньшей мере три-четыре миллиона лет, – так что пока оставим ее в покое и вернемся к ней позже.

* * *

Итак, это наша Солнечная система. А что там еще, за пределами Солнечной системы? Ничего и вместе с тем очень много – это зависит от того, как посмотреть.

В краткосрочном плане там нет ничего. Самый глубокий вакуум, когда-либо создававшийся людьми, не так пуст, как межзвездное пространство. И вам предстоит преодолеть порядочное количество этого «ничего», пока вы не доберетесь до следующего кусочка чего-нибудь. Наша ближайшая соседка по космосу, Проксима Центавра, входящая в состав тройной звезды, известной как Альфа Центавра, находится от нас на расстоянии 4,3 светового года, пустяк по масштабам Галактики, однако это в сто миллионов раз дальше Луны. Чтобы добраться туда, межпланетному кораблю потребовалось бы не меньше двадцати пяти тысяч лет, и если бы вы даже совершили это путешествие, то все равно не нашли бы ничего, кроме одинокой кучки звезд посреди безграничной пустоты. Чтобы добраться до следующей заметной вехи, Сириуса, понадобится преодолеть еще 4,6 светового года[35 - Строго говоря, Сириус – это шестая по удаленности от Солнца звездная система (в нее входят 8 звезд), просто более близкие звезды (кроме альфы Центавра) не видны невооруженным глазом. Расстояние от Солнца до Сириуса – 8,6 св. г., а от Проксимы Центавра до Сириуса даже дальше – 9,3 св. г., поскольку эти звезды находятся в разных направлениях от Солнца.]. И так будет и дальше, если вы захотите мотаться по космосу от звезды к звезде. Только на то, чтобы достичь центра нашей Галактики, потребуется больше времени, чем существует человеческий род.

Космос, позвольте мне повторить, – это нечто чудовищно огромное. Среднее расстояние между звездами составляет более 30 миллионов миллионов километров. Даже при скоростях, приближающихся к скорости света, это фантастически далеко для любого странствующего индивидуума. Разумеется, возможно, что внеземные существа преодолевают миллиарды миль, чтобы позабавиться, выделывая круги на засеянных полях в Уилтшире или до смерти пугая бедного парня, едущего в грузовичке по пустынной дороге где-нибудь в Аризоне (в конце концов, и у них должны быть озорные подростки), но это все же представляется крайне маловероятным.

Правда, статистически вероятность того, что где-то там есть мыслящие существа, вполне приличная. Никто не знает точно, сколько звезд в Млечном Пути – оценки варьируются от сотни миллиардов до, возможно, четырехсот миллиардов, а ведь Млечный Путь – лишь одна из ста сорока миллиардов галактик[36 - Количество галактик в видимой части Вселенной известно еще менее точно, но есть основания полагать, что их более триллиона.], многие из которых даже больше нашей. В 1960-х годах профессор Корнелльского университета Фрэнк Дрейк, взволнованный такими чудовищными цифрами, вывел знаменитую формулу для вычисления вероятности существования в космосе высокоразвитой жизни в виде серии перемножаемых вероятностей.

По формуле Дрейка число звезд в избранном районе Вселенной вы умножаете на долю звезд, которые могут иметь планетные системы; затем умножаете это на долю планетных систем, теоретически способных поддерживать жизнь; умножаете на долю тех из них, где возникшая жизнь порождает разум, и так далее. При каждом из этих умножений числа колоссально сокращаются – но даже при самых консервативных исходных данных количество развитых цивилизаций в одном только Млечном Пути неизменно исчисляется миллионами[37 - Специалисты очень сильно расходятся в оценке вероятностей, входящих в формулу Дрейка. У одних действительно получаются миллионы цивилизаций в Галактике, а у других выходит, что наша цивилизация едва ли не единственная. Научных данных пока недостаточно, чтобы разрешить этот спор.].

Какая интересная, захватывающая мысль! Мы, возможно, лишь одна из миллионов развитых цивилизаций. К сожалению, космическое пространство настолько обширно, что среднее расстояние между любыми двумя из этих цивилизаций составляет, согласно расчетам, по крайней мере двести световых лет – легче сказать, чем представить. Начать с того, что, даже если эти существа знают о нас и каким-то образом способны разглядывать нас в свои телескопы, они наблюдают свет, покинувший Землю двести лет назад. Так что они видят не нас с вами. Они наблюдают Французскую революцию, Томаса Джефферсона, особ в шелковых чулках и напудренных париках – людей, не знающих, что такое атом или ген, получающих электричество, натирая куском меха янтарную палочку, и считающих это весьма хитрым фокусом. Любое послание, которое мы получим от этих наблюдателей, вероятно, будет начинаться с обращения «Достопочтенный сэр» и будет содержать поздравления по поводу стати наших лошадей и умелого освоения китового жира. Двести световых лет – это настолько далеко для нас, что, попросту говоря, за пределами нашего понимания.

Так что даже если мы не одиноки в принципе, на практике мы в любом случае пребываем в одиночестве. Карл Саган подсчитал, что подходящих планет во Вселенной где-то около десяти миллиардов триллионов – число, которое не укладывается в голове. Но что совсем не поддается воображению, так это размеры пространства, по которому они разбросаны. «Если бы нас случайным образом выбросило где-то в Космосе, – пишет Саган, – шансы оказаться на поверхности планеты или вблизи нее не превысили бы одного к миллиарду триллионов триллионов». (Это означает 10

, или единицу с 33 нулями.) «Планеты поистине бесценны».

