banner banner banner
Избранные главы курса Радиохимия
Избранные главы курса Радиохимия
Оценить:
Рейтинг: 0

Полная версия:

Избранные главы курса Радиохимия

скачать книгу бесплатно


(1.7)

Константы нестойкости ступенчатые – обратные величины ступенчатым константам устойчивости. Общая константа нестойкости

. (1.8)

Для определения констант и описания форм состояния ионов в растворе имеют большое значение соотношения между константами и аналитически измеряемыми величинами. Общая концентрация металла в растворе в виде свободного иона и комплексных частиц определяется уравнением:

. (1.9)

Введя

получаем

N – максимальное число лигандов в комплексе.

Общую концентрацию лиганда можно определить:

(1.10)

Для определения степени закомплексованности Нильс Бьеррум предложил использовать среднее координационное или лигандное число, которое при заданных концентрации лиганда и константах устойчивости комплекса характеризует глубину комплексообразования. Среднее лигандное число и дает число лигандов, связанных с одним ионом металла – комплексообразователя во всех типах комплексов, т.е

Подставив соответствующие выражения, получаем:

(1.11)

При заданных ?

среднее лигандное число зависит только от концентрации лиганда и не зависит от концентрации металла в растворе (рис. 1.3). Это утверждение справедливо только для случая образования моноядерных комплексов. Если C

>>C

, то [L] ? C

. Когда C

<1 °C

, то при расчете нельзя пренебрегать связанным в комплекс лигандом.

Рис. 1.3. Изменение среднего лигандного числа в зависимости от концентрации лиганда для цианидных комплексов кадмия [1].

Еще одна величина, которая нашла широкое применение, – это мольная доля i– комплекса в растворе ?

.

. (1.12)

Из определения следует

?

зависят только от концентрации лиганда и не зависят от концентрации металла в растворе (рис. 1.4).

Рис. 1.4. Доля аммиачных комплексов цинка, как функция концентрации свободного аммиака [2].

При такой концентрации лиганда, при которой один из комплексов присутствует в максимальных количествах (?

=max), n?соответствует числу лигандов, связанных в этом комплексе. Абсциссы точек пересечения кривых мольных долей, т. е. точек, в которых концентрации двух последовательных комплексов одинаковы, равны отрицательным логарифмам ступенчатых констант устойчивости:

(1.13)

Если ион металла образует комплексы с несколькими видами лигандов, то распределение по формам можно рассчитать аналогично:

или в общем случае

(1.14)

где К – число различных видов лигандов, участвующих в комплексообразовании (рис. 1.5).

Равновесия образования полиядерных комплексов рассмотрим в части, посвященной процессам гидролиза.

Внешнесферные и внутрисферные комплексы

Приведенные уравнения и константы характеризуют процесс образования внутрисферного комплекса в результате проявления сил близкодействия, что приводит к молекулярному контакту между ионом-комплексообразователем и лигандами. Если лиганды способны образовывать вторую и более удаленные сферы, то говорят об образовании внешнесферных комплексов. Возможность образования внутрисферного комплекса определяется напряженностью поля и способностью к поляризации, следовательно, зарядом и радиусом иона, т. е. ионным потенциалом

, где z – заряд иона, а r – его радиус.

Рис. 1.5. Состояние урана (VI) в морской воде в зависимости от рН: 1 – UO

F

; 2 – UO

SO

; 3 – UO

; 4 – UO

Cl

; 5 – UO

(SO

)

; 6 – UO

F

; 7 – UO

OH

; 8 – UO

(OH)

; 9 – UO

(CO

)

; 10 – UO

(CO)

[13].

Координирующая способность растет с увеличением ионного потенциала центрального иона. Образование внешнесферного комплекса происходит по типу образования ионных пар. Например, аномальная величина ионного потенциала Li обуславливает его наибольшую поляризующую способность и наименьшую поляризуемость среди всех щелочных металлов. В поле, которое создает Li

происходит процесс структурирования воды: молекулы воды, которые представляют собой диполи, ориентируются в поле Li

, образуя внутреннюю и внешние сферы (рис. 1.6).

Рис. 1.6. Процесс структурирования воды в поле Li

.

В водном растворе в результате этого литий имеет наибольший радиус, что объясняет его меньшую подвижностьпо сравнению с подвижностью ионов калия и натрия. По величине гидратированного иона лития (10 ?) можно вычислить, что в первой сфере он имеет – 6, во второй – 30, а в третьей – 76 молекул воды, что естественно, оказывает определяющее влияние на его химические свойства и физико-химическое поведение в водных растворах.

