banner banner banner
Микробушки. Взгляд в бесконечность, полную жизни
Микробушки. Взгляд в бесконечность, полную жизни
Оценить:
Рейтинг: 1

Полная версия:

Микробушки. Взгляд в бесконечность, полную жизни

скачать книгу бесплатно

Микробушки. Взгляд в бесконечность, полную жизни
Алекс Шел

Автор – практикующий врач: клинический эпидемиолог, бактериолог. Более 12 лет занимается проблемами вакцинации и профилактики инфекций, непосредственно общаясь с пациентами, руководителями организаций, педагогами, представителями власти. Не понаслышке знаком с предрассудками относительно этой темы. С 2018 года читает курс лекций по микробиологии студентам медицинского колледжа. В 2022 году за свою работу награждён грамотой губернатора региона. В процессе профессиональной деятельности и преподавания пришёл к пониманию, что глубокими знаниями об окружающем нас мире микробов должны сегодня владеть не только профильные специалисты, но и любой современный человек.Эта книга – авторский взгляд на проблему, как донести до читателей актуальную, но сложную информацию максимально доступным языком.Администрация сайта Литрес не несет ответственности за представленную информацию. Могут иметься медицинские противопоказания, необходима консультация специалиста.

Алекс Шел

Микробушки. Взгляд в бесконечность, полную жизни

(нескучный рассказ о микробах и всём, что с ними связано)

Здравствуйте, уважаемые читатели!

Говорят, сейчас книгу не пишет только ленивый. Ну, или безрукий, хотя Стивену Хоукингу – недавно скончавшемуся гениальному физику, большую часть жизни полностью парализованному – даже это никак не помешало.

Последнее время особенно много пишут о медицине и здоровье. Пишут именитые учёные, начинающие аспиранты, простые врачи – это и придаёт вес в профессиональном сообществе, и систематизирует опыт, и помогает бороться с профессиональным выгоранием (очень частое в работе врача состояние и страшная вещь, превратившая не одного умницу и энтузиаста в злобного мизантропа). Так что скажу вам по секрету: на самом деле я писал эту книгу для себя.

Шучу, конечно. Причем буду в меру скромных возможностей своего чувства юмора делать это и дальше на страницах книги. Потому что впереди нас ждут сложные, а порой и пугающие вопросы, заковыристые определения и прочие совсем не развлекательные моменты. И чтобы совсем не отпугнуть вас от чтения, я буду стараться периодически давать такие передышки – «минутки смеха».

Ну а если серьёзно, то эта книга – «младшая сестра» сборника лекций для моих студентов – будущих фельдшеров и медицинских сестёр. И мне бы хотелось, чтобы и вы, читатели, и мои юные будущие коллеги после прочтения получили ту базу знаний, которая поможет лучше понять окружающую действительность. Не жить в плену навязанных мнений, а понимать механизмы и принципы функционирования мира микробов, рядом с которым мы живём (именно так, а вовсе не наоборот): как он менял в прошлом и продолжает менять сейчас планету и жизнь на ней, в том числе и нашу собственную жизнь.

Кое-что из этого может войти в конфликт с уже имеющимися у вас представлениями. Вы даже можете сказать, что я пытаюсь навязать вам определённое мнение. Что ж, в этом случае советую, по крайней мере, не отбрасывать книгу сразу – хотя бы потому, что вы заплатили за неё свои деньги. Попробуйте для начала открыть содержание: вдруг среди разделов, о которых вы бы со мной яростно поспорили, найдётся то, в чём мы окажемся единомышленниками?

Если же вы нашли в книге неточности или даже досадные ошибки (к сожалению, у меня не было научного редактора, и приходилось рассчитывать лишь на собственные знания), либо хотите поспорить, обсудить возникшие вопросы, а то и решите вдруг поблагодарить автора за бессонные ночи и оторванные от семьи часы, то обратная связь возможна через отзывы на Литрес, а также в соцсетях: на Яндекс-Дзене у меня канал «ЛекцииPROинфекции», а канал в Телеграме называется так же, как эта книга – «Микробушки».

Ну и, пожалуй, достаточно отвлекать ваше внимание, а то микробушки заждались! Устраивайтесь поудобнее и извлеките максимум удовольствия из чтения.

Глава 1. Знай врага в лицо! (и друга тоже)

Начиная разговор о микробах, нужно сначала выяснить – а что же это такое? Или, может быть, правильнее сказать: «Кто это?» То есть встаёт принципиальный вопрос – являются ли микроорганизмы живыми (на что вроде бы намекает само слово «организмы») или всё же нет?

