скачать книгу бесплатно
Графический процессор-вычислитель (Computational Graphics Processing Unit) (ГП-вычислитель cGPU) – это многоядерный ГП, используемый в гибридных суперкомпьютерах для выполнения параллельных математических вычислений; например, один из первых образцов ГП этой категории содержит более 3 млрд транзисторов – 512 ядер CUDA и память ёмкостью до 6 Гбайт[234 - Computational Graphics Processing Unit [Электронный ресурс] www.boston.co.uk URL: https://www.boston.co.uk/info/nvidia-kepler/what-is-gpu-computing.aspx (дата обращения 14.03.2022)].
Графовая базаданных (Graph database) — это база, предназначенная для хранения взаимосвязей и навигации в них. Взаимосвязи в графовых базах данных являются объектами высшего порядка, в которых заключается основная ценность этих баз данных. В графовых базах данных используются узлы для хранения сущностей данных и ребра для хранения взаимосвязей между сущностями. Ребро всегда имеет начальный узел, конечный узел, тип и направление. Ребра могут описывать взаимосвязи типа «родитель-потомок», действия, права владения и т. п. Ограничения на количество и тип взаимосвязей, которые может иметь узел, отсутствуют. Графовые базы данных имеют ряд преимуществ в таких примерах использования, как социальные сети, сервисы рекомендаций и системы выявления мошенничества, когда требуется создавать взаимосвязи между данными и быстро их запрашивать[235 - Graph database (GDB) [Электронный ресурс] https://aws.amazon.com URL: https://aws.amazon.com/ru/nosql/graph/ (дата обращения: 11.03.2022)].
Графовые нейронные сети (Graph neural networks) – это класс методов глубокого обучения, предназначенных для выполнения выводов на основе данных, описанных графами. Графовые нейронные сети – это нейронные сети, которые можно напрямую применять к графам и которые обеспечивают простой способ выполнения задач прогнозирования на уровне узлов, ребер и графов. GNN могут делать то, что не смогли сделать сверточные нейронные сети (CNN). Также под Графовыми нейронными сетями понимают нейронные модели, которые фиксируют зависимость графов посредством передачи сообщений между узлами графов. В последние годы варианты GNN, такие как сверточная сеть графа (GCN), сеть внимания графа (GAT), рекуррентная сеть графа (GRN), продемонстрировали новаторские характеристики во многих задачах глубокого обучения[236 - Graph neural networks [Электронный ресурс] https://arxiv.org URL: https://arxiv.org/pdf/1812.08434 (дата обращения: 07.07.2022)].
Графы знаний (Knowledge graphs) – это структуры данных, представляющие знания о реальном мире, включая сущности люди, компании, цифровые активы и т.д.) и их отношения, которые придерживаются модели данных графа – сети узлов (вершин) и соединения (ребер/дуг)[237 - Knowledge graphs (Графы знаний) [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Knowledge_Graph (дата обращения: 28.03.2023)].
Гребенчатая регуляризация (Ridge regularization) – синоним «Регуляризации L
». Термин гребенчатая регуляризация чаще используется в контексте чистой статистики, тогда как регуляризация L
чаще используется в машинном обучении[238 - Ridge regularization [Электронный ресурс] https://developers.google.com
https://developers.google.com/machine-learning/glossary#ridge-regularization (дата обращения: 16.04.2023)].
«Д»
Данные (Data) – это информация собранная и трансформированная для определенных целей, обычно анализа. Это может быть любой символ, текст, цифры, картинки, звук или видео.
Данные тестирования (Testing Data) – это подмножество доступных данных, выбранных специалистом по данным для этапа тестирования разработки модели.
Данные ограниченного использования(Restricted-use data) – это данные, которые содержат конфиденциальную информацию (обычно о людях), которая может позволить идентифицировать людей. Наличие конфиденциальной информации в депонированном цифровом контенте представляет собой проблему управления для долгосрочного хранения, чтобы гарантировать, что требования к архивному хранилищу для достижения распределенной избыточности учитывают, например, требования конфиденциальности[239 - Restricted-use data [Электронный ресурс] www.umich.edu (дата обращения: 07.07.2022) URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#R].
Дартмутский семинар (Dartmouth workshop) – Дартмутский летний исследовательский проект по искусственному интеллекту – так назывался летний семинар 1956 года, который многие считают основополагающим событием в области искусственного интеллекта[240 - Dartmouth workshop [Электронный ресурс] https://static.hlt.bme.hu URL: https://static.hlt.bme.hu/semantics/external/pages/John_McCarthy/en.wikipedia.org/wiki/Dartmouth_workshop.html (дата обращения: 16.04.2023)].
Датамайнинг (Datamining) – это процесс обнаружения и интерпретации значимых закономерностей и структур в исходных данных, которые могут быть использованы для решения сложных бизнес-вопросов и высокоинтеллектуального прогнозирования[241 - Datamining [Электронный ресурс] https://bellintegrator.ru URL: https://bellintegrator.ru/ArtificialIntelligence/Data-Mining (дата обращения: 19.02.2022)].
Даунсэмплинг (downsampling) — это уменьшение количества информации в функции для более эффективного обучения модели. Например, перед обучением модели распознавания изображений, субдискретизация изображений с высоким разрешением до формата с более низким разрешением; Обучение на непропорционально низком проценте чрезмерно представленных примеров классов, чтобы улучшить модель обучения на недопредставленных классах[242 - Downsampling [Электронный ресурс] https://developers.google.com
https://developers.google.com/machine-learning/glossary#downsampling (дата обращения: 09.04.2023)].
