Алексей Скворцов.

Проблемы эволюции и теоретические вопросы систематики



скачать книгу бесплатно

Уточнение важнейших понятий

Причиной многих разногласий и недоразумений в эволюционной теории было то, что в одни и те же термины и понятия разные исследователи вкладывали разный смысл. Во избежание таких недоразумений уточним основные понятия, которыми придется далее оперировать.

Эволюция – последовательное, поступательное изменение во времени. При этом обычно подразумевается, что в наблюдаемом изменении можно обнаружить некоторую упорядоченность, выявить, хотя бы ретроспективно, какую-то определенную траекторию (но речь не идет об изменениях циклического характера); скорость изменений не предполагается обязательно постоянной. Понятие «эволюция» приложимо к самым разным объектам: можно говорить об эволюции Вселенной, эволюции Солнечной системы, эволюции земной коры, об эволюции культуры и цивилизации, эволюции идей какого-либо мыслителя, эволюции костюма; в биологии – об эволюции всей биоты

Земли, видов и популяций, органов и тканей, клеточных и внутриклеточных структур, включая и молекулярные. Однако когда биолог говорит просто «эволюция», он имеет в виду эволюцию на популяционно-видовом или надвидовом уровне организации жизни. Она заключается в происходящем в ряду поколений изменении морфофизиологических и экологических характеристик организмов, основанном на соответствующем изменении заложенной в этих организмах генетической информации.

Филогенез (филогения) – процесс преобразования какого-либо раздела живого мира в ходе эволюции за длительные периоды времени; так же называют и конкретные результаты этого процесса, представленные во всей своей непрерывности (истории). Результаты филогенеза именуют и филогенетическим древом.

Генотип – совокупность наследственной информации, полученной организмом, или, иначе, генетическая программа организма, программа всего, на что данный организм в течение своей жизни способен. В течение жизни организма (а также, если таковое имеется, всего его вегетативного потомства) генетическая программа, как правило, не меняется. Изменения в ней могут наступить только случайные и непредусмотренные. Наряду с индивидуальным генотипом отдельного организма можно говорить о коллективном генотипе (генофонде) популяции или вида.

Фенотип – конкретное состояние организма, формирующееся в результате взаимодействия генотипа и внешних условий. В отличие от генотипа, фенотип непрерывно изменяется в течение всей жизни организма. В. Иогансен, который в начале нашего века предложил понятия генотипа и фенотипа, обладал образцовой ясностью мысли и языка. Но с его времени биология продвинулась далеко вперед. Уже после работ Иогансена наряду с понятием генотипа вошло в обиход понятие генома; еще позже стало использоваться в биологии представление об информации, возникли понятия «наследственная информация», «информационные молекулы».

Геном – структуры, в которых закодирована наследственная информация, но употребление этого термина не очень четкое: иногда им обозначают только основной набор хромосом (х), иногда – гаплоидный набор (n) или даже диплоидный (2n); говорят также о геноме хлоропластов или митохондрий.

Правильнее называть геномом совокупность всех структур, несущих закодированную наследственную информацию. Очень важно ясно представлять критерий различия генотипа и фенотипа: все структуры организма – это части фенотипа, в том числе и те структуры (ядро, хромосомы, ДНК и РНК), в которых записана генетическая программа. Генотип же – это не структура, а только информация, т. е. некоторое смысловое содержание. Точно так же в книге: бумага и шрифт несут в себе содержание, но сами содержанием книги не являются. Компьютер содержит в себе многообразную информацию, но сам информацией не является. Основываясь на некоторых формальных подходах, можно и к информации, и к различным вещественным структурам приложить единую меру неслучайности, или упорядоченности, например, выразить ее в битах. Но отсюда логически не вытекает тождественность понятий «информация» и «упорядоченность структуры» – как из того, что количество яблок и гвоздей можно измерить килограммами, не вытекает тождественность яблок и гвоздей. Поэтому нельзя отождествлять процесс извлечения информации, записанной на определенном материальном носителе, с помощью определенного условного кода, с процессом получения информации о некотором объекте в результате исследования его структуры.