Что мы вообще знаем о мире микробов? Когда я читаю лекции в медицинском колледже, чаще всего на вопрос: «Какие микроорганизмы вы знаете?» студенты называют вирусы и бактерии. И уже здесь мы сталкиваемся с нюансами и оговорками. Ведь вирус представляет собой просто цепочку нуклеиновой кислоты в оболочке из белковых молекул. Сам по себе он не в состоянии долго жить и вообще не может размножаться. Для копирования генетической информации и сборки новых вирусных частиц ему нужна клетка живого организма. То есть вирус – абсолютный паразит. Его можно сравнить с записанной на флеш-карту программой – пока не подключишь к «порту»-рецептору и не запустишь на «компьютере»-клетке, биологическая программа вируса воспроизводиться не будет, и на другую «флешку» он себя не скопирует.

Так считать ли вирус в таком случае живым? А микроорганизмом? Англоязычная школа микробиологов однозначно даёт ответ – нет. Даже при чтении переводной научно-популярной литературы на эту тему вы, скорее всего, столкнётесь с выражением «микробы и вирусы». То есть последних вроде бы имеют в виду при обсуждении, но всё же чётко выделяют в особую категорию.

В отечественной же микробиологии вирусы считают как бы «преджизнью», выделяя эти микроорганизмы в особое надцарство природы Vira («вира») – доклеточные формы жизни.

Бактерии – это уже клеточная форма жизни, способная к автономному самовоспроизводству. Однако бактерии никогда не объединяются в многоклеточные структуры, максимум они могут образовывать колонии. Ещё одним отличительным свойством бактерий является то, что у них нет выделенного ядра, поэтому они вместе с археями (архебактериями) составляют группу прокариот (от лат. «про» – перед, ранее, «карион» – ядро).

Поразмыслив, наряду с бактериями и вирусами, многие вспоминают таких представителей микроорганизмов, как «грибки». И здесь есть нюанс: грибы – это обширное царство живой природы, включающее и какой-нибудь опёнок или мухомор, и пекарские дрожжи, и кандида (причины «молочницы»), и аспергилл, знакомый вам по чёрному налёту на стенах и потолках сырых помещений, а заодно вызывающий у их обитателей аллергические реакции. Так вот, микробиология занимается только микроскопическими представителями этого разнообразия, то есть микромицетами (от греч. «микрос» – малый и «микос/мицес» – гриб) – дрожжами и плесенями.

И да, терминологически правильно что микро-, что макромицеты называть одинаково – грибами. Но у обычных людей это вызывает путаницу, поэтому даже врачи в беседах с пациентами частенько прибегают к разговорной форме «грибок», «грибковое поражение кожи».

Грибы, в отличие от бактерий, уже являются эукариотами – у них есть полноценное ядро, как в клетках растений и животных. К растениям долгое время грибы и относили, хотя на деле они формируют совершенно отдельное самостоятельное царство природы. И здесь это не эпитет, а научный термин: царство грибов как классификационная категория будет называться «микота» или «фунги», смотря на какой язык вы переведёте слово «грибы» – латинский или греческий. В такие же царства объединены бактерии (название их царства Bacteria звучит сходно с русским вариантом), растения (царство «планте» или «флора») и животные (царство «анималия» или «зоа») с подцарством простейших («протозоа»).

Простейшие выделены в самостоятельную группу из большого царства животных (к которому относится и человек) на том основании, что, будучи полноценными эукариотами, они, как и прокариоты, всё же не в состоянии слиться в многоклеточный организм. Их клетки живут, питаются, дышат, охотятся или паразитируют, мигрируют к источнику пищу или скрываются от опасности, но всегда остаются одиночками. Максимум, на что способны простейшие, – объединяться в колонии по типу вольвокса. Но никакой специализации клетки в такой колонии не приобретают, оставаясь совершенно одинаковыми, в отличие от гигантского разнообразия клеток и тканей в многоклеточных организмах. По этой же причине одноклеточности простейшие доступны для наблюдения и изучения в основном только с использованием оптики.

Сами по себе водоросли, являющиеся частью царства растений, тоже интересуют микробиологов лишь отчасти. К тому же ещё совсем недавно считалось, что ни один вид водорослей не способен инфицировать человека, и потому они не представляют интереса для врачей и медицинских микробиологов.

Правда, в 1970-е годы сначала у животных, а затем и у человека были описаны случаи прототекоза – инфекции кожи и центральной нервной системы, вызванные нефотосинтезирующими водорослями рода Prototheca («прототека»). Это ближайшие родственники одноклеточных водорослей хлорелла, однако по своим свойствам в организме больше напоминают грибы. Ранее считалось, что прототекоз может поражать только особей с ослабленным иммунитетом (например, ВИЧ-инфицированных лиц), то есть является оппортунистической инфекцией. Однако в последние годы выяснилось, что пусть редко, но болеть могут и люди с нормальным иммунитетом. Из-за своей редкости и необычного возбудителя прототекоз сложно диагностировать, но не запущенные случаи успешно лечатся.