Движок искусственного интеллекта (Artificial intelligence engine) (также AI engine, AIE) – это движок искусственного интеллекта, аппаратно-программное решение для повышения скорости и эффективности работы средств системы искусственного интеллекта.
Двоичное число(Binary number) – это число, записанное в двоичной системе счисления, в которой используются только нули и единицы. Пример: Десятичное число 7 в двоичной системе счисления: 111[243 - Binary number [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#B (дата обращения: 07.07.2022)].
Двоичный формат(Binary format) – это любой формат файла, в котором информация закодирована в каком-либо формате, отличном от стандартной схемы кодирования символов. Файл, записанный в двоичном формате, содержит информацию, которая не отображается в виде символов. Программное обеспечение, способное понимать конкретный метод кодирования информации в двоичном формате, должно использоваться для интерпретации информации в файле в двоичном формате. Двоичные форматы часто используются для хранения большего количества информации в меньшем объеме, чем это возможно в файле символьного формата. Их также можно быстрее искать и анализировать с помощью соответствующего программного обеспечения. Файл, записанный в двоичном формате, может хранить число «7» как двоичное число (а не как символ) всего в 3 битах (т.е. 111), но чаще используется 4 бита (т.е. 0111). Однако двоичные форматы обычно не переносимы. Файлы программного обеспечения записываются в двоичном формате. Примеры файлов с числовыми данными, распространяемых в двоичном формате, включают двоичные версии IBM файлов Центра исследований цен на ценные бумаги и Национального банка торговых данных Министерства торговли США на компакт-диске. Международный валютный фонд распространяет международную финансовую статистику в смешанном формате и двоичном (упакованно-десятичном) формате. SAS и SPSS хранят свои системные файлы в двоичном формате[244 - Binary format [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#B (дата обращения: 07.07.2022)].
Двоичная, бинарная или дихотомическая классификация (Binary classification) – это задача классификации элементов заданного множества в две группы (определение, какой из групп принадлежит каждый элемент множества) на основе правила классификации[245 - Binary classification [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/binary-classification (дата обращения: 09.04.2023)].
Двунаправленная языковая модель (Bidirectional language model) – это языковая модель, которая определяет вероятность того, что данный маркер присутствует в заданном месте в отрывке текста на основе предыдущего и последующего текста[246 - Bidirectional language model [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#bidirectional-language-model (дата обращения: 09.04.2023)].
Двунаправленность (Bidirectional) – это термин, используемый для описания системы оценки текста, которая одновременно исследует предшествующий и последующий разделы текста от целевого раздела[247 - Bidirectional [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#bidirectional (дата обращения: 09.04.2023)].
Двусмыссленная фраза (Crash blossom) – это предложение или фраза с двусмысленным значением. Crash blossom представляет серьезную проблему для понимания естественного языка. Например, заголовок «бить баклуши» является Crash blossom, потому что нейронная сеть с пониманием естественного языка может интерпретировать заголовок буквально или образно[248 - Crash blossom [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#crash-blossom (дата обращения: 09.04.2023)].
Дедуктивный классификатор (Deductive classifier) – это тип механизма вывода искусственного интеллекта. Он принимает в качестве входных данных набор деклараций на языке кадра об области, такой как медицинские исследования или молекулярная биология. Классификатор определяет, являются ли различные описания логически непротиворечивыми, и если нет, то выделяет конкретные описания и несоответствия между ними[249 - Deductive classifier [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Deductive_classifier (дата обращения: 09.04.2023)].
Дедукция (Deductive Reasoning) – это способ рассуждения и доказательства на основе перехода от более общих положений к частным, один из способов прогнозирования развития и изложения материала; эффективен, когда у исследователя уже накоплен определенный опыт и знания в изучаемой области[250 - Дедукция, стр. 36 Педагогический словарь: учеб. пособие для студ. высш. П24 учеб. заведений/ [В.И.Загвязинский, А.Ф.Закирова, Т. А. Строкова и др.]; под ред. В.И.Загвязинского, А.Ф.Закировой. – М.: Издательский центр «Академия», 2008. – 352 с. (дата обращения: 09.04.2023)].
Действие (Action) (в обучении с подкреплением) – это механизм, с помощью которого агент переходит между состояниями среды. Агент выбирает действие с помощью политики[251 - Action [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#action (дата обращения: 09.04.2023)].
Декларативное программирование (Declarative programming) – это парадигма программирования, в которой задаётся спецификация решения задачи, то есть описывается ожидаемый результат, а не способ его получения. Противоположностью декларативного является императивное программирование, при котором на том или ином уровне детализации требуется описание последовательности шагов для решения задачи[252 - Declarative programming [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Declarative_programming (дата обращения: 09.04.2023)],[253 - Декларативное программирование [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Декларативное_программирование (дата обращения: 09.04.2023)].
Демографический паритет (Demographic parity) – это метрика справедливости, которая удовлетворяется, если результаты классификации модели не зависят от данного конфиденциального атрибута[254 - Demographic parity [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#demographic-parity (дата обращения: 09.04.2023)].
Дерево поведения (Behavior tree) – это ориентированный ациклический граф, узлами которого являются возможные варианты поведения робота. «Ширина» дерева указывает на количество доступных действий, а «длина» его ветвей характеризует их сложность. Деревья поведения имеют некоторое сходство с иерархическими конечными автоматами с тем ключевым отличием, что основным строительным блоком поведения является задача, а не состояние. Простота понимания человеком делает деревья поведения менее подверженными ошибкам и очень популярными в сообществе разработчиков игр[255 - Behavior tree (BT) [Электронный ресурс] https://habr.com URL: https://habr.com/ru/company/cloud_mts/blog/306214/ (дата обращения: 31.01.2022)].