Вот почему, возможно, хорошей новостью является официальное признание в феврале 1999 года Плутона планетой со стороны Международного астрономического союза. Вселенная – огромное пустынное место. Нас устроит любой сосед[38 - В 2006 году дискуссия о статусе Плутона приобрела иной оборот. Большинство астрономов уже давно признавали, что Плутон ничем принципиально не отличается от других объектов пояса Койпера. Последнее десятилетие статус планеты сохранялся за ним исключительно по традиции. Международный астрономический союз, отвечающий за номенклатуру космических объектов, дважды назначал комиссии, которые должны были разработать формальное определение планеты. Астрономы стремились, с одной стороны, дать физически обоснованное определение, а с другой – не нарушать традицию, признающую Плутон планетой. Однако обе комиссии не смогли справиться с этой задачей, и в итоге на 26-й Генеральной ассамблее МАС было принято определение, согласно которому Плутон не является планетой. Наряду с еще несколькими объектами пояса Койпера и астероидом Церерой он отнесен теперь к категории карликовых планет.].

Глава 3. Вселенная преподобного Эванса

Когда небо чистое и Луна не слишком яркая, преподобный Роберт Эванс, спокойный неунывающий мужчина, тащит громоздкий телескоп на заднюю веранду своего дома в Голубых горах Австралии, примерно в 80 километрах от Сиднея, и предается необычному занятию. Он вглядывается в глубины прошлого и находит умирающие звезды.

Вглядываться в прошлое, конечно, самая простая часть дела. Взгляните на ночное небо, и перед вами предстанет история, множество историй – не такие звезды, какие они есть сейчас, а такие, какими они были, когда их покинул дошедший до нас теперь свет. Откуда нам знать, цела ли наша верная спутница Полярная звезда, не сгорела ли она дотла в январе прошлого года, или в 1854 году, или в любое время с начала XIV века, и просто эта новость еще не дошла до нас. Самое большее, что мы можем – всегда можем – утверждать, что она еще светила в этот день 680 лет назад. Звезды умирают все время. Что получается у Боба Эванса лучше всех, кто пробовал этим заниматься[39 - Речь, конечно, идет о первенстве среди астрономов-любителей на год написания книги (2003).], так это засекать моменты звездных прощаний.

Днем Эванс – добродушный и теперь почти отошедший от дел священник Объединенной церкви Австралии, иногда подменяющий коллег и изучающий историю религиозных движений XIX века. Но вот по ночам он становится скромным титаном небес. Он охотится за сверхновыми звездами.

Сверхновая появляется, когда какая-нибудь гигантская звезда, намного больше нашего Солнца, коллапсирует, а затем эффектно взрывается, в один момент высвобождая энергию сотни миллиардов солнц, и некоторое время горит ярче всех звезд в своей галактике, вместе взятых. «Это подобно одновременному взрыву триллиона водородных бомб», – говорит Эванс. По его словам, если бы взрыв сверхновой произошел в нашем уголке космоса, нам бы был конец. «Он бы испортил все представление», – жизнерадостно заключает астроном. Но Вселенная безбрежна и сверхновые обычно слишком далеко, чтобы причинить нам вред. На самом деле большинство их так невообразимо далеки, что свет от них доходит до нас лишь в виде едва заметного мерцания. Примерно в течение месяца, пока они видны, они отличаются от других звезд только тем, что занимают на небе место, которое не было заполнено прежде. И вот эти аномальные, очень редко появляющиеся крошечные точки отыскивает на полном звезд ночном небосводе преподобный Эванс.

Чтобы понять, какое это мастерство, представьте обычный обеденный стол, покрытый черной скатертью с рассыпанной по ней горстью соли. Рассеянные по скатерти крупинки соли можно принять за галактику. Теперь вообразите полторы тысячи таких столов – достаточно, чтобы выстроить их в ряд длиной три километра, – и на каждом наугад рассыпана соль. Добавьте крупинку соли на один из этих столов и дайте возможность Бобу Эвансу пройти вдоль них. Он отыщет ее с первого взгляда. Эта крупинка и есть сверхновая[40 - На самом деле блеск сверхновой не уступает блеску целой галактики. Так что корректнее говорить не об одной добавленной крупинке, а о горсти, которая кучкой высыпана на стол.].

Эванс обладает до того исключительным талантом, что Оливер Сакс[41 - Оливер Вольф Сакс (Oliver Wolf Sacks, 1933–2015) – специалист-невролог, адъюнкт-профессор Медицинской школы Нью-Йоркского университета, автор нескольких бестселлеров, в которых описывает случаи из своей клинической практики: «Человек, который принял жену за шляпу» (М.: АСТ, 2011), «Антрополог на Марсе» (М.: АСТ, 2012) и других.] в книге «Антрополог на Марсе» упоминает о нем в главе, посвященной аутизму среди крупных ученых, и сразу добавляет: «Нет никаких признаков того, чтобы он страдал аутизмом». Эванс, никогда не встречавшийся с Саксом, смеется над предположениями о том, что он ученый или страдает аутизмом, но он не в состоянии объяснить, откуда у него этот талант.

«Просто у меня есть способность запоминать звездные поля», – говорил он мне, как бы оправдываясь, когда я посетил его и его супругу Элейн в их словно вышедшем из детской книжки с картинками домике на тихой окраине деревни Хейзелбрук, где кончается Сидней и начинается бескрайний австралийский буш. «Я не очень силен в других вещах, – добавляет он. – Плохо запоминаю имена».

«И забывает, где оставил вещи», – кричит с кухни Элейн.

Он согласно кивает и, широко улыбаясь, спрашивает, не хотел бы я посмотреть телескоп. Я представлял, что позади дома у Эванса настоящая обсерватория – уменьшенный вариант Маунт-Уилсон или Маунт-Паломар, с раздвигающимся куполом и механизированным креслом, манипулировать которым такое удовольствие. А он повел меня не наружу, а в набитый вещами чулан позади кухни, где держит свои книги и бумаги и где на самодельной вращающейся фанерной подставке покоится его телескоп – белый цилиндр, размером и формой похожий на титан для кипячения воды. Когда он собирается наблюдать, то в два захода выносит его на небольшую веранду рядом с кухней. Между выступом крыши и перистыми верхушками растущих ниже по склону эвкалиптов открывается кусочек неба величиной со щель почтового ящика, но Эванс утверждает, что ему этого более чем достаточно. И здесь, когда небо чистое, а Луна не слишком яркая, он отыскивает свои сверхновые.

