banner banner banner
Котлы тепловых электростанций и защита атмосферы
Котлы тепловых электростанций и защита атмосферы
Оценить:
Рейтинг: 5

Полная версия:

Котлы тепловых электростанций и защита атмосферы

скачать книгу бесплатно


100?W

?A

?(СО

)

,

где А

– зольность без учета сульфатов, образовавшихся при разложении карбонатов и с поправкой на сгорание серы колчеданной, то есть

A

= A

?[2,5(S

?S

)d + 0,375 S

]·(1?W

/100),

где S, S

и S

– содержание серы в лабораторной золе, сульфатной серы в топливе и колчеданной серы соответственно.

Горючими элементами топлива, как уже отмечалось, являются углерод, водород и сера. При полном сгорании с теоретически необходимым количеством окислителя эти компоненты выделяют разное количество теплоты:

С + О

= CO

? 8130 ккал/кг (34,04 МДж/кг);



+ O

= 2Н

O ? 29 100 ккал/кг (121,8 МДж/кг);

S + O

= SO

? 2600 ккал/кг (10,88 МДж/кг).

Следует учитывать, что углерод составляет большую часть рабочей массы топлива: в твердом топливе его доля равна 50–75 % (в зависимости от возраста углей), а в мазутах – 83–85 %. Водорода в топливе меньше, но он отличается очень высокой теплотой сгорания. Если продукты его сгорания сконденсировать (то есть учитывать не низшую, а высшую теплоту сгорания), выделенная теплота составит даже не 121,8, а 144,4 МДж/кг.

Серу отличает невысокая теплота сгорания, да и количество её, как правило, невелико. Следовательно, сера не представляет существенной ценности как горючий элемент, а вот проблемы, связанные с наличием SO

в продуктах сгорания, – весьма существенны.

Таблица 2.1 Коэффициенты пересчета характеристик топлива

Всё вышесказанное относится в основном к твердому и жидкому топливам. Газ, в отличие от них, – механическая смесь нескольких компонентов. В природном газе большинства месторождений основной составляющей является метан – СН

, количество которого колеблется от 85 до 96 %. Кроме метана, в составе природного газа обычно имеются более тяжелые углеводороды: этан С

Н

, пропан С

Н

, бутан С

Н

и др. Газ некоторых месторождений, кроме углеводородов, содержит и другие горючие компоненты: водород Н

и оксид углерода СО. Из негорючих компонентов в состав газа входят азот N

и диоксид углерода CO

.

Основной характеристикой любого вида органического топлива является его теплота сгорания, то есть количество теплоты, выделяющейся при полном сгорании единицы массы (для твердого и жидкого топлива) или единицы объема (для газа). В расчетах чаще всего используют низшую теплоту сгорания (Q

) – количество теплоты, образовавшейся при сжигании 1 кг угля или мазута, а при сжигании газообразного топлива – 1 м

этого газа. При этом предполагается, что продукты сжигания остались в газообразном состоянии. Иногда используют другую теплотехническую характеристику – высшую теплоту сгорания (Q

), но при этом в тексте обязательно уточняют, что речь идет именно о Q

(или HHV – higher heating value, в отличие от LНV – lower heating value — низшей теплоты сгорания). Высшая теплота сгорания всегда больше, чем низшая, так как она учитывает дополнительное количество теплоты, выделяющейся при конденсации водяных паров и охлаждении всех продуктов сгорания до исходной температуры.

Пересчет низшей теплоты сгорания на высшую (и наоборот) выполняется по следующей зависимости:

Q

= Q

? 6(W

+ 9Н

), ккал/кг (2.5)

или

Q

= Q

? 25,12 (W

+ 9Н

), кДж/кг. (2.5 а)

Другие характеристики топлив, отличающихся своим агрегатным состоянием, удобнее рассматривать отдельно для твердого, жидкого и газообразного топлива.

2.2. Твердое топливо

Твердое топливо включает в себя прежде всего различные угли (антрацит, каменные и бурые угли), а также торф, сланцы и некоторые виды отходов (как промышленных, так и твердых бытовых отходов – ТБО). К этому же виду топлива относится один из возобновляемых источников энергии – биотопливо, то есть древесина, отходы лесозаготовки, деревопереработки, целлюлозно-бумажного и сельскохозяйственного производства.

Преобладающим видом топлива для тепловых электростанций являются различные марки угля. В России прочно установилось деление углей на бурые (самые молодые), каменные и антрациты (старые угли с максимальной степенью углефикации).

Бурые угли делятся по максимальной влагоемкости (в расчете на беззольную массу W

) на 3 группы: 1Б (W

> 50 %), 2Б (30 ? W

? 50) и ЗБ (W

< 30 %). Бурые угли отличают высокий выход летучих (V

> 40 %), неспекшийся коксовый остаток и высокая гигроскопичность. В этих углях меньше (по сравнению с каменными углями) углерода и больше кислорода. При сушке на воздухе бурые угли теряют механическую прочность и растрескиваются. Их недостатком является и повышенная склонность к самовозгоранию при хранении на складе.