Дерево проблем (решений) или логическое дерево (Issue tree) – это денотативное (отражающее ситуацию) представление процесса принятия решений, представленное в виде графической разбивки задачи, разделенное на отдельные компоненты по вертикали и горизонтали. Деревья решений в искусственном интеллекте используются для того, чтобы делать выводы на основе данных, доступных из решений, принятых в прошлом. Деревья решений – это статистические алгоритмические модели машинного обучения, которые интерпретируют и изучают ответы на различные проблемы и их возможные последствия. В результате деревья решений знают правила принятия решений в конкретных контекстах на основе доступных данных[256 - Issue tree [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Issue_tree (дата обращения: 09.04.2023)].
Дерево решений (Decision Tree) – это метод представления решающих правил в иерархической структуре, состоящей из элементов двух типов – узлов (node) и листьев (leaf). В узлах находятся решающие правила и производится проверка соответствия примеров этому правилу по какому-либо атрибуту обучающего множества[257 - Decision Tree [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#decision-tree (дата обращения: 09.04.2023)],[258 - Decision Tree [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Decision_tree (дата обращения: 09.04.2023)],[259 - Дерево решений [Электронный ресурс] https://loginom.ru URL: https://loginom.ru/blog/decision-tree (дата обращения: 09.04.2023)].
Декомпрессия(Decompression) – это функция, которая используется для восстановления данных в несжатую форму после сжатия[260 - Decompression [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (дата обращения: 07.07.2022)].
Децентрализованное управление (Decentralized control) – это процесс, при котором существенное количество управляющих воздействий, относящихся к данному объекту, вырабатываются самим объектом на основе самоуправления[261 - Децентрализованное управление [Электронный ресурс] https://be5.biz URL: https://be5.biz/ekonomika/u001/09.html (дата обращения: 09.04.2023)].
Децентрализованные приложения (Decentralized applications, dApps) – это цифровые приложения или программы, которые существуют и работают в блокчейне или одноранговой (P2P) сети компьютеров, а не на одном компьютере. DApps (также называемые «dapps») находятся вне компетенции и контроля одного органа. DApps, которые часто создаются на платформе Ethereum, можно разрабатывать для различных целей, включая игры, финансы и социальные сети[262 - Decentralized applications (dApps) [Электронный ресурс] www.investopedia.com URL: https://www.investopedia.com/terms/d/decentralized-applications-dapps.asp (дата обращения: 07.07.2022)].
Дешифратор (декодер) (Decoder) – это комбинационное устройство с несколькими входами и выходами, у которого определенным комбинациям входных сигналов соответствует активное состояние одного из выходов. Дешифраторы преобразуют двоичный или двоично-десятичный код в унитарный код[263 - Decoder [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/dic.nsf/ruwiki/317857 (дата обращения: 18.02.2022)].
Диагностика (Diagnosis) – это термин, связанный с разработкой алгоритмов и методов, способных определить правильность поведения системы. Если система работает неправильно, алгоритм должен быть в состоянии определить с максимально возможной точностью, какая часть системы дает сбой и с какой неисправностью она сталкивается. Расчет основан на наблюдениях, которые предоставляют информацию о текущем поведении[264 - Diagnosis [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Diagnosis_(artificial_intelligence) (дата обращения: 09.04.2023)].
Диалоговые системы (Dialogue system) – это компьютерные системы, предназначенные для общения с человеком. Они имитируют поведение человека и обеспечивают естественный способ получения информации, что позволяет значительно упростить руководство пользователя и тем самым повысить удобство взаимодействия с такими системами. Диалоговую систему также называют разговорным искусственным интеллектом или просто ботом. Диалоговая система может в разной степени являться целеориентированной системой (англ. goal/task-oriented) или чат-ориентированной (англ. chat-oriented)[265 - Dialogue system [Электронный ресурс] www.lix.polytechnique.fr URL: https://www.lix.polytechnique.fr/~lengrand/Events/Dyckhoff/Slides/Nordstrom.pdf (дата обращения 27.01.2022)].
Дизайн-центр (Design Center) – это организационная единица (вся организация или ее подразделение), выполняющая полный спектр или часть работ по созданию продукции до этапа ее серийного производства, а также обладающая необходимыми для этого кадрами, оборудованием и технологиями[266 - Дизайн-центр [Электронный ресурс] https://kartaslov.ru URL: https://kartaslov.ru/значение-слова/дизайн-центр (дата обращения: 09.04.2023)].
Диктовка (Dictation) – это речевой (голосовой) ввод текста.
Динамическая модель (Dynamic model) – это теоретическая конструкция (модель), описывающая изменение состояний объекта. Она может включать в себя описание этапов или фаз или диаграмму состояний подсистем. Часто имеет математическое выражение и используется главным образом в общественных науках (например, в социологии), имеющих дело с динамическими системами, однако современная парадигма науки способствует тому, что данная модель также имеет широкое распространение во всех без исключения науках, в том числе в естественных и технических. Динамическая модель обучается онлайн в постоянно обновляемой форме. То есть данные непрерывно поступают в модель[267 - Dynamic model [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/dynamic-model (дата обращения: 09.04.2023)],[268 - Динамическая модель [Электронный ресурс] https://kartaslov.ru URL: https://kartaslov.ru/карта-знаний/Динамическая+модель (дата обращения: 09.04.2023)].
Динамическая эпистемическая логика (Dynamic epistemic logic, DEL) – это логическая структура, связанная с изменением знаний и информации. Как правило, DEL фокусируется на ситуациях с участием нескольких агентов и изучает, как меняются их знания при возникновении событий[269 - Dynamic epistemic logic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Dynamic_epistemic_logic (дата обращения: 09.04.2023)].