Термин «сверхновая» придумал в 1930-х годах запомнившийся своими чудачествами астрофизик Фриц Цвикки. Родившийся в Болгарии и выросший в Швейцарии, Цвикки пришел в Калифорнийский технологический институт в 1920-х годах и сразу выделился сумасбродством и несносным характером. Нельзя сказать, что он обладал блестящими способностями, а многие коллеги относились к нему как к «надоедливому паяцу». Будучи страстным приверженцем здорового образа жизни, он частенько падал на пол в столовой Калтеха или еще где-нибудь на публике и отжимался на одной руке, демонстрируя свою силу любому, кто был склонен сомневаться. Он был вызывающе задирист, и со временем его поведение стало настолько пугающим, что его ближайший коллега Вальтер Бааде, очень мягкий по характеру человек, не решался оставаться с ним наедине. Среди прочего Цвикки обвинял Бааде, немца по национальности, в том, что тот нацист, каковым он никогда не был. По крайней мере однажды Цвикки угрожал убить Бааде, работавшего в обсерватории на Маунт-Уилсон, если тот появится в кампусе Калифорнийского технологического института.

Но при всем этом Цвикки был способен на самые поразительные и блестящие озарения. В начале 1930-х годов он обратился к вопросу, долгое время волновавшему астрономов: появлению время от времени на небосводе непонятных ярких точек, новых звезд. Невероятно, но он задал себе вопрос: не может ли оказаться в основе всего этого нейтрон – субатомная частица, только что открытая в Англии Джеймсом Чедвиком и бывшая в то время модной новинкой. Его осенила мысль, что если звезда коллапсирует до плотности, сравнимой с атомным ядром, то в результате образуется невообразимо компактный объект. Атомы буквально раздавят друг друга, их электроны вдавятся в ядра, образуя нейтроны. Получится нейтронная звезда. Представьте миллион увесистых пушечных ядер, сжатых до размеров игрушечного стеклянного шарика, – и это еще не совсем точное сравнение. Ядро нейтронной звезды настолько плотно, что одна ложка его вещества весила бы 90 миллиардов килограммов. Одна ложка! Но это еще не все. До Цвикки дошло, что при коллапсе такой звезды выделится огромное количество энергии – достаточное, чтобы произвести величайший взрыв во Вселенной. Он назвал такие взрывы сверхновыми. Они должны были оказаться – и оказались – крупнейшими событиями в мироздании.

15 января 1934 года в журнале Physical Review появилось очень краткое резюме сделанного в предыдущем месяце в Стэнфордском университете сообщения Цвикки и Бааде. Несмотря на предельную краткость – один абзац в двадцать четыре строчки, – это резюме содержало огромное количество новых научных сведений: в нем были первые упоминания сверхновых и нейтронных звезд, убедительно объяснялся процесс их образования, верно оценивалась сила взрыва, и в заключение, как дополнительный бонус, взрывы сверхновых увязывались с загадочным новым явлением, получившим название космических лучей, которые, как незадолго до того обнаружили, буквально кишат во Вселенной. Эти идеи были революционными, если не сказать больше. Подтверждения существования нейтронных звезд пришлось ждать тридцать четыре года. Гипотеза о космических лучах, хотя и считающаяся правдоподобной, пока еще не подтверждена окончательно. В целом это резюме, по словам астрофизика из Калифорнийского технологического института Кипа Торна, оказалось «одним из наиболее прозорливых документов в истории физики и астрономии».

Интересно, что Цвикки почти не понимал, почему все эти вещи должны происходить. Согласно Торну, «он недостаточно хорошо разбирался в законах физики, чтобы обосновать свои идеи». Цвикки обладал способностью выдвигать масштабные идеи. Другим – главным образом Бааде – оставалась их математическая доводка.

Цвикки также первым осознал, что во Вселенной остро не хватает видимого вещества, чтобы удерживать галактики вместе, и что должен существовать какой-то еще источник гравитационного воздействия – то, что теперь мы называем темной материей[42 - Долгое время использовался термин «скрытая масса» (hidden mass), однако в последние 20 лет стал употребляться термин «темная материя» (dark matter).]. Он упустил только одну вещь – если нейтронную звезду достаточно сильно сжать, то она становится настолько плотной, что даже свет не может освободиться от чудовищного гравитационного притяжения. Получается черная дыра. К сожалению, большинство коллег до того не любили Цвикки, что его идеи практически остались без внимания. Когда спустя пять лет великий Роберт Оппенгеймер[43 - Роберт Оппенгеймер (Robert Oppenheimer, 1904–1967) – американский физик-теоретик, во время Второй мировой войны руководил Манхэттенским проектом по созданию ядерного оружия.] в эпохальной статье обратил внимание на нейтронные звезды, он ни разу не упомянул о работах Цвикки, хотя тот много лет занимался той же проблемой в кабинете немного дальше по коридору. Выводы Цвикки относительно темной материи не привлекали серьезного внимания почти сорок лет. Можно только предположить, что за это время он выполнил очень много отжиманий.

* * *

Поднимая голову к небу, мы видим на удивление малую часть Вселенной. Невооруженным глазом с Земли видно всего шесть тысяч звезд, и лишь около двух тысяч из них можно увидеть зараз. С помощью бинокля количество звезд, видимых из одной точки, возрастает до пятидесяти тысяч, а с маленьким двухдюймовым телескопом оно подскакивает до трехсот тысяч. С 16-дюймовым телескопом, как у Эванса, счет идет уже не на звезды, а на галактики. Эванс полагает, что со своей веранды он может видеть от пятидесяти до ста тысяч галактик, каждая из десятков миллиардов звезд. Числа, конечно, внушительные, но все равно сверхновые остаются чрезвычайно редким явлением. Звезда может гореть миллиарды лет, но умирает всего раз, причем очень быстро, и лишь немногие умирающие звезды взрываются. Большинство гаснет тихо, как костер на рассвете. В типичной галактике, состоящей из сотни миллиардов звезд, сверхновая в среднем вспыхивает раз в двести-триста лет. Поэтому искать сверхновые – все равно что, стоя на смотровой площадке Эмпайр-стейт-билдинг, разглядывать в телескоп окна Манхэттена в надежде, скажем, обнаружить, как кто-то зажигает свечи на праздничном торте в день своего совершеннолетия.

