banner banner banner
Карта незримого. Восемь путешествий по физике элементарных частиц
Карта незримого. Восемь путешествий по физике элементарных частиц
Оценить:
Рейтинг: 0

Полная версия:

Карта незримого. Восемь путешествий по физике элементарных частиц

скачать книгу бесплатно

В нашем эксперименте, однако, эти два различных способа увеличения энергии совсем по-разному воздействуют на световой детектор[5 - Это различие стимулировало развитие квантовой механики и вдохновило Альберта Эйнштейна на прорывной результат: ученый реанимировал идею света как частицы.]. Можно было бы ожидать, что при увеличении количества света на фотоэлектрическом материале детектора соответствующий электрический ток также увеличится. Это так, но только при некоторых условиях, а в общем случае работает не всегда. К примеру, пусть используемый нами свет – синий. Это означает, что его длина волны составляет 475 нанометров (1 нм = 10

м)[6 - Обычно указывают не одно значение, а диапазон: для синего цвета – 440–485 нм. – Прим. перев.], что соответствует частоте 650 терагерц[7 - Более точно, 632 ТГц. – Прим. перев.] (1 ТГц = 10

Гц), или 650 тысячам миллиардов колебаний в секунду. Световой детектор регистрирует излучение, в результате чего появляется уже известная нам интерференционная картина, состоящая из ярких и темных полос, наглядно демонстрирующая волновую природу света. Если увеличить мощность синего лазера, то интенсивность излучения, получаемого детектором, тоже возрастет. Одним словом, пока все складывается отлично.

Однако давайте теперь настроим частоту лазера. Будем уменьшать ее, сделав свет сначала зеленым, потом красным. Для нашего конкретного детектора при уменьшении частоты (до становления волны красной) электрический ток в какой-то момент внезапно пропадет, и мы станем лишены возможности регистрировать излучение. Уменьшая частоту, мы уменьшаем мощность лазера. Если рассматривать этот процесс в контексте знакомых нам волн в заливе, то чайка стала бы подпрыгивать реже. Следовательно, нет ничего удивительного в том, что ток будет меньше, хотя все-таки странно, что он исчезает так внезапно.

Но ничего, мы же можем компенсировать уменьшение частоты увеличением интенсивности (это соответствует тому, что чайка подпрыгивала бы выше, даже если бы она подпрыгивала реже). Однако результат нас разочаровывает, потому что при увеличении интенсивности ничего не происходит.

После того как частота света падает ниже определенного значения (это значение зависит от имеющегося у нас детектора и материала, из которого он сделан), электрического тока нет независимо от того, насколько сильно мы будем повышать интенсивность света. Это невозможно объяснить, если мы рассматриваем свет как непрерывные волны. Энергия есть – так почему же она не высвобождает электроны?

Такой результат можно объяснить, только если свет приходит не в виде непрерывной волны, а небольшими порциями – квантами – энергии (что больше похоже на отправляемые нашим экипажем письма домой, а не на радиоволны, которыми пользуются в экстренных ситуациях). Световые «порции» называются фотонами


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 11 форматов)