banner banner banner
Альтернативный волновой анализ. Новые горизонты
Альтернативный волновой анализ. Новые горизонты
Оценить:
Рейтинг: 0

Полная версия:

Альтернативный волновой анализ. Новые горизонты

скачать книгу бесплатно


УСЛОВИЯ МАКСИМУМОВ И МИНИМУМОВ ИНТЕРФЕРЕНЦИИ

Итак, рассмотрим два источника когерентных волн S1 и S2.

Для простоты считаем, что источники излучают волны одинаковой амплитуды, а разность фаз между источниками равна 0. Другими словами, предположим, что эти точечные источники являются точными копиями друг друга.

Теперь выберем некоторую произвольную точку А, в которой будем фиксировать наложение волн, испущенных источниками S1 и S2.

Очевидно, что результат интерференции (наложения волн) в этой точке будет зависеть от разности хода волн, которую обозначим как дельта d (?d). Предположим, что разность хода (?d) равна половине длины волны (?/2):

Тогда в точку А волны придут в противофазе, то есть гребень источника S2 придется на впадину источника S1. В результате такого наложения волн произойдет их ослабление друг другом и в точке А образуется интерференционный минимум (узел стоячей волны).

Очевидно, что этот результат будет только при условии, когда ?d = 1/2, 3/2, 5/2, …n и т. д. длины волны (лямбда):

Тогда условие минимума интерференции (где k – возрастающий коэффициент) будет следующим:

Другими словами, амплитуда колебаний в данной точке минимальна, если разность хода двух волн равна нечетному числу полуволн.

Если разность хода (?d) равна одной длине волны (лямбда), тогда в точку А волны придут в одинаковой фазе, то есть впадина источника S2 придется на впадину источника S1, или, наоборот, гребень источника S2 придется на гребень источника S1. В этом случае образуется интерференционный максимум (пучность стоячей волны), характеризующийся усилением результирующей волны:

При этом очевидно, что результат будет одинаковым, если ?d = 1, 2, 3, … n и т. д. длины волны (лямбда):

Тогда условие максимума интерференции, то есть амплитуда колебаний в данной точке максимальна, если разность хода равна целому числу волн, или можно сказать по-другому: когда разность хода равна четному числу полуволн.

Теперь давайте подытожим.

1. Интерференционные минимумы возникают, когда разность хода равна нечетному количеству полуволн.

2. Интерференционные максимумы образуются, если разность хода равна четному количеству полуволн.

Вот почему в альтернативном волновом анализе играет большую роль понятие четности и нечетности. Они имеют непосредственное отношение к интерференционной картине среды, в нашем случае рынка.

Поэтому выделение волновых циклов можно сравнить с анализом интерференционной картины рынка, которая постоянно изменяется по мере возникновения новых волновых моделей, выступающих в роли своеобразных источников когерентных волн.

При этом пучности стоячих волн (циклы и полуциклы) будут соответствовать максимумам интерференции, а узлы стоячих волн (дробные циклы) будут соответствовать минимумам интерференции.

Кроме этого, в AWA используется аналогия между ценовым графиком и водным потоком.

Изображение сгенерировано нейросетью «Шедеврум»

Все дело в интерференции стоячих волн, которые проявляются, как известно, в любых средах.

Смотрите сами: на реках стоячие волны – это валы. На ценовых графиках стоячие волны – это циклы. На реках области турбулентности называются бочками, в альтернативном волновом анализе им соответствуют дробные циклы. Ну а форма рельефа русла (пороги, перекаты и т. д.) есть не что иное, как полуциклы. В общем, суть у них одна и та же.

Все они представляют собой своеобразные преграды на пути движения потока. Поэтому их необходимо преодолеть, чтобы у него была возможность двигаться далее.

В общем, такая аналогия позволяет не только запомнить непростые названия основных комбинаций пар, которые фиксируются в волновом балансе, а затем переносятся в таблицу учета циклов, но и получить общее представление о том, в каком месте ценового русла мы находимся в текущий момент.

Обо всем этом мы и будем говорить далее.

Закон Бернулли и режимы течения жидкости

Но для начала давайте вспомним такой важный закон гидродинамики, как закон Бернулли.

Закон Бернулли устанавливает зависимость между скоростью потока жидкости и ее давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот.

Для стационарного течения несжимаемой жидкости уравнение Бернулли может быть получено как следствие закона сохранения энергии. Закон Бернулли утверждает, что

где ? – плотность жидкости;

v – скорость потока;

h – высота;

p – давление;

g – ускорение свободного падения;

Константа в правой части иногда называется полным давлением, или весовым давлением. Она может менять значение для различных линий тока.