Так что, когда полный надежд обходительный священник стал расспрашивать, нет ли подходящих звездных карт для поиска сверхновых, астрономическая братия сочла, что он выжил из ума. В то время у Эванса был 10-дюймовый телескоп – весьма приличный размер для любительского разглядывания звезд, но вряд ли пригодный для серьезной космологии, – и с помощью этого инструмента он намеревался обнаружить одно из самых редких явлений во Вселенной. За всю историю астрономии, до того как Эванс в 1980 году принялся за это дело, было найдено менее шестидесяти сверхновых[44 - В действительности к тому времени уже было открыто более пятисот сверхновых, а на сегодня зарегистрировано свыше 6 тысяч сверхновых.]. (Когда в августе 2001 года я побывал у него, он только что зафиксировал свое тридцать четвертое визуальное открытие[45 - По каталогу открытых сверхновых это было сороковое открытие Эванса, причем первые 16 сверхновых он обнаружил не визуально, а по фотографиям. Последнюю сверхновую Эванс открыл в марте 2008 года, общий его счет достиг 48-ми.]; тридцать пятое последовало через три месяца, а тридцать шестое – в начале 2003 года.)

У Эванса, правда, были определенные преимущества. Большинство наблюдателей, как и вообще большинство людей, находится в Северном полушарии, так что значительная часть неба находилась почти полностью в его распоряжении, по крайней мере поначалу. На его стороне также были быстрота и поразительная память. Большие телескопы – это довольно громоздкие штуки, и значительная часть их рабочего времени тратится на то, чтобы навести их на нужный объект. Эванс же вертит своим небольшим 16-дюймовым телескопом, как хвостовой стрелок пулеметом в воздушном бою, затрачивая не более пары секунд на тот или иной участок неба. В результате за вечер он мог пронаблюдать, пожалуй, сотни четыре галактик, тогда как большой профессиональный телескоп, если повезет, сможет обследовать штук пятьдесят или шестьдесят.

Искать сверхновые – значит, как правило, их не находить. С 1980 по 1996 год он в среднем делал два открытия в год – не слишком большая награда за сотни ночей напряженного вглядывания в небо. Однажды он обнаружил три за пятьдесят дней, но в другой раз прошло три года, прежде чем он отыскал одну.

«В сущности, в отсутствии находок есть известная польза, – говорит он. – Это помогает космологам определить темп эволюции галактик. Это одна из редких областей, где уже само отсутствие фактов является фактом».

На столе рядом с телескопом стопки фотографий и бумаг, относящихся к его занятиям, и он показывает мне одну из них. Если вы когда-нибудь заглядывали в популярные астрономические издания, то должны знать, что они обычно полны ярких цветных снимков далеких туманностей или чего-либо подобного – залитых волшебным светом облаков небесных огней, величественно движущихся и переливающихся тончайшими оттенками. Рабочие изображения Эванса не имеют с ними ничего общего. Это всего лишь расплывчатые черно-белые снимки с маленькими точками, окруженными ореолом. На том, что он мне показал, был изображен рой звезд, внутри которого притаился пустячный проблеск; чтобы разглядеть его, мне пришлось поднести снимок к глазам. Это, пояснил мне Эванс, звезда из созвездия, называемого Печью, в галактике, известной в астрономии как NGC 1365. (NGC означает New General Catalogue – Новый общий каталог, в который занесены галактики. Когда-то он был увесистой книгой у кого-то на столе в Дублине; теперь, разумеется, это база данных.) Свет, свидетельствующий о впечатляющей кончине этой звезды, безостановочно несся сквозь пространство шестьдесят миллионов лет, пока однажды ночью в августе 2001 года не достиг Земли в виде проблеска света, крошечного просветления на ночном небе. И, разумеется, заметил его Роберт Эванс на своем напоенном запахом эвкалиптов холме.

«Это приносит особое удовлетворение, – говорит Эванс, – когда думаешь, что летевший сквозь космос миллионы лет свет достигает Земли как раз в тот момент, когда кто-то рассматривает нужный участок неба. Кажется важным, чтобы событие такого размаха было засвидетельствовано».

Роль сверхновых вовсе не ограничивается тем, чтобы вызывать чувство удивления и восхищения. Они делятся на несколько типов, один из которых, кстати, открыл Эванс, а другой, известный как сверхновые типа la, важен для астрономии, поскольку сверхновые этого типа взрываются всегда одинаково, имея одну и ту же критическую массу. Поэтому их можно использовать в качестве «стандартных свечей» – эталонов, измеряя яркость которых (а тем самым и относительные расстояния), можно определять скорость расширения Вселенной.

В 1987 году астрофизику Солу Перлмуттеру[46 - В 2011 году Сол Перлмуттер стал лауреатом Нобелевской премии по физике за открытие явления ускоренного расширения Вселенной, сделанное по наблюдениям далеких сверхновых звезд в 1999 году и подтвержденное многочисленными сверхновыми, открытыми в дальнейшем, а также другими наблюдательными данными.] из Лоуренсовской лаборатории в Беркли, штат Калифорния, потребовалось больше сверхновых типа Ia, чем давали обычные визуальные наблюдения, и он задался целью найти более систематичный метод для их поиска. Перлмуттер разработал остроумную систему с использованием сложнейших компьютеров и приборов с зарядовой связью – по существу, прекрасные цифровые фотокамеры. Тем самым поиск сверхновых был автоматизирован. Телескопы теперь могут делать тысячи снимков, давая возможность компьютеру отыскать характерные яркие точки, свидетельствующие о взрывах сверхновых[47 - Еще недавно далеко не все сверхновые удавалось выявлять на цифровых снимках автоматически – человек справлялся с этой задачей гораздо лучше. Был даже запущен проект Hand-On Universe («Вселенная в руках»), в котором школьники могут принять участие в поиске сверхновых по снимкам галактик. Однако в последние годы эффективность автоматического распознавания сверхновых значительно повысилась и любители уже не могут составить конкуренцию сетям телескопов-роботов.]. За пять лет с использованием новой технологии Перлмуттер с коллегами обнаружили в Беркли сорок две сверхновых. Теперь даже любители находят сверхновые с помощью ПЗС-матриц. «С ПЗС можно направить телескоп в небо, а самому сидеть у телевизора, – с долей тревоги говорил Эванс. – Это уничтожает всю романтику этого занятия».