Дискретная система (Discrete system) – это кибернетическая система, все элементы которой, а также связи между ними (т.е. обращающаяся в системе информация) имеют дискретный характер. Содержит в себе понятие дискретного сигнала. Т.е., это любая система в замкнутом контуре управления в которой используются дискретные сигналы[270 - Discrete system [Электронный ресурс] www.semanticscholar.org URL: https://www.semanticscholar.org/topic/Discrete-system/272487 (дата обращения 22.03.2022)].
Дискретные признаки (Discrete feature) – это количественные признаки, принимающие отдельные, иногда только целочисленные значения. Например, число жителей города, заболевших гриппом за год[271 - Discrete feature [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discrete-feature (дата обращения 22.03.2022)].
Дискриминатор (Discriminator) – это функциональная группа, выполняющая сравнение двух одноименных входных величин (мгновенных значений или амплитуд, частот, фаз, задержек электрических сигналов; дальностей, направлений, скоростей объектов и т.п.), выходной сигнал которой пропорционален разности значений этих величин. В контуре управления служит датчиком рассогласования своих входных величин, формирующим сигнал ошибки. Это система, которая определяет, являются ли примеры реальными или поддельными[272 - Discriminator [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discriminator (дата обращения 22.03.2022)].
Дискриминационная модель (Discriminative model) – это модель, предсказывающая метки на основе набора из одного или нескольких признаков. Более формально, дискриминационные модели определяют условную вероятность выхода с учетом характеристик и весов[273 - Discriminative model [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#discriminative_model (дата обращения: 09.04.2023)].
Дикий код (Wild code) – это коды, которые не разрешены для конкретного вопроса. Например, если вопрос, в котором указывается пол респондента, имеет задокументированные коды «1» для женского пола и «2» для мужского пола и «9» для «отсутствующих данных», код «3» будет «диким». код, который иногда называют «недокументированным кодом»[274 - Wild code [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#W (дата обращения: 07.07.2022)].
Длинный Хвост(Long Tail) означает разнообразную, но малообъемную часть ассортимента продукции. Интернет сделал возможным получение прибыли от продажи продуктов с длинным хвостом. Концепция была представлена Крисом Андерсоном в 2004 году[275 - Long Tail [Электронный ресурс] www.sofokus.com URL: https://www.sofokus.com/glossary-of-digital-business/#L (дата обращения: 07.07.2022)].
Доверенный или надежный искусственный интеллект (Trustworthy Artificial Intelligence, TAI) – это прикладная система искусственного интеллекта, обеспечивающая выполнение возложенных на нее задач с учетом ряда дополнительных требований, учитывающих этические аспекты применения искусственного интеллекта, а также обеспечивающая доверие к результатам работы системы ИИ, которые включают в себя: Достоверность (надежность) и интерпретируемость выводов и предлагаемых решений, полученных с помощью системы и проверенных на верифицированных тестовых примерах. Безопасность как с точки зрения невозможности причинения вреда пользователям системы на протяжении всего жизненного цикла системы, так и с точки зрения защиты от взлома, несанкционированного доступа и других негативных внешних воздействий. Приватность и верифицируемость данных, с которыми работают алгоритмы искусственного интеллекта, включая разграничение доступа и другие связанные с этим вопросы[276 - .Документация отбора получателей поддержки исследовательских центров в сфере искусственного интеллекта, в том числе в области «сильного» искусственного интеллекта, систем доверенного искусственного интеллекта и этических аспектов применения искусственного интеллекта. [Электронный ресурс] ac.gov.ru URL: https://ac.gov.ru/uploads/_Projects/AI_otbor/Documents.pdf (дата обращения: 30.08.2023)].
Документация(Documentation) как правило, – это любая информация о структуре, содержимом и макете файла данных. Иногда называется «технической документацией» или «кодовой книгой». Документацию можно рассматривать как специализированную форму метаданных[277 - Documentation [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#D (дата обращения: 07.07.2022)].
Документированная информация (Documented information) – это зафиксированная на материальном носителе путем документирования информация с реквизитами, позволяющими определить такую информацию, или в установленных законодательством Российской Федерации случаях ее материальный носитель[278 - Документированная информация [Электронный ресурс] https://safe-surf.ru URL: https://safe-surf.ru/glossary/ru/835/ (дата обращения: 09.04.2023)].
Дистанционное медицинское обслуживание(Remote Medical Care) – это телемедицинский сервис, позволяющий осуществлять постоянный мониторинг состояния пациента и проведение профилактических и контрольных осмотров вне медицинских учреждений. Эта форма ухода стала возможной благодаря использованию мобильных устройств, которые измеряют основные показатели жизнедеятельности. Результаты передаются в Центр дистанционного медицинского обслуживания, где они автоматически анализируются. При обнаружении каких-либо отклонений медицинский персонал связывается с пациентом и вызывает скорую помощь в случае возникновения экстренной ситуации[279 - Remote Medical Care [Электронный ресурс] www.comarch.com URL: https://www.comarch.com/healthcare/products/remote-medical-care/ (дата обращения: 07.07.2022)].