Отождествляя информацию со структурой, биолог заходит в тупик или приходит к постановке псевдопроблем. Например, неоднократно поднимался вопрос: в чем содержится больше информации – в курице или яйце? Несомненно, на основании изучения структур взрослой курицы можно написать гораздо более объемистый трактат, нежели по результатам изучения структур ее яйца. Но, с другой стороны, оценивая потенциальные возможности (генотип) яйца, можно сказать, что в зависимости от условий развития из него может получиться несколько разных фенотипов, т. е. информации как будто больше в яйце. Вывод: изучение поставленного вопроса для биологии не более продуктивно, чем изучение его классического предшественника – вопроса: что было прежде – курица или яйцо?

Дарвиновская теория эволюции (дарвинизм) – это теория, в основе которой лежит дарвиновское представление о естественном отборе. Со времен Дарвина биология ушла далеко вперед, поэтому вполне закономерно, что современный дарвинизм сильно отличается от представлений самого Дарвина и при обсуждении сегодняшних проблем теории цитатами из трудов Дарвина уже ничего не доказать, ни опровергнуть нельзя. В современном понимании дарвиновская теория касается только механизма эволюции. Механизм этот состоит из взаимодействия двух компонентов: генотипической изменчивости (в самом широком смысле) и естественного отбора. Изменчивость имеет ненаправленный характер и сама по себе, без отбора, к эволюции не приводит. Для осуществления же отбора, чтобы он не приводил просто к сокращению численности особей, необходима достаточная интенсивность размножения; ее можно рассматривать в качестве третьего необходимого компонента механизма эволюции.

Термин «адаптация», а также производные от него («адаптироваться», «адаптированный», «адаптивный» и т. п.) имеют точные русские эквиваленты: «приспособление», «приспособляться», «приспособленный», «приспособительный» и пр. Латинская приставка «ad» и русская «при» – одинаково требуют указания о приспособлении к чему идет речь, каков функциональный смысл данного приспособления. При этом «приспособление» в равной мере можно понимать как обозначение и некоторого процесса, и результата этого процесса; результат можно обозначать также как «приспособленность». Реально мы чаще всего имеем дело именно с результатами, т. е. уже с приспособленностью к чему-то.

К чему же может быть приспособленность? Прежде всего, конечно, к условиям существования. Но всякое существование складывается из конкретных функций. Значит, говоря про клетку, ткань, орган, что они адаптированы к определенным условиям, мы утверждаем, что они могут успешно функционировать в этих условиях; про организм же или вид мы скажем, что их адаптация означает способность в таких-то условиях успешно существовать. Например, легкие человека адаптированы к определенному газовому составу воздуха и определенному атмосферному давлению – т. е. в этих условиях они успешно снабжают тело кислородом и удаляют углекислоту. А перистый ковыль адаптирован к определенным почвенно-климатическим условиям и к биоценозу – т. е. способен в этих условиях нормально существовать как вид.

Никакого принципиального различия между понятиями адаптации и успешного функционирования или существования нет. Разница в том только, что термины «функционирование» или «существование» можно употреблять без ссылок на какие-либо условия, а говоря об адаптации такую ссылку нужно дать. Все попытки провести какое-либо принципиальное различие между адаптацией и функцией совершенно алогичны и произвольны. К сожалению, не избежал здесь алогизма даже такой выдающийся теоретик эволюции, как И. И. Шмальгаузен[10]10
  Шмальгаузен И. И. Пути и закономерности эволюционного процесса. М.г 1983. С. 94–95.


[Закрыть]
. Обозначив адаптацию как процесс морфофизиологической перестройки организма, определяемый изменением внешней среды, и справедливо отметив, что под адаптацией понимают также и результат этого процесса, т. е. физиологическую и морфологическую приспособленность, он затем утверждает, что только изменение функции есть адаптация, никакая же конкретная функция (результат изменения!) адаптацией не является. Налицо не только явное противоречие между двумя утверждениями (адаптация есть также и результат процесса; результат процесса не есть адаптация), но и явное несогласие с той элементарной истиной, что в эволюции нет конца, окончательного результата; всякий «результат» – лишь какая-то точка непрерывного пути.