Если посмотреть на формулу внимательно, можно заметить, что размерность всех слагаемых – это единица энергии в единице объема.

Первое и второе слагаемые уравнения Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объема жидкости.

Третье слагаемое по своему смыслу является работой сил давления, но в гидравлике это слагаемое может называться энергией давления и представляет собой часть потенциальной энергии.

Таким образом, если вернуться к самому закону, который гласит, что если давление жидкости повышается, то скорость течения убывает, и наоборот, можно сделать вывод, что в случае роста давления происходит переход энергии из кинетической в потенциальную. А в случае увеличения скорости течения осуществляется, наоборот, переход энергии из потенциальной в кинетическую.

Такие переходы одного вида энергии в другой и наоборот очень сильно напоминают поведение стоячей волны, которая, как известно, не переносит энергию, а сохраняет ее низменной.

Дважды за период у стоячих волн происходит превращение энергии то полностью в потенциальную, сосредоточенную в основном вблизи узлов волны, то полностью в кинетическую, сосредоточенную в основном вблизи пучностей волны.

Однако вернемся к гидродинамике.

Как я уже говорил, в AWA используется аналогия между ценовым графиком и движением жидкости, например течением воды в руслах рек.

Именно поэтому применяется очень много терминологии из рафтинга (рафтинг – это сплав по рекам или искусственным каналам на большой надувной лодке, название которой и дало имя этому занятию), а также частично использованы названия из гидродинамики.

Кстати, рассматривая как-то на досуге такой раздел гидродинамики, как режимы течения жидкости, число Рейнольдса, я вдруг нашел для себя интересным выделить те участки движения водного потока, где происходит возникновение турбулентности (завихрений).

Опыты по этому вопросу были проведены английским ученым Осборном Рейнольдсом в 1883 г. Но давайте по порядку.

Итак, согласно законам гидродинамики, существует два основных режима течения жидкости:

• Ламинарное течение – процесс, при котором жидкость или газ перемещаются слоями без перемешивания и пульсаций (нет беспорядочных быстрых изменений скорости и давления). Характеризуется слоистым характером течения жидкости, отсутствием перемешивания, неизменностью давления и скорости во времени.

• Турбулентное течение – процесс, когда при увеличении скорости течения жидкости или газа образуются нелинейные фрактальные волны. При этом происходит вихреобразование с вращательным движением жидкости, возникают непрерывные пульсации давления и скорости в потоке воды.

Кстати, обратите внимание на фразу «возникают непрерывные пульсации давления и скорости в потоке воды». То есть переход потенциальной энергии в кинетическую энергию и наоборот. Все в точности как у стоячих волн.

А так как в AWA движение цены рассматривается как своеобразный вихревой поток, нас будут интересовать только режимы турбулентного течения жидкости.

РЕЖИМ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЖИДКОСТИ ПРИ РАСШИРЕНИИ ПОТОКА

Согласно исследованиям Рейнольдса, при внезапном расширении русла происходит потеря напора – энергии, которая расходуется на вихреобразование, связанное с отрывом потока от стенок, то есть на поддержание вращательного движения жидкости.

Области вихреобразования здесь и далее на рисунках обозначены завитками.

Аналогичная ситуация происходит с течением турбулентной жидкости при плавном расширении русла. Такое расширение называется диффузор.

В диффузоре, как и при внезапном расширении русла, происходит отрыв основного потока от стенки русла и наблюдается вихреобразование.

Таким образом, течение жидкости при расширении потока сопровождается уменьшением скорости движения и увеличением давления, то есть преобразованием кинетической энергии движения жидкости в потенциальную энергию давления.

РЕЖИМ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЖИДКОСТИ ПРИ СУЖЕНИИ ПОТОКА

При внезапном сужении русла происходит потеря напора – энергии, которая расходуется на трение потока при входе в более узкую трубу и потери на вихреобразование, связанное с отрывом потока от стенок и образующееся вокруг суженой части потока.

Аналогичная ситуация происходит с течением турбулентной жидкости при плавном сужении русла. Такое сужение называется конфузор.

В результате этого образуются зоны вихреобразования, которые возникают в кольцевом пространстве вокруг суженной части потока.

Таким образом, при сужении русла происходит увеличение скорости движения потока и снижение давления, то есть преобразование потенциальной энергии давления в кинетическую энергию движения жидкости.

Теперь, если мы применим эту теорию к рафтингу, то увидим, что те же самые законы действуют и на реках. Такие области вихреобразования (циркуляции) в рафтинге называются улово.

Улово – участок реки, где основной поток отрывается от берегов русла, в результате чего возникает противоток основному течению либо возникает водоворот. Чаще всего это возникает у прижимов, вблизи перекатов, выступов берега, в местах резкого расширения или после сужения русла реки, впадения притоков и т. д.