Долгая краткосрочная память (Long short-term memory, LSTM) – это разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Зеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В отличие от традиционных рекуррентных нейронных сетей, LSTM-сеть хорошо приспособлена к обучению на задачах классификации, обработки и прогнозирования временных рядов в случаях, когда важные события разделены временными лагами с неопределённой продолжительностью и границами. Относительная невосприимчивость к длительности временных разрывов даёт LSTM преимущество по отношению к альтернативным рекуррентным нейронным сетям, скрытым марковским моделям и другим методам обучения для последовательностей в различных сферах применения. Также, – это тип ячейки рекуррентной нейронной сети, используемой для обработки последовательностей данных в таких приложениях, как распознавание рукописного ввода, машинный перевод и субтитры к изображениям. LSTM решают проблему исчезающего градиента, которая возникает при обучении RNN из-за длинных последовательностей данных, сохраняя историю во внутренней памяти на основе новых входных данных и контекста из предыдущих ячеек в RNN[280 - Долгая краткосрочная память [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/ (дата обращения: 07.07.2022)].
Дополненная реальность (Augmented reality) – это среда, в реальном времени дополняющая физический мир, каким мы его видим, цифровыми данными с помощью различных устройств (планшетов, смартфонов и др.) и определенного программного обеспечения. Отличие дополненной реальности от виртуальной реальности (virtual reality) в том, что дополненная реальность лишь добавляет отдельные элементы в уже существующий мир[281 - Augmented reality [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Augmented_reality (дата обращения: 09.04.2023)].
Дополненный или расширенный интеллект (Augmented Intelligence) – это система искусственного интеллекта, которая помогает человеку в улучшении процесса принятия решений. Основная задача такой системы не заменить человека в решении той или иной прикладной задачи, а оказать ему содействие и помощь, с таем, чтобы расширить возможности человека. Впервые термин «intelligence amplification» («усиление интеллекта») упоминается в книге Уильяма Росса Эшби «Введение в кибернетику» в 1956 году. Расширенный искусственный интеллект улучшает процесс принятия решений человеком как за счет обработки больших объемов данных, которые могут сбить с толку человека, принимающего решения, так и за счет устранения факторов, которые могут искажать или неправильно интерпретировать данные (например, предвзятость или усталость)[282 - .What Is Augmented Intelligence? [Электронный ресурс] digitalreality.ieee.org URL: https://digitalreality.ieee.org/publications/what-is-augmented-intelligence (дата обращения: 31.08.2023). – Текст: электронный.]. Современные системы расширенного искусственного интеллекта основываются на машинном обучении, глубоком машинном обучении и анализе больших данных[283 - Augmented Intelligence [Электронный ресурс] https://gartner.com URL: https://www.gartner.com/en/information-technology/glossary/augmented-intelligence#:~:text= Augmented%20intelligence%20is%20a%20design, decision %20making%20and%20new%20experiences (дата обращения: 28.01.2022)].
Дополнительный или вспомогательный интеллект (Auxiliary intelligence) – это система искусственного интеллекта, которая помогают человеку принимать решения на основе дополнительной информации, получаемой из анализа взаимодействия человека с окружающим его миром. Вспомогательный или дополнительный искусственный интеллект может является полезным дополнением к системе Человеко-ориентированного искусственного интеллекта. Часто вспомогательным искусственным интеллектом называют систему, которая используется специалистами для помощи при решении специализированных задач. Например, врачи используют искусственный интеллект, как вспомогательную систему при диагностике раковых опухолей или врожденных пороков сердца. В машинном обучении существует схожий термин «вспомогательное обучение». Вспомогательное обучение – это подход, при котором в процессе машинного обучения модель определяет наличие объектов, которые не подпадают ни под одну из изученных ею категорий. Название «Вспомогательное обучение» было выбрано из-за введения вспомогательного класса и используется для изучения неизвестных объектов[284 - .Auxiliary Learning as a step towards Artificial General Intelligence. [Электронный ресурс] arxiv.org URL: https://arxiv.org/abs/2212.00061 (дата обращения: 28.08.2023)].
Допустимая эвристика (Admissible heuristic) – это эвристическая функция считается допустимой, если она никогда не завышает стоимость достижения цели, т. е. стоимость, которую она оценивает для достижения цели, не превышает наименьшую возможную стоимость. от текущей точки пути[285 - Admissible heuristic [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Admissible_heuristic (дата обращения: 09.04.2023)].
Достоверность распознавания (Recognition accuracy) – это точность (правильность, достоверность) распознавания. Язык разметки для синтеза речи[286 - Recognition accuracy [Электронный ресурс] https://singapore-academy.org URL: https://singapore-academy.org/libcdo/100.pdf стр. 60 (дата обращения: 09.04.2023)].
Достоверность данных(Data veracity) – это степень точности или правдивости набора данных. В контексте больших данных важно не только качество данных, но и то, насколько надежными являются источник, тип и обработка данных[287 - Data veracity [Электронный ресурс] https://datafloq.com URL: https://datafloq.com/read/data-veracity-new-key-big-data/ (дата обращения: 07.07.2022)].
Доступ к информации (Access to information) – это возможность получения информации и ее использования[288 - Доступ к информации [Электронный ресурс] https://ru.wikipedia.org/wiki/Доступность_информации (дата обращения: 09.04.2023)].
Доступ к информации, составляющей коммерческую тайну (Access to information constituting a commercial secret) – это ознакомление определенных лиц с информацией, составляющей коммерческую тайну, с согласия ее обладателя или на ином законном основании при условии сохранения конфиденциальности этой информации[289 - Доступ к информации, составляющей коммерческую тайну [Электронный ресурс] http://www.fsk-ees.ru URL: http://www.fsk-ees.ru/upload/docs/Polozhenie-comtayna.pdf стр. 1 (дата обращения: 09.04.2023)].
Драйвер (Driver) – это компьютерное программное обеспечение, с помощью которого другое программное обеспечение (операционная система) получает доступ к аппаратному обеспечению отдельного устройства[290 - Драйвер [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Драйвер (дата обращения: 09.04.2023)].