Любая адаптация – явление сложное, состоящее из системы частных адаптации. Так, эффективность (т. е. адаптированность) дыхательной системы человека складывается из эффективности ее основных компонентов: скелетно-мышечного аппарата, верхних дыхательных путей, бронхиальных древ, альвеол, кровеносных сосудов легких. А успешная функция каждого из этих компонентов, в свою очередь, обусловливается эффективностью еще более частных деталей – вплоть до молекул. Поэтому адаптивность каждой детали любого уровня можно рассматривать отдельно, но при этом нельзя считать, что она и формировалась, и существует самостоятельно: ведь реальными объектами естественного отбора служат не отдельные признаки, а целые организмы; значит, и все адаптации возникают и имеют смысл не сами по себе, а только в системе целого организма.

Понятие адаптации не включает в себя требований уникальности и оптимальности. Говоря, что такой-то организм или вид адаптированы к каким-то условиям, мы вовсе не утверждаем, что к этим же условиям нельзя быть адаптированным лучше или же совсем иным способом. Одну и ту же задачу разные организмы решают по-разному. По-разному передвигаются по поверхности земли лягушка, ящерица и змея; по-разному проходит опыление у растений; в толпе людей на улице все одеты по сезону (адаптированы), но у всех одежда разная; самые разные языки пригодны для выражения одной и той же мысли и т. д. И тем не менее подчас выдвигается требование, чтобы адаптация подходила к условиям существования, как ключ к замку, т. е. была бы единственно возможной и притом непременно оптимальной – требование столь же нелогичное, сколь и небиологичное.

Нельзя также упускать из виду, что организм – это не только взрослый индивид: это весь онтогенез, начиная от зиготы. И едва ли не самая важная и ответственная во всей жизни особи задача – без нарушений пройти ранние стадии онтогенеза; на этих стадиях, стало быть, самое главное проявление и главный критерий адаптированности – устойчивость в осуществлении именно того конкретного пути развития, который должен привести к становлению достаточно жизнеспособной взрослой особи. Если же стереотип раннего онтогенеза нарушится, то получится, как у Пушкина в «Сказке о царе Салтане»:

 
Родила царица в ночь
Не то сына, не то дочь,
Не мышонка, не лягушку,
А неведому зверушку.
 

А «неведому зверушку» вряд ли могут ожидать радужные перспективы.

И, наконец, последнее замечание об адаптациях: в рамках вида далеко не все особи функционально (т. е. адаптивно) равнозначны, и существуют они не изолированно друг от друга. Поэтому адаптированность вида – отнюдь не простая сумма (или средняя величина) адаптированности отдельных особей. Адаптация вида включает в себя и определенные взаимоотношения между особями и популяциями. Для эволюции же, понятно, наиболее важна итоговая адаптированность вида в целом, как целостной системы надорганизменного уровня. А так как крайне разнообразны и внешние условия, с которыми могут сталкиваться организмы, и адаптивные возможности самих организмов, то в результате совокупность адаптации каждого вида оказывается специфической, уникальной, отличной от общей адаптированности любого другого вида.

Логика в истории эволюционной теории

Почему эволюционная теория Дарвина, в противоположность теории Ламарка, появившейся на 50 лет раньше, получила поразительно быстрое и широкое признание? Ведь она, как и теория Ламарка, не имела прямых доказательств. Дело в том, что теория Дарвина удовлетворяла логике естествоиспытателя: она объясняла малопонятные явления через более понятные, доступные, по крайней мере в принципе, эмпирической проверке. Ламарк же в качестве объяснений выдвигал принципы отвлеченные, еще менее эмпирически «осязаемые» и проверяемые, чем то, что они призваны были объяснить. Дарвиновская же теория представлялась и достаточно внутренне логичной.

Однако уже вскоре после появления теории Дарвина в ней обнаружились логические недоработки. Первая из них, замеченная в 1867 г. инженером Ф. Дженкином (так называемый «кошмар Дженкина»), состояла в следующем: в дарвиновской схеме эволюционной дивергенции (расхождения) не учитывалась возможность скрещивания между разошедшимися ветвями, скрещивания, которое должно всю начавшуюся дивергенцию свести на нет. Теперь это затруднение кажется наивным, и выход из него логически напрашивается сам собой: нужно принять простое дополнительное условие – изоляцию, препятствующую скрещиваниям дивергирующих популяций. Однако когда зоолог М. Вагнер в 1868 г. предложил теорию географического видообразования, которая, в сущности, и вводила это необходимое условие, то и сам Вагнер, и большинство дарвинистов сочли географическое видообразование альтернативой теории Дарвина.