Внешнесферные комплексы могут быть идентифицированы по изменению некоторых характеристик, в частности, спектральных. Для лабильных систем (когда лиганды, входящие в состав внутренней и внешней сфер, могут легко меняться местами) трудно провести различие между внешнесферными и внутрисферными комплексами. Возможно, превращение внешнесферного комплекса во внутрисферный происходит в результате химической реакции

(1.14)

скорость которой определяется скоростью образования ионной пары и, в дальнейшем, внутрисферного комплекса. Возможность перехода одной формы комплекса в другую характеризует лабильность комплекса. Оказывается, что комплексы трехвалентных РЗЭ чрезвычайно лабильны. Причина этого, по-видимому, в большом координационном числе ионов РЗЭ. Скорость определяющей реакцией будет удаление молекулы воды из внутренней координационной сферы и ее замещение на лиганды второй внешней координационной сферы.

Устойчивость комплексных соединений

Обычно реакции комплексообразования рассматривают, используя понятия теории кислот и оснований Льюиса.

Характерные свойства кислот и оснований можно связать с их электронной структурой, а в особенности с парой электронов, образующих координационную ковалентную связь. Тогда можно дать следующее определение:

кислоты – вещества, которые при образовании ковалентной связи принимают пару электронов (являются акцепторами пары электронов);

основания – вещества, которые при образовании ковалентной связи отдают пару электронов (являются донорами пары электронов). Выбор электронной конфигурации в качестве фундаментального критерия для обоснования понятий «кислота» и «основание» дает возможность применить их для более широкого класса веществ.

Основания – это соединения, обладающие неподеленной парой электронов, которая может быть использована для образования устойчивой электронной группировки другого атома; кислота – соединения, которые могут использовать неподеленную пару электронов атома другой молекулы с тем, чтобы завершить образование устойчивой электронной конфигурации одного из своих собственных атомов. Развитием электронной теории кислот и оснований является концепция «жестких» и «мягких» кислот и оснований Пирсона (1963 г.). В предложенной теории в качестве основного процесса кислотно-основного равновесия рассматривается взаимодействие акцептора пары электронов А (кислоты) с донором пары электронов В (основанием) с образованием стабильного кислотно-основного комплекса АВ:

Однако, в то время как Льюис считал самым важным при образовании комплекса появление ковалентной связи, Пирсон включил в рассмотрение и другие типы взаимодействия, в том числе и те, которые приводят частично или полностью к электростатической (ионной) связи. Таким образом, к кислотно-основным реакциям, например, относятся реакции образования комплексных катионов и анионов, а также формирование кристаллической решетки солей. Вопрос состоит в том, какие свойства кислоты А и основания В обеспечивают термодинамическую стабильность образования комплекса АВ. Теория предполагает, что в качественном отношении эта стабильность определяется так называемой жесткостью и мягкостью участников реакции.

Если, например, рассматривать комплексообразование с галогенидами, то для различных катионов будет наблюдаться различная закономерность устойчивости образующихся комплексов. Первые константы образования уменьшаются в следующей последовательности:

Таким же образом можно классифицировать не только комплексообразователи, но и лиганды. Отличие надо искать в свойствах их электронной структуры и реакционной способности.

Жесткие частицы обладают прочной малодеформируемой электронной структурой. Это могут быть атомы элементов с высокой электроотрицательностью (F, O, N) или катионы с большим зарядом. Напротив, мягкие частицы имеют подвижную деформируемую электронную структуру и высокую поляризуемость.

Жесткие кислоты. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протил, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Следовательно, характеризуется наименьшим размером, во внешней сфере нет неподеленной пары электронов. Типичные представители жестких кислот имеют структуру инертного газа Li

, Be

, Al

… и относятся, в основном, к элементам главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятой d-оболочкой (Mn

, Fe

…).

Жесткие основания вследствие прочной и устойчивой электронной оболочки, а также соответствующего строения электронных орбиталей не имеют склонности к образованию ковалентных связей с катионом (F

, O

). Рассматривая реакционную способность воды, как донора пары электронов. Можно отметить, что, например, при гидратации катионов, кислород молекулы вода как раз и является жестким центром. Анионы кислородсодержащих кислот, таких как ClO

, SO

, PO

, CO

также имеют малодеформируемую структуру.

В противоположность, мягкие кислоты – большие катионы с деформируемой электронной оболочкой (например, элементы главных подгрупп Cs

, Tl

) а также катионы переходных металлов, в электронной оболочке которых имеются неподеленные пары электронов. Способность к поляризуемости у них выше. Мягкость соединений увеличивается по мере уменьшения положительного заряда ионов.

Аналогично и мягкие основания (P

, S

, I

, Br