Древо решений (Decision tree) – это модель на основе дерева и ветвей, используемая для отображения решений и их возможных последствий, аналогична блок-схеме[291 - Decision tree [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#decision-tree (дата обращения: 09.04.2023)].
Дрейф концепций (Concept drift) в предиктивной аналитике и машинном обучении – это статистические свойства целевой переменной, которую модель пытается предсказать, со временем меняются непредвиденным образом. Это вызывает проблемы, потому что прогнозы становятся менее точными с течением времени.
Дрон (Drone) – это беспилотный летательный аппарат[292 - Дрон [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Беспилотный_летательный_аппарат (дата обращения: 09.04.2023)].
Дружественный искусственный интеллект (ДИИ) (Friendly artificial intelligence) – это искусственный интеллект (ИИ), который обладает скорее позитивным, чем негативным влиянием на человечество. ДИИ также относится к области исследований, целью которых является создание такого ИИ. Этот термин в первую очередь относится к тем ИИ-программам, которые обладают способностью значительно воздействовать на человечество, таким, например, чей интеллект сравним или превосходит человеческий[293 - Friendly artificial intelligence [Электронный ресурс] https://dic.academic.ru URL: https://dic.academic.ru/searchall.php?SWord=Friendly+artificial+intelligence+&from=ru&to=xx&did=&stype=0 (дата обращения: 09.03.2022)].
«Е»
Единица анализа(Unit of analysis) – это базовая наблюдаемая сущность, анализируемая в ходе исследования и для которой собираются данные в виде переменных. Хотя единицу анализа иногда называют случаем или «наблюдением», они не всегда являются синонимами. Например, в опросах общественного мнения единицей анализа обычно является один человек, и ответы одного человека на вопросы опроса составляют «кейс». Однако в переписи «случаем» может считаться домохозяйство, поскольку все данные по одному домохозяйству собираются с помощью одного инструмента обследования; «кейс» домохозяйства может содержать различные переменные для разных единиц анализа: физическая жилищная структура, семья в структуре, человек в семье[294 - Unit of analysis [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#U (дата обращения: 07.07.2022)].
Емкость модели(машинного обучения) (Model capacity) – это неофициальный термин, это очень близко (если не синоним) к сложности модели. Это способ рассказать о том, насколько сложную модель или взаимосвязь может выразить модель. Можно было бы ожидать, что модель с большей емкостью сможет смоделировать больше взаимосвязей между большим количеством переменных, чем модель с меньшей емкостью. Проводя аналогию с разговорным определением емкости, вы можете думать о ней как о способности модели учиться на все большем количестве данных, пока она не будет полностью «заполнена» информацией. Существуют различные способы формализовать емкость и вычислить ее числовое значение. Одно из них измерение VC, размерность Вапника-Червоненкиса, – это математически строгая формулировка емкости. Самый распространенный способ оценить емкость модели – подсчитать количество параметров. Чем больше параметров, тем выше емкость в целом[295 - Model capacity [Электронный ресурс] https://stats.stackexchange.com URL: https://stats.stackexchange.com/questions/312424/what-is-the-capacity-of-a-machine-learning-model (дата обращения: 07.07.2022)].
Естественный язык (Natural language) – это человеческий язык, такой как английский, русский или стандартный мандарин, используемый в повседневном общении людей, в отличие от сконструированного языка, искусственного языка, машинного языка или языка формальной логики. Также называется обычным языком[296 - Natural language [Электронный ресурс] www.thoughtco.com URL: https://www.thoughtco.com/what-is-a-natural-language-1691422 (дата обращения: 07.07.2022)].
«Ж»
Жадная политика (Greedy policy) – в обучении с подкреплением – это политика, которая всегда выбирает действие с наивысшей ожидаемой отдачей[297 - Greedy policy [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#greedy-policy (дата обращения: 09.04.2023)].
«З»
Загрузка сознания (Mind uploading (Whole brain emulation)) – это трансгуманистическая концепция, согласно которой «содержание» человеческого мозга можно представить в виде двоичного кода и загрузить на компьютер. Загрузка разума, также известная как эмуляция всего мозга (whole brain emulation, WBE), представляет собой теоретический футуристический процесс сканирования физической структуры мозга, достаточно точного для создания имитации психического состояния (включая долговременную память и «я») и передачи или копирование на компьютер в цифровом виде. Затем компьютер будет запускать симуляцию обработки информации мозгом, чтобы он реагировал, по существу, так же как исходный мозг, и испытывал разумный сознательный разум[298 - Mind uploading [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Mind_uploading (дата обращения: 07.07.2022)].
Задача «последовательность к последовательности» (Sequence-to-sequence task) – это задача, которая преобразует входную последовательность маркеров в выходную последовательность маркеров[299 - Sequence-to-sequence task [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#sequence-to-sequence-task (дата обращения: 09.04.2023)].
Закон Мура (Moore’s Law) – это эмпирическое наблюдение, изначально сделанное Гордоном Муром, согласно которому количество транзисторов, размещаемых в кристалле интегральной схемы, удваивается каждые 24 месяца, а стоимость компьютеров уменьшается вдвое. Другой принцип закона Мура гласит, что рост количества микропроцессоров экспоненциальный[300 - Закон Мура [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Закон_Мура (дата обращения: 09.04.2023)].
Закрытый словарь (Closed dictionary) в системах распознавания речи – это словарь с ограниченным количеством слов, на который настроена система распознавания и который не может пополняться пользователем[301 - Закрытый словарь [Электронный ресурс] www.machinelearningmastery.ru URL: https://www.machinelearningmastery.ru/machine-learning-algorithms-in-laymans-terms-part-1-d0368d769a7b/ (дата обращения: 07.07.2022)].