Среди генетиков бытует и другое представление о том, как был нейтрализован «кошмар». Полагают, что «кошмар Дженкина» потерял значение в результате работ Г. Менделя, показавших дискретность единиц наследственности, и тем самым, несостоятельность прежних представлений о количественной непрерывности, «слитности» наследственности. Таким образом, если появившаяся мутация в дальнейших поколениях не обнаруживается, то, по Менделю, это не значит, что она «растворилась»: она может длительно сохраняться в популяции в качестве рецессивной, а затем вновь проявиться в гомозиготном состоянии. Но нетрудно видеть, что такие рассуждения отнюдь не устраняют «кошмара Дженкина». Ведь появление новой мутации еще не есть эволюционная дивергенция: это лишь проявление индивидуальной изменчивости, совершенно неопределенной в смысле адаптивного значения. Об эволюционной же дивергенции можно говорить тогда, когда мутация закрепится естественным отбором в какой-либо части исходной популяции, но будет отсутствовать в других частях. А это и может произойти только при их изоляции. В противном случае новая мутация распространится по всей популяции, и «кошмар Дженкина» вступит в полную силу. К этому нужно еще добавить, что наследственность имеет дискретную структуру только для индивидуальных генотипов; коллективный же генотип популяции может иметь любые частоты аллелей и поэтому по любым меняющимся признакам может рассматриваться в рамках концепции слитной наследственности.

Второй значительной логической недоработкой теории Дарвина было несоответствие идеи естественного отбора распространенному среди биологов XIX в. представлению о наследовании приобретенных признаков, которого придерживался и сам Дарвин. Ведь если модификации, т. е. особенности фенотипа, приобретенные в онтогенезе в ответ на некоторые воздействия внешней среды, наследуются, то этим, очевидно, можно объяснить адаптивную эволюцию и без естественного отбора. Эту логическую неувязку не распознал ни сам Дарвин, ни первые приверженцы его теории. Более того, когда А. Вейсман в конце XIX в. понял алогизм ситуации и выдвинул тезис о ненаследуемости приобретенных признаков[11]11
  Weismann A. uber die Vererbung. Jena, 1883.


[Закрыть]
, то дарвинисты еще долгое время считали вейсманизм теорией, противостоящей дарвинизму.

Вейсман доказал ненаследуемость приобретенных признаков как логически, сопоставляя и анализируя известные факты, так и прямым экспериментом: отрубал мышам хвосты в течение 22 поколений подряд и не обнаружил бесхвостого потомства. Этот эксперимент Вейсмана сочли логически неубедительным: мол, изучалась наследуемость не естественной адаптивной модификации, а искусственного повреждения. На самом деле логически несостоятельна такая оценка эксперимента Вейсмана: во-первых, немалая часть фигурировавших в литературе примеров якобы имевшего место наследования приобретенных признаков также относилась к различным повреждениям[12]12
  Из ближайших к нашему времени упомянем: Павловский Е.Н., Первомайский Г.С. // Известия АН СССР. Сер. биол. 1949. № 6. С. 702–708.


[Закрыть]
, во-вторых, единственным внятно сформулированным представлением о возможном механизме наследования приобретенных признаков была гипотеза пангенезиса Ч. Дарвина (согласно которой из всех органов тела в половые клетки поступают некие мельчайшие «геммулы», передающие потомству признаки родителей), которая совершенно разбивалась экспериментом Вейсмана.

Но для опровержения тезиса о наследовании приобретенных признаков эксперимент вообще не нужен, ибо нетрудно показать, что это представление противоречит повседневным фактам и поддерживается только с помощью произвольных, не выдерживающих ни фактической, ни логической проверки допущений и оговорок, а то и просто мифов.