Я спросил, не испытывает ли он соблазна взять на вооружение новую технику. «О нет, – ответил он. – Я слишком люблю работать по-своему. Кроме того, – он кивнул на снимок своей последней сверхновой и улыбнулся, – иногда мне все же удается их обойти»[48 - Шотландский любитель астрономии Том Боулс (Tom Boles) построил обсерваторию с тремя телескопами-роботами, которые постоянно сканируют небо в поисках сверхновых. Только в 2003 г. он стал первооткрывателем 30 сверхновых, а всего на его счету 148 взорвавшихся звезд. Тем самым он перехватил у Роберта Эванса звание чемпиона среди любителей по открытию сверхновых. Боулс продолжает искать сверхновые, хотя в последние годы темп его открытий несколько снизился из-за конкуренции со стороны профессиональных обсерваторий.].

* * *

Естественно, возникает вопрос: что будет, если звезда взорвется поблизости? Как мы уже знаем, наша ближайшая звездная соседка Альфа Центавра находится в 4,3 светового года от нас. Я представил себе, что если бы произошел взрыв, то у нас было бы 4,3 года, чтобы следить, как свет этого величественного явления разливается по небу, словно выплеснувшись из гигантского бидона. Что будет, если придется четыре года и четыре месяца наблюдать надвигающийся на нас роковой конец, зная, что, когда он наступит, от нас ничего не останется? Будут ли люди по-прежнему ходить на работу? Будут ли фермеры выращивать урожай? Будет ли кто-нибудь доставлять его в магазины?

Много недель спустя в Нью-Гэмпшире, в городке, где я тогда жил, я задал эти вопросы астроному из Дартмутского колледжа Джону Торстенсену. «О нет, – рассмеялся он. – Новость о таком событии распространяется со скоростью света, но с такой же скоростью распространяется и разрушительное действие, так что вы узнаете о ней и погибнете в один и тот же момент. Но не беспокойтесь, потому что этого не случится».

Чтобы волна взрыва сверхновой вас погубила, пояснил он, нужно, чтобы вы находились «смехотворно близко» – скажем, в пределах приблизительно десяти световых лет. «Опасность представляли бы различные виды излучений – космические лучи и тому подобное». Они вызвали бы поразительные полярные сияния, переливающиеся по всему небу занавесы призрачного света. К добру это бы не привело. Все, что в силах создать такое зрелище, может с тем же успехом смести магнитосферу, находящийся высоко над Землей магнитный пояс, который в обычных условиях защищает нас от ультрафиолетовых лучей[49 - От ультрафиолета и другого электромагнитного излучения нас защищает не магнитосфера, а атмосфера. Магнитосфера защищает только от заряженных частиц, причем невысокой энергии (таких, как испускает Солнце). Однако при близком взрыве сверхновой ни атмосфера, ни магнитосфера не смогут предохранить Землю от жесткого излучения.] и других космических атак. Не будь магнитосферы, всякий, с кем случилось несчастье оказаться на открытом солнце, довольно скоро стал бы похож на подгоревшую пиццу.

Причина, по какой мы можем быть более или менее уверены в том, что такое не случится в нашем уголке Галактики, говорит Торстенсен, состоит в том, что для появления сверхновой прежде всего требуется определенный вид звезды. Претендующая на это звездакандидат должна быть раз в десять или двадцать массивнее нашего Солнца, а «у нас поблизости нет ничего нужных размеров. Вселенная, к счастью, достаточно большое место». Ближайшая возможная кандидатура, добавил он, это Бетельгейзе, чьи всевозможные выбросы и всплески на протяжении многих лет свидетельствуют о том, что там имеют место какие-то интересные неустойчивости. Однако Бетельгейзе находится от нас в пятистах световых годах.

Лишь полдюжины раз в пределах документально засвидетельствованной истории сверхновые вспыхивали достаточно близко, чтобы быть видимыми невооруженным глазом. Один из этих взрывов в 1054 году привел к образованию Крабовидной туманности. Другой раз, в 1604 году, образовалась звезда, настолько яркая, что ее три недели было видно днем. Самая последняя была в 1987 году, тогда сверхновая загорелась в районе космоса, известном как Большое Магелланово Облако[50 - Большое Магелланово Облако – небольшая галактика, спутник нашей Галактики.], но она была с трудом видна только в Южном полушарии и находилась от нас на вполне надежном расстоянии в 169 тысяч световых лет.

Сверхновые имеют для нас принципиальное значение и еще в одном важном смысле. Без них нас бы здесь не было. Вспомните о космологической загадке, которой заканчивается первая глава, – о том, что Большой взрыв привел к обилию легких газов, но не тяжелых элементов. Последние появились позже, но долгое время никто не представлял, как это произошло. Дело в том, что требуется нечто действительно жаркое – даже жарче середины самых горячих звезд, – чтобы выковать углерод, железо и другие элементы, без которых мы были бы, к великому нашему огорчению, абсолютно бесплотны. Объяснение пришло в виде сверхновых, и додумался до этого один английский космолог, во многом похожий по своим манерам на Фрица Цвикки.