Запись Big O notation (Big O notation) – это математическая запись, описывающая предельное поведение функции, когда аргумент стремится к определенному значению или к бесконечности. Это член семейства обозначений, изобретенных Полом Бахманом, Эдмундом Ландау и другими, которые вместе называются обозначениями Бахмана-Ландау или асимптотическими обозначениями[302 - Big O notation [Электронный ресурс] https://upread.ru URL: https://upread.ru/art.php?id=659 (дата обращения: 04.02.2022)].
Запись(Record) в зависимости от контекста «запись» этот термин может относиться к физической или логической записи[303 - Record [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#R (дата обращения: 07.07.2022)].
Защита данных(Data protection) – это процесс защиты данных, который включает в себя взаимосвязь между сбором и распространением данных и технологий, общественным восприятием и ожиданием конфиденциальности, а также политическими и правовыми основами, связанными с этими данными. Он направлен на достижение баланса между индивидуальными правами на неприкосновенность частной жизни, но при этом позволяет использовать данные в деловых целях[304 - Data protection [Электронный ресурс] www.techopedia.com URL: https://www.techopedia.com/definition/29406/data-protection (дата обращения: 07.07.2022)].
Здравомыслящий искусственный интеллект (Artificial Intelligence of the Commonsense knowledge) – это одно из направлений развития искусственного интеллекта, которое занимается моделированием способности человека анализировать различные жизненные ситуации и руководствоваться в своих действиях здравым смыслом[305 - Commonsense knowledge [Электронный ресурс] https://wikiaro.ru URL: https://wikiaro.ru/wiki/Commonsense_reasoning (дата обращения: 09.02.2022)]. Здравый смысл – это накопленная совокупность общепринятых знаний и взглядов, представлений, форм мышления – о движущих силах природы и общества, взаимоотношениях людей; помимо знаний включает ценности, убеждения, регуляторы практической деятельности, моральные и правовые нормы, элементы религиозного опыта, художественно-эстетические оценки действительности[306 - .Здравый смысл. [Электронный ресурс] bigenc.ru URL: https://bigenc.ru/c/zdravyi-smysl-7e3cac (дата обращения: 30.08.2023)].
Зима искусственного интеллекта (Winter of artificial intelligence, AI winter) – это период сокращения интереса к предметной области, сокращения финансирования исследований. Термин был придуман по аналогии с идеей ядерной зимы. Область искусственного интеллекта пережила несколько циклов ажиотажа, за которыми последовали разочарование и критика, за которыми последовало сильное охлаждение интереса, а потом последовало возобновление интереса спустя годы или десятилетия[307 - AI winter [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/AI_winter (дата обращения: 07.07.2022)],[308 - .Commonsense knowledge (artificial intelligence). [Электронный ресурс] en.wikipedia.org URL: https://en.wikipedia.org/wiki/Commonsense_knowledge_(artificial_intelligence) (дата обращения: 30.08.2023)].
Знания (Knowledge) – это проверенный практикой и удостоверенный логикой результат познания действительности, отраженный в сознании человека в виде представлений, понятий, рассуждений и теорий. Знания формируются в результате целенаправленного педагогического процесса, самообразования и жизненного опыта[309 - Знания [Электронный ресурс] http://www.glossary.ru URL: http://www.glossary.ru/cgi-bin/gl_sch2.cgi?RHtgto9 (дата обращения: 09.04.2023)].
Значение алгоритма (Rete algorithm) – это алгоритм сопоставления с образцом для реализации систем, основанных на правилах. Алгоритм был разработан для эффективного применения многих правил или шаблонов ко многим объектам или фактам в базе знаний. Он используется для определения того, какое из правил системы должно срабатывать на основе ее хранилища данных, ее фактов[310 - Rete algorithm [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Rete_algorithm (дата обращения: 09.04.2023)].
«И»
Игровая площадка TensorFlow (TensorFlow Playground) – это инструмент, который поможет вам понять идею нейронных сетей без сложных математических вычислений. TensorFlow Playground, веб-приложение, написанное на JavaScript, которое позволяет вам играть с настоящей нейронной сетью, работающей в вашем браузере, и нажимать кнопки и настраивать параметры, чтобы увидеть, как это работает[311 - TensorFlow Playground [Электронный ресурс] https://cloud.google.com URL: https://cloud.google.com/blog/products/ai-machine-learning/understanding-neural-networks-with-tensorflow-playground (дата обращения: 07.07.2022)].
Игровой ИИ (Game AI) – это форма ИИ, характерная для игр, которая использует алгоритм для замены случайности. Это вычислительное поведение, используемое в персонажах, не являющихся игроками, для генерации интеллекта, подобного человеческому, и основанных на реакции действий, предпринимаемых игроком[312 - Игровой ИИ [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Игровой_искусственный_интеллект (дата обращения: 09.04.2023)].
Иерархический файл(Hierarchical file) – этот файл содержит информацию, собранную по нескольким единицам анализа в разных типах записей. Например, физическая жилая структура может быть одной единицей, а отдельные люди в структуре – другой. Примером может служить Текущее обследование населения: годовой демографический файл, в котором есть единицы анализа домохозяйства, семьи и человека. Исследования, включающие данные для разных единиц анализа, часто связывают эти единицы друг с другом, так что, например, можно анализировать людей по мере того, как они группируются в структуру[313 - Hierarchical file [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#H (дата обращения: 07.07.2022)].