Например, если светлокожие супруги переехали на юг, приобрели на южном солнышке темный цвет кожи, и у них родился темнокожий ребенок, то ученый, убежденный в наследовании приобретенных признаков, может воспринять этот факт как доказательство своей правоты. Но уже обыкновенный житейский опыт в таком объяснении заставит усомниться. А строгая научная логика его и вовсе не примет: ведь у родителей кожа потемнела только после длительного воздействия солнца, и если младенец родится уже темным, значит, его кожа имеет свойство, которого у родителей не было (о выщеплении рецессивных генов тут не может идти речь, так как гены темной окраски доминантны).

Представление о наследовании приобретенных признаков заходит в тупик и перед тем обыкновенным фактом, что потомство не наследует столь существенной «приобретенной» характеристики родителей, как их возраст: возьмем ли мы семечко от тысячелетнего дерева или от молоденького, только что вступившего в плодоношение, – в обоих случаях сеянцы будут начинать свое развитие от одной и той же точки.

Вейсман выдвинул еще один важный тезис: об обособленности «зародышевой плазмы» от «сомы». На современном языке мы бы могли сказать, что каждая живая система состоит из двух подсистем: несущей наследственную информацию и управляющей развитием особи (зародышевая плазма) и осуществляющей жизнедеятельность (сома). При этом элементы первой подсистемы – кодирующие структуры – не могут возникать заново или из других структур тела (сомы) либо превращаться в другие структуры: они умножаются только воспроизводя себя путем матричной репликации.

Очевидна тесная логическая связь второго тезиса Вейсмана с первым – о невозможности наследования приобретенных признаков; из сочетания обоих тезисов следует, что наследственная информация в ходе онтогенеза особи может только копироваться или же «развертываться» (проявляться) на фенотип, но не может с фенотипа «свертываться».

Фундаментальное значение положений Вейсмана не только для теории эволюции, но и для всей биологии позволяет говорить о них как об аксиомах биологии. При этом тезис об обособленности кодирующих структур от сомы, очевидно, в логическом порядке должен быть первым; его можно назвать аксиомой организации живого (или первой аксиомой Вейсмана), а тезис о ненаследуемости приобретенных признаков – аксиомой наследования (или второй аксиомой Вейсмана)[13]13
  Из четырех аксиом, предлагаемых для биологии Б. М. Медниковым (цит. соч., с.30, 41), две первые – лишь иначе сформулированные аксиомы Вейсмана.


[Закрыть]
.

Однако полное признание идеи Вейсмана получили далеко не сразу. Когда в 1950-х годах Дж. Уотсон и Ф. Крик создали представление о двойной спирали ДНК как носителе наследственной информации, многие биологи восприняли это чуть ли не как потрясение основ: господствовало убеждение, что такая роль должна принадлежать белку. А ведь первая аксиома Вейсмана как раз позволяла предполагать, что в отличие от сомы, построенной в основном из белков, «зародышевая плазма» может иметь другую химическую основу В сенсации, вызванной открытием Уотсона и Крика, имени Вейсмана почти и не было слышно, а ведь двойная спираль оказалось не чем иным, как материальной конкретизацией «зародышевой плазмы».

Недооценка значения аксиомы Вейсмана сказалась и позже. Когда в 1970-х годах открыли обратную транскрипцию (переписка информации с РНК на ДНК), антидарвинисты не преминули заявить, что найден путь переноса информации с фенотипа на генотип. Но, с точки зрения аксиомы Вейсмана, ясно, что и ДНК, и РНК, и процессы транскрипции находятся в рамках «зародышевой плазмы», и только процессы трансляции представляют собой принципиальный переход от «зародышевой плазмы» к соме. Однако для трансляции, как и следовало ожидать, обратного хода открыто не было.

Но вернемся к рубежу XIX–XX вв. Отказ от признания наследования приобретенных признаков выдвинул на первый план значение неопределенной (мутационной) изменчивости. Однако в те времена она была еще мало изучена; в частности, были не ясны ее причины и источники, механизмы и частота. Еще в 1922 г. Л.С. Берг категорически утверждал, что мутации столь редки и малочисленны, что естественному отбору не из чего отбирать (главный аргумент Берга против дарвинизма). Вейсман понимал, что для логической завершенности дарвиновской теории необходимо найти источники неопределенной изменчивости, и пытался решить этот вопрос, но безуспешно.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8