Им был йоркширец по имени Фред Хойл. В некрологе журнала Nature[51 - Nature («Природа») – один из самых престижных научных журналов в мире. Основан в 1869 г. и, в отличие от большинства научных журналов, не имеет специализации. Считается, что в нем публикуются прорывные исследования, важные для ученых широкого круга специальностей.] (ученый умер в 2001 году) Хойл назван «космологом и полемистом», и он действительно был тем и другим. Он, говорилось в некрологе, «большую часть жизни был вовлечен в споры» и «ставил свою подпись под всяческой чепухой». Например, он утверждал, без каких-либо доказательств, что хранимый как сокровище в Музее естественной истории ископаемый археоптерикс является подделкой вроде пилтдаунской мистификации[52 - В 1908–1911 гг. вблизи Пилтдауна в графстве Суссекс, Великобритания, были найдены фрагменты черепа и челюсти, которые, как долгое время считалось, принадлежали существу, промежуточному между обезьяной и человеком. Однако в 1950-х годах сотрудники Британского музея выполнили химические анализы, которые показали, что пилтдаунские образцы являются тонко сработанной подделкой.], к великому гневу музейных палеонтологов, которым пришлось много дней отбиваться от телефонных звонков газетчиков со всего мира. Он также считал, что на Землю из космоса была занесена не только жизнь, но и множество болезней, таких как грипп и бубонная чума, а однажды высказывал предположение, что в процессе эволюции у людей появился выступающий вперед нос с обращенными вниз ноздрями, чтобы в него не падали космические патогенные организмы.

Именно он, будучи в игривом настроении во время радиопередачи в 1952 году, придумал термин «Большой взрыв». Он отмечал, что наши физические представления никак не могут объяснить, почему все сущее, собранное в точку, должно так внезапно и эффектно начать расширяться. Хойл предпочитал теорию стационарного состояния, по которой Вселенная постоянно расширяется и по мере расширения непрерывно создает новую материю. Он также понимал, что если звезда катастрофически сжимается, то она высвобождает огромное количество тепла, разогревшись до 100 миллионов градусов и даже больше, а этого достаточно, чтобы запустить образование тяжелых элементов – процесс, называемый нуклеосинтезом[53 - Нуклеосинтез – это все термоядерные реакции, ведущие к образованию ядер более тяжелых элементов из легких. Нуклеосинтез начинается вместе с рождением Вселенной, продолжается на протяжении всей жизни звезды, а при взрыве сверхновой синтезируется лишь небольшое количество самых тяжелых элементов (тяжелее железа) и, самое главное, продукты звездного нуклеосинтеза разбрасываются в пространстве, где они могут войти в состав новых рождающихся звезд и планет.]. В 1957 году, работая совместно с другими учеными, Хойл показал, как во время взрывов сверхновых образуются тяжелые элементы. За эту работу один из сотрудничавших с ним ученых, У. А. Фаулер, получил Нобелевскую премию. А Хойл, к нашему общему стыду, не получил.

Согласно теории Хойла, взрывающаяся звезда выделяет достаточно энергии для создания всех новых элементов и распыления их в космосе, где они образуют газовые облака – межзвездную среду, которая в конечном счете конденсируется в новые солнечные системы. С появлением этих теоретических выкладок стало наконец возможным создать правдоподобный сценарий нашего появления здесь. Теперь считается, что мы знаем следующее.

Около 4,6 миллиарда лет назад в том месте космического пространства, где мы сейчас находимся, образовался и стал сжиматься огромный вихрь газа и пыли поперечником 24 миллиарда километров. Почти все – 99,9 процента массы Солнечной системы – ушло на создание Солнца. Из оставшегося свободно плавать вещества две микроскопические частицы сошлись достаточно близко, чтобы быть притянутыми друг к другу электростатическими силами. Это был момент зачатия нашей планеты. То же самое происходило по всей зарождающейся Солнечной системе. Сталкивавшиеся частицы пыли образовывали все более крупные комки. В конце концов комья выросли до таких размеров, чтобы называться планетезималями. Без конца сталкиваясь друг с другом, они распадались на части и вновь соединялись в самых разнообразных сочетаниях, но в каждом столкновении был победитель, и некоторые из них становились достаточно большими, чтобы господствовать на той орбите, по которой они двигались.

Все это произошло удивительно быстро. Чтобы крошечное скопление частиц выросло в зародыш планеты поперечником в сотни километров, потребовалось лишь несколько десятков тысяч лет. Всего за двести миллионов лет, а возможно и быстрее, Земля, по сути, полностью сформировалась, хотя и находилась еще в расплавленном состоянии, подвергалась непрерывной бомбардировке плавающими кругом остатками строительного мусора.

В этот момент, примерно 4,4 миллиарда лет назад, с Землей столкнулся объект размером с Марс, выбросив достаточно вещества для создания сопутствующего шара – Луны. Полагают, что выброшенное вещество за несколько недель собралось в один рыхлый ком, а за год сформировалось в сферическое каменное тело, которое с тех пор и сопровождает нас. Большая часть лунного вещества происходит из внешних слоев Земли, а не из ядра, поэтому на Луне так мало железа, тогда как у нас его много. Кстати, эту теорию всегда преподносят чуть ли не как самую новую, тогда как на самом деле она была впервые выдвинута Реджинальдом Дейли в Гарварде в 1940-х годах. Единственное действительно новое тут – это люди, которые уделяют ей какое-то внимание. Когда Земля была лишь около трети своих окончательных размеров, она, возможно, уже стала формировать атмосферу, главным образом из углекислого газа, азота, метана и серы. Вряд ли это те вещества, которые у нас ассоциируются с жизнью, и тем не менее именно из этого ядовитого варева образовалась жизнь. Углекислый газ обладает мощными парниковыми свойствами. Это оказалось очень кстати, потому что в то далекое время Солнце светило значительно слабее. Не будь парникового эффекта, Земля вполне могла постоянно оставаться замерзшей и жизни, возможно, было бы просто не за что зацепиться. Но так или иначе жизни это удалось.