Если мы внимательно посмотрим на пример течения жидкости в условия сужения русла, можно выделить ряд интересных особенностей поведения турбулентного потока.

Очень часто зоны вихреобразования (циркуляции) возникают сразу после суженной части потока, проявляясь в виде пены по краям основного течения.

Обратите внимание на светлые области пенообразования, а именно на то, где расположены эти участки. Правильно: зона вихреобразования (циркуляции) образуется сразу после суженной части потока, в момент его максимального ускорения.

Затем по мере снижения скорости потока пена исчезает, и остается только струя. Таким образом, именно резкое ускорение (или замедление) потока и порождает области циркуляции. Это области образования поверхностных бочек (R/2, R/3, R/4).

Динамика водного потока. Виды препятствий

Я уже говорил о том, что использую аналогию между ценовым графиком и рекой.

На реках стоячие волны – это валы. На ценовых графиках стоячие волны – это циклы.

На реках области турбулентности – это бочки, в альтернативном волновом анализе им соответствуют дробные циклы. Ну а форма рельефа русла реки (пороги, перекаты и т. д.) – это полуциклы.

Поэтому я решил использовать терминологию из лекций по рафтингу, чтобы можно было подробно классифицировать все существующие волновые препятствия.

А начнем мы с камней. Да-да, с тех самых камней, которые встречаются в руслах рек.

КАМЕНЬ

Изображение сгенерировано нейросетью «Шедеврум»

В AWA камнями называются волновые препятствия, которые имеют параметр интерференции 1.

Камни представляют собой одну из разновидностей препятствий, которые могут встречаться на пути водного потока.

Если камень подходит близко к поверхности воды и энергии набегающего потока оказывается достаточно, чтобы вода переливалась поверх камня, тогда этот камень называется обливным.

Изображение сгенерировано нейросетью «Шедеврум»

Ниже обливного камня, в зависимости от его размеров и скорости потока, вода может срываться с его поверхности тонкой пленкой, под которой образуется большая воздушная полость.

Либо может падать отвесно вниз, образуя глубокую и жесткую бочку.

Когда скорость потока оказывается недостаточной, для того чтобы поднять уровень воды выше камня, перед камнем образуется отбойный вал.

При большей скорости течения, но все же недостаточной, для того чтобы поднять уровень воды выше камня, перед ним может возникать и бочка.

Как я уже говорил, в альтернативном волновом анализе камнями считаются волновые препятствия, которые имеют параметр интерференции 1.

Другими словами, в волновом балансе камень будет представлять собой комбинацию – 1 цикл R1, состоящий из 1 волнового пакета (1/1), или 2 цикла R1 из 2 волновых пакетов (2/2) и т. д.

Если же цикл R1 состоит не из одного, а из двух и более волновых пакетов, такие циклы я буду называть валами.

ВАЛ

Изображение сгенерировано нейросетью «Шедеврум»

Валы – это стоячие волны, неподвижные относительно берегов. Они образуются при токе воды в пологих сливах, обычно в виде дорожки из нескольких валов.

Стоит избегать встречи с мощными крутыми валами с пенным гребнем на вершине. Валы бывают стоячими и пульсирующими.

Стоячий вал – это такой вал, в любой точке которого горизонтальная скорость воды направлена по ходу основного потока.

Стоячие валы подразделяют на прямые, косые и пирамидальные:

Прямой вал – вал, гребень которого перпендикулярен направлению потока, и вода движется строго вдоль склонов вала вверх и вниз.

Косой вал – вал, в котором скорость течения на самом валу, до и после него имеет составляющую, параллельную гребню. Иначе говоря, поведение лодки на косом валу можно рассматривать как прохождение прямого вала плюс боковой снос.

Пирамидальный вал – крайний случай стоячего (косого) вала, т. е. если вал очень узкий, то его гребень превращается практически в точку. Такие валы возникают, например, в конце языка после сужающегося слива. На переднем и боковых склонах вала вода движется вверх, и только на заднем – вниз.

В волновом балансе стоячий вал будет представлять собой комбинацию – 1 цикл R1, состоящий из двух и более волновых пакетов. Тогда такой вал будет иметь параметр интерференции (1/2, 1/3 и т. д.).

Если циклов несколько, тогда образуются валы.

В волновом балансе валы будут представлять собой комбинацию из двух и более циклов R1, которые состоят при этом из трех и более волновых пакетов.

Хотя, как правило, я их все равно называю в единственном числе. Как в нашем случае: вал (-2/3), или два цикла R1 из трех волновых пакетов.