Иерархическая кластеризация (Hierarchical clustering) – это алгоритм машинного обучения без контроля, который используется для группировки непомеченных точек данных, имеющих сходные характеристики. Алгоритмы иерархической кластеризации делятся на две категории. Агломерационные иерархические алгоритмы. В агломерационных иерархических алгоритмах каждая точка данных обрабатывается как один кластер, а затем последовательно объединяется или агломерирует (подход снизу вверх) пары кластеров. Иерархия кластеров представлена в виде дендрограммы или древовидной структуры. Разделительные иерархические алгоритмы. С другой стороны, в разделительных иерархических алгоритмах все точки данных обрабатываются как один большой кластер, а процесс кластеризации включает в себя разделение (нисходящий подход) одного большого кластера на различные маленькие кластеры[314 - Hierarchical clustering [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#hierarchical-clustering (дата обращения: 09.04.2023)].
Избирательное линейное разрешение определенного предложения(также просто разрешение SLD) (Selective Linear Definite clause resolution) – это основное правило вывода, используемое в логическом программировании. Это уточнение решения, которое является и правильным, и полным опровержением оговорок Хорна[315 - SLD resolution [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/SLD_resolution (дата обращения: 09.04.2023)].
Извлечение знаний (Knowledge extraction) – это извлечение существующего содержимого из структурированных или неструктурированных баз данных. Создание знаний из структурированных (реляционные базы данных, XML) и неструктурированных (текст, документы, изображения) источников. Полученные знания должны быть в машиночитаемом и машино-интерпретируемом формате и должны представлять знания таким образом, чтобы облегчить вывод. Хотя он методически похож на извлечение информации (NLP) и ETL (хранилище данных), основным критерием является то, что результат извлечения выходит за рамки создания структурированной информации или преобразования в реляционную схему. Это требует либо повторного использования существующих формальных знаний (повторное использование идентификаторов или онтологий), либо генерации схемы на основе исходных данных[316 - Knowledge extraction [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Knowledge_extraction (дата обращения: 09.04.2023)].
Извлечение сущностей (Entity extraction) – это общий термин, относящийся к процессу добавления структуры к данным для того, чтобы машина смогла их прочитать. Извлечение сущностей может выполняться человеком или с помощью модели машинного обучения[317 - Entity extraction [Электронный ресурс] https://www.telusinternational.com URL: https://www.telusinternational.com/insights/ai-data/article/50-beginner-ai-terms-you-should-know (дата обращения: 09.04.2023)].
Изучение онтологий (Ontology learning) — – это подзадача извлечения информации. Ее целью является полуавтоматическое извлечение соответствующих понятий и отношений из заданного наборов данных для формирования онтологии. «Онтология» – философская наука о бытии, основных видах и свойствах бытия. Автоматическое создание онтологий – задача, затрагивающая многие дисциплины. Как правило, процесс начинается с извлечения терминов и понятий или именных словосочетаний из обычного текста с использованием метода извлечения терминологии. Обычно для этого используются лингвистические процессы (например, маркировка частей речи, фрагментация фраз)[318 - Ontology learning [Электронный ресурс] https://psychology.fandom.com URL: https://psychology.fandom.com/wiki/Ontology_learning (дата обращения: 07.07.2022)].
Изучение признаков или обучение представлению (Feature learning) – это набор методов, которые позволяют системе автоматически обнаруживать представления, необходимые для обнаружения или классификации признаков из необработанных данных. Это заменяет ручную разработку функций и позволяет машине изучать функции и использовать их для выполнения конкретной задачи[319 - Feature learning [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Feature_learning (дата обращения: 27.04.2023)].
ИИ бенчмарк (AI benchmark) – это эталонный тест ИИ, бенчмаркинг систем ИИ, для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, бенчмарки. Например, Benchmarking Graph Neural Networks – бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) – обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.
ИИ вендор (AI vendor) – это поставщик средств (систем, решений) ИИ.
ИИ камера (AI camera) – это камера с искусственным интеллектом, ИИ-камера, цифровые фотокамеры нового поколения – позволяют анализировать снимки, распознавая лица, их выражение, контуры объектов, текстуры, градиенты, характер освещения, что учитывается при обработке снимков; некоторые ИИ-камеры способны самостоятельно, без участия человека, делать снимки в моменты, которые камере покажутся наиболее интересными, и др.
ИИ мультиопыт (Multi-experience AI) – это ИИ, который описывает взаимодействия, которые происходят в различных цифровых точках соприкосновения (например, в Интернете, мобильных приложениях, диалоговых приложениях, AR, VR, MR и подобных устройств), с использованием комбинации способов взаимодействия для поддержки непрерывного и последовательного опыта пользователя. Возможности включают отсутствие касания, управление голосом, взглядом и жестом.
ИИ рабочая станция (AI workstation) – это рабочая станция (РС) со средствами (на основе) ИИ; ИИ РС, специализированный настольный ПК для решения технических или научных задач, задач ИИ; обычно подключается к ЛВС с многопользовательскими ОС, предназначается преимущественно для индивидуальной работы одного специалиста.
ИИ реального времени (Realtime AI) – это система искусственного интеллекта реального времени, ИИ реального времени, системы и средства ИИ реального времени находят применение в робототехнике, в космической технике, в видеоиграх; они используются для имитации разумного поведения, свойственного человеку, при решении текущих задач с учётом окружающей обстановки, входных данных и других факторов. При этом важно, чтобы решение (реакция системы) выдавалось в ответ на управляющие воздействия за установленное время.
ИИ рынок чипов (AI chipset market) – это рынок чипсетов для систем с искусственным интеллектом (ИИ).