В следующие пятьсот миллионов лет юная Земля по-прежнему неослабно обстреливалась кометами, метеоритами и всякими другими космическими обломками, которые принесли воду, чтобы заполнить океаны, и компоненты, необходимые для успешного возникновения жизни. Окружающая среда была исключительно враждебна, но жизнь каким-то образом развивалась. Крошечный комочек химических веществ дернулся и ожил.

Четыре миллиарда лет спустя люди стали задавать вопросы, как все это произошло. Об этом и пойдет дальше наш рассказ.

Часть II. Размеры Земли

Был этот мир глубокой тьмой окутан,

«Да будет свет!» – и вот явился Ньютон[54 - Перевод Самуила Маршака.].

Александр Поуп. Эпитафия: предназначалась сэру Исааку Ньютону

Глава 4. Мера вещей

Если бы вам пришлось выбирать самое неудачливое научное путешествие всех времен, то ничего хуже перуанской экспедиции французской Королевской академии наук 1735 года вы бы наверняка не нашли. Это была группа ученых и искателей приключений под руководством гидрографа Пьера Буге и военного математика Шарля Мари де ла Кондамина[55 - Начальником экспедиции был ла Кондамин, за научную часть отвечали астроном Луи Годен и Пьер Буге. Однако Годен вскоре отделился от основной партии из-за разногласий в методике работы, а позднее был уличен в растрате средств, поступавших из Франции. Он также отказался делиться с коллегами полученными результатами.], которая отправилась в Перу проводить триангуляционные измерения[56 - Триангуляция – выбранный экспедицией метод измерения – представляла собой распространенный прием, основанный на известном геометрическом факте: если вы знаете длину одной стороны треугольника и величины двух его углов, то все остальные его размеры вы можете вычислить, не вставая со стула. Предположим в качестве примера, что мы с вами решили узнать расстояние до Луны. Первым делом для применения метода триангуляции мы должны установить расстояние между нами, скажем, вы остаетесь в Париже, а я отправляюсь в Москву, и мы оба одновременно смотрим на Луну. Теперь, если вы мысленно соедините линией три главных объекта нашей задачи – т. е. вас, меня и Луну, то образуется треугольник. Измерьте длину базисной линии между вами и мной и величину обоих углов, а остальное легко вычислить. (Поскольку сумма внутренних углов треугольника всегда составляет 180 градусов, то, зная сумму двух углов, вы сможете моментально вычислить третий; а точное знание формы треугольника и длины одной из сторон подскажет вам длину двух других сторон.) По существу, именно этот способ применил в 150 г. до н. э. греческий астроном Гиппарх Никейский, чтобы определить расстояние от Земли до Луны. На поверхности Земли принципы триангуляционной съемки остаются такими же, только треугольники не достигают космоса, а ложатся бок о бок на карту. Для измерения градуса меридиана геодезисты строят своего рода цепочку треугольников, протянувшуюся по местности.] расстояний в Андах.

В то время людьми наконец овладело сильное желание понять Землю – определить ее возраст, массу, место, где она висит в космическом пространстве, и узнать, каким образом она возникла. Цель французской группы состояла в том, чтобы способствовать решению вопроса о длине окружности планеты путем измерения длины одного градуса меридиана (или одной 360-й расстояния вокруг планеты) вдоль линии протяженностью около 320 километров и проходящей от местечка Яруки, близ Кито, до точки за городом Куэнкой (все это ныне находится в Эквадоре).

Почти сразу дела не заладились, причем порой вопиющим образом. В Кито пришельцы чем-то вызвали недовольство местных жителей и были изгнаны из города вооруженной камнями толпой. Вскоре после этого в конфликте из-за женщины был убит врач экспедиции. Ботаник сошел с ума. Другие умирали от лихорадки или погибали от падений в горах. Технический помощник Жан Годен, племянник одного из руководителей Луи Годена, бежал с тринадцатилетней девочкой, и его не смогли уговорить вернуться.

Одно время группа должна была прервать работу на восемь месяцев, пока ла Кондамин ездил в Лиму улаживать вопрос с необходимыми разрешениями. И в довершение всего ла Кондамин и Буге перестали разговаривать друг с другом и отказались вместе работать. Где бы ни появлялась эта все сокращающаяся в размерах экспедиционная партия, должностные лица встречали ее с глубочайшей подозрительностью, с трудом веря, что группа французских ученых проехала полмира, чтобы измерить Землю. Это казалось абсолютной бессмыслицей. Даже два с половиной столетия спустя это сомнение по-прежнему остается уместным. Почему бы французам не производить свои измерения во Франции и тем самым избавить себя от забот и неудобств андской авантюры?

Ответ отчасти заключается в том, что в XVIII веке ученые редко смотрели на вещи просто, если под рукой оказывалась нелепая, но заманчивая альтернатива, а отчасти в реальной проблеме, которая впервые встала перед английским астрономом Эдмундом Галлеем задолго до того, как Буге и ла Кондамин задумали ехать в Южную Америку, имея для этого гораздо меньше оснований.

Галлей был исключительной личностью. На своем долгом и плодотворном жизненном пути ему доводилось быть морским капитаном, картографом, профессором геометрии в Оксфордском университете, заместителем контролера Королевского монетного двора, королевским астрономом и изобретателем глубоководного водолазного колокола[57 - Строго говоря, Галлей не изобрел, а значительно усовершенствовал водолазный колокол, который впервые стал применяться на полтора столетия раньше.]. Он со знанием дела писал о магнетизме, приливах и отливах, движениях планет и с любовью – о действии опиума. Он придумал погодную карту и актуарную таблицу[58 - Актуарные таблицы используются для расчета пенсионных начислений и страховой премии при страховании жизни. В них учитывается статистика смертности по разным возрастам. В более широком смысле актуарными расчетами называют любые расчеты тарифов в страховом деле на основе статистических данных.], предложил способы определения возраста Земли и ее расстояния от Солнца и даже разработал практичный способ, как сохранить рыбу свежей не в сезон. Единственное, чего он не совершил, так это не открыл комету, носящую его имя. Он лишь определил, что комета, которую он наблюдал в 1682 году, – та же самая, которую видели другие в 1456, 1531 и 1607 годах. Она стала кометой Галлея только после 1758 года, примерно через шестнадцать лет после его смерти.