Классификация каменных углей основана на величине выхода летучих на горючую массу, то есть V

, %. Если оставить в стороне коксующиеся угли, используемые, главным образом, в металлургическом производстве, то все энергетические угли можно расположить по степени снижения V

: Д – длиннопламенные; ДГ – длиннопламенные-газовые; Г – газовые (группы 1Г и 2Г); слабоспекающиеся (группы 1CC, 2СС и ЗСС); тощие (группы 1T и 2Т). Тощий уголь 1-й группы имеет V

больше 12 %, а 2Т – от 8 до 12 %. Замыкают этот ряд антрациты (группы 1А, 2А и ЗА). Все они имеют выход летучих на горючую массу менее 8 %, но группы 1–3 отличаются разной величиной объемного выхода летучих веществ.

Приведенная выше классификация не учитывает каменные угли, подвергшиеся окислению в природных условиях, в период формирования угольных месторождений. Окисленные угли отличают пониженная высшая теплота сгорания на сухую и беззольную массу (Q

), а также потеря спекаемости. Различают I группу окисленности (снижение Q

на 10 %) и II группу (снижение Q

нa 25 %). Так, например, длиннопламенный уголь Таллинского месторождения (Кузбасс) имеет высшую теплоту сгорания Q

= 31,82 МДж/кг. Окисленный уголь того же месторождения ДРОК-I (длиннопламенный, рядовой, окисленный I группы) – до 27,42 МДж/кг, а еще более окисленный – ДРОК-II – только 25,04 МДж/кг.

Еще одна важная характеристика каменных углей – размер кусков. Поступивший на электростанцию уголь по этому показателю делится на следующие классы:

плита (П – от 100 до 200 или 300 мм);

крупный (К – 50–100 мм);

орех (О – 25–50 мм);

мелкий (М – 13–25 мм);

семечко (С – 6–13 мм);

штыб (Ш – 0–6 мм);

рядовой (Р – 0–200 или 300 мм).

Верхний предел 300 мм распространяется только на угольные разрезы, то есть на предприятия с открытым способом добычи.

Иногда на тепловые электростанции поступает уголь не прямо от добывающего предприятия, а после обогатительных фабрик. При обогащении углей мокрым и сухим способами различают следующие продукты обогащения: малозольный концентрат, высокозольный промпродукт, отсевы мелких классов, шлам, а также породу и «хвосты», удаляемые в отвал. С учетом этого можно по маркировке поступающего на ТЭС угля представить некоторые характеристики топлива, весьма важные как для надежности топливоподачи в пределах ТЭС, так и для сжигания в котельном цехе. Например, ГСШ – газовый уголь с размерами «семечко» и «штыб», а ГРОКII – это тоже газовый уголь, но «рядовой», 2-й группы окисленности.

Заметную роль в организации топочного процесса играют характеристики минеральной части. Условно можно минеральную часть угля разделить на три группы:

– минералы, занесенные в пласт топлива в результате геологических преобразований в процессе его образования;

– минералы прилегающих к пласту топлива горных пород, занесенные в топливо при его добыче;

– минералы, связанные с органической частью топлива или образующиеся при ее разложении в процессе углеобразования.

Последняя группа минералов называется внутренней золой; она равномерно распределена по органической массе топлива. Первая группа минералов, в зависимости от равномерности их распределения по топливу, может быть источником как внутренней, так и внешней золы. Вторая группа минералов относится к внешней золе.

Еще одна важная деталь: количество золы, получаемой при полном сжигании угля, не равно количеству содержащихся в угле минеральных примесей. Дело в том, что в состав минеральной части входят глинистые минералы, слюды, карбонаты, сульфаты и ряд других веществ. При нагревании глинистых минералов и слюд в топке сначала происходит потеря кристаллизационной воды (до 500–600 °С), затем разрушается первоначальная кристаллическая решетка и образуются вторичные минералы (муллит, шпинель и др.). При дальнейшем повышении температуры (сверх 1100 °С) начинается плавление. Еще раньше, в диапазоне температур 400–900 °С, разлагаются карбонаты и образуются весьма тугоплавкие оксиды. При температурах 700–800 °С в окислительной среде полностью выгорает пирит. Все эти процессы при горении топлива приводят к значительному изменению состава и массы минеральных примесей. Таким образом, правильнее считать, что зола – твердый продукт реакций минеральной части топлива, образующийся при сжигании этого топлива.

Многочисленные исследования показали, что при сжигании каменных углей минеральная масса обычно оказывается больше, чем зольность, а для малозольных бурых углей – меньше.

Для общей оценки химических свойств золы введены понятия «кислого» и «основного» состава шлака. Поведение золы в топке в значительной степени определяет величина отношения оксидов кислотного характера к основным:

. (2.6)

С учетом этого выражение золы углей Донбасса, большей части Кузнецкого, Подмосковного, Экибастузского и некоторых других бассейнов относят к кислым. Угли Канско-Ачинского бассейна, торф, сланцы имеют золу, которая относится к основным (К<1,0). Состав золы оказывает большое влияние на шлакующие свойства твердых видов топлива.

2.3. Газообразное топливо