Однако при всех этих достижениях крупнейшим вкладом Галлея в сокровищницу человеческих знаний было, пожалуй, участие в небольшом научном пари с двумя другими видными фигурами того времени: Робертом Гуком, которого теперь скорее помнят в связи с тем, что он первым ввел понятие и дал описание живой клетки, и великим, исполненным достоинства сэром Кристофером Реном, который вообще-то прежде всего был астрономом, а потом уж архитектором, хотя об этом сегодня обычно уже не помнят. В 1683 году, когда Галлей, Гук и Рен вместе обедали в Лондоне, разговор зашел о движении небесных тел. Было известно, что планеты склонны обращаться по особой формы овалам, которые называют эллипсами – по выражению Ричарда Фейнмана[59 - Ричард Филлипс Фейнман (Richard Phillips Feynman, 1918–1988) – выдающийся американский физик, один из создателей квантовой электродинамики. В 1943–1945 гг. участвовал в Манхэттенском атомном проекте. За разработку методов расчета поведения квантовых частиц был удостоен Нобелевской премии по физике за 1969 г. Он также сыграл ключевую роль в расследовании причин катастрофы космического челнока «Челленджер» в 1986 г. Фейнман является автором множества научно-популярных книг, а также 8-томного учебника «Фейнмановские лекции по физике», который был переведен на русский язык (М.: Эдиториал УРСС, 2004) и до сих пор остается одним из лучших курсов общей физики.], по «очень специфической и точной кривой», – но никто не знал причин такого движения. Рен щедро предложил 40 шиллингов (примерно соответствует двухнедельному заработку) тому, кто первым найдет объяснение.

Гук, широко известный приписыванием себе идей, не всегда своих собственных, заявил, что он уже решил эту проблему, но отказался поделиться решением на том интересном и остроумном основании, что не хочет лишать других удовольствия найти ответ самим. Вместо этого он «на время утаит решение, чтобы другие могли лучше его оценить». Если у него и были какие-то соображения по этому поводу, никаких свидетельств он не оставил. Галлей, однако, до того загорелся желанием найти ответ, что на следующий год поехал в Кембридж и набрался смелости обратиться к профессору математики Исааку Ньютону в надежде, что тот сумеет ему помочь.

Ньютон, бесспорно, был странной личностью – сверх всякой меры выдающийся мыслитель, но замкнутый, безрадостный, раздражительный до безумия, легендарно рассеянный (говорили, что по утрам, свесив ноги с кровати, он мог часами сидеть, размышляя над осенившими его вдруг идеями) и способный на самые неожиданные выходки. Он создал собственную лабораторию, первую в Кембридже, но затем занялся весьма странными опытами. Например, однажды ввел себе шило – длинную иглу, какими пользуются при сшивании кожи, – в глазную впадину и крутил им «между глазом и костью как можно ближе к глазному дну» лишь для того, чтобы посмотреть, что будет. Каким-то чудом ничего не случилось, по крайней мере ничего серьезного. В другой раз он глядел на солнце, пока мог выдержать, чтобы узнать, как это отразится на его зрении. И вновь он избежал серьезных повреждений, хотя пришлось провести несколько дней в затемненном помещении, пока глаза не простили ему его опытов.

Но над всеми этими странностями и причудами властвовал интеллект гения, – даже действуя в обычном русле, Ньютон зачастую проявлял странные особенности. В студенческие годы, разочарованный ограниченными возможностями традиционной математики, он придумал совершенно новую ее форму – дифференциальное и интегральное исчисление, но молчал об этом целых двадцать семь лет. Подобным же образом он работал в области оптики, изменив наши представления о свете и заложив основы спектрографии как науки, и опять же решил не делиться результатами своих работ в течение трех десятилетий.

При всех его талантах настоящая наука составляла лишь часть его интересов. По крайней мере половину своего рабочего времени он отдавал алхимии и неортодоксальным религиозным поискам. Это были не просто дилетантские занятия, а серьезные увлечения, которые полностью его захватывали. Он был тайным приверженцем ереси, известной как арианство, отличительной особенностью которой было отрицание Святой Троицы[60 - Суть арианства, возникшего в начале IV в., изложена не совсем точно: ариане утверждали, что Христос сотворен Богом Отцом и не равен, а лишь подобен Ему. Следовательно, вопреки господствовавшему в то время догмату, не равны и лица («ипостаси») Святой Троицы.] (по иронии судьбы в Кембридже Ньютон принадлежал к колледжу Святой Троицы). Он проводил бесконечные часы за изучением поэтажного плана храма царя Соломона в Иерусалиме (попутно осваивая иврит, чтобы разбирать подлинные тексты), будучи убежден, что в нем содержится математический ключ к определению даты второго пришествия Христа и конца света. С не меньшим рвением он относился к алхимии. В 1936 году экономист Джон Мейнард Кейнс[61 - Джон Мейнард Кейнс (John Maynard Keynes, 1883–1946) – британский экономист, основатель современной макроэкономической теории.] купил на аукционе саквояж с бумагами Ньютона и, к своему удивлению, обнаружил, что в подавляющем большинстве они относились не к оптике или движениям планет, а свидетельствовали о целеустремленных поисках способа превращения обычных цветных металлов в драгоценные. При химическом анализе пряди волос Ньютона в 1970 году была обнаружена ртуть – элемент, представлявший интерес для алхимиков, шляпных мастеров, изготовителей барометров и, пожалуй, больше ни для кого – причем концентрация ртути раз в сорок превышала естественный уровень. Поэтому не слишком удивительно, что по утрам он забывал встать с постели.

Что рассчитывал узнать у него Галлей во время своего не оговоренного заранее визита в августе 1684 года, можно только догадываться. Но благодаря более поздним воспоминаниям доверенного лица Ньютона Абрахама де Муавра у нас есть описание этой встречи – одной из самых важных для истории науки.