Но и помимо этого у микробиологии богатая история взаимодействия с альгологией (наукой о водорослях, не путайте с алгологией – разделом медицины о лечении болевых ощущений). Например, микроорганизмы, вызывающие «цветение» водоёмов жарким летом, до сих пор называют сине-зелёными водорослями, хотя в действительности это бактерии (цианобактерии). Предполагается, что именно у них первых на древней Земле появился процесс фотосинтеза. А уже позже водоросли и простейшие устроили с ними выгодный симбиоз, в результате которого (согласно одной из теорий) свободноживущие цианобактерии деградировали до хлоропластов, став органеллами в клетках своих более эволюционно продвинутых соседей

Так же, как и поглощённые, но не переваренные предком эукариот археи развились внутри него в митохондрии, положив начало аэробным – дышащим кислородом – организмам.

А ещё водоросли образуют симбиоз с грибами, который вам всем хорошо знаком и не раз встречался, например, на коре деревьев. Это лишайники. Организм очень интересный, но медицинского значения, в смысле патогенности для человека, не имеющий. Поэтому не нужно путать лишайник с лишаём. Последним обозначают грибковое поражение кожи и волос. Так, стригущий лишай – это микроспория или трихофития, то есть заболевания, вызванные микроскопическими грибами рода микроспориум или трихофитон соответственно. Разноцветный (отрубевидный) лишай – тоже результат поражения кожи грибом малассезией (Malassezia furfur).

Последняя, шестая, группа в классификации микроорганизмов – прионы. Она самая новая (большинство вызываемых ими заболеваний были описаны во второй половине XX века, как инфекционный агент выделены в 1982 г.) и самая загадочная. Дело в том, что прионы вовсе не содержат нуклеиновой кислоты, то есть не несут генетического материала. Это просто особого рода белковые молекулы, предшественники которых в норме имеются в организме животных (недавно были открыты прионы у дрожжевых грибов и предполагается их наличие у некоторых растений). Однако под действием до конца не установленных факторов прионы в организме начинают менять свою конформацию – способ укладки белковой молекулы в пространстве или, попросту говоря, форму. Такие молекулы уже не могут нормально нести свою функцию, и их накопление в клетках приводит к заболеванию. У животных прионы доказанно вызывают губчатую энцефалопатию (ГЭП) крупного и мелкого рогатого скота («коровье бешенство», «скрэпи» у овец). У людей – фатальную семейную бессонницу, болезнь «куру» и другие поражения центральной нервной системы.

На роль причин, заставляющих «хорошие» прионы перерождаться в патоген, предполагают наследственные, внешние, другие перенесённые инфекции или сочетание всего перечисленного. А также инфицирование «плохими» прионами извне: так, название болезни «куру» происходит из языка племён каннибалов с островов Папуа-Новая Гвинея, у которых она и была впервые диагностирована. Нет, они не охотятся на людей специально, но у них есть традиция съедать некоторые органы своих умерших сородичей – особенно головной мозг. А именно там у заболевших содержится наиболее высокая концентрация злокачественных прионов. «Коровье бешенство» и скрэпи тоже были ассоциированы со стадами, в корма которых для ускоренной прибавки веса добавляли мясокостную муку – то есть они были «каннибалами поневоле».

Конечно, прионы уже совсем нельзя назвать живыми. Однако пока ими тоже занимаются микробиологи. Благо прионные инфекции весьма редки.

Итого групп микроорганизмов шесть:

* вирусы

* бактерии

* микроскопические грибы (микромицеты)

* микроскопические водоросли

* простейшие

* прионы

Микроорганизмы чрезвычайно разнообразны и многочисленны. Их даже сложно уложить в рамки одной классификации. Кроме того, они очень малы, поэтому изучать их можно только с помощью микроскопа. И далеко не всегда с помощью того оптического (светового) микроскопа, которым вы, вероятно, пользовались на уроках биологии в школе. Физический предел его способностей, определяемый длиной волны видимого света – 0,2 микрона (это 2 десятитысячные доли миллиметра). То есть кишечную палочку с диаметром клетки 0,4 микрона в нём видно, а вот вирусы, размеры которых измеряют уже в нанометрах (тысячная доля микрона) – нет. Кроме разве что недавно открытых гигантских РНК-вирусов диаметром до 1,5 микрона, но это исключение. И ещё иногда получается подкрасить скопления вирусов специальными светящимися пигментами, что используют, например, в диагностике гриппа – однако такая хитрость работает, только если вируса в исследуемом материале достаточно много.

Для изучения вирусов и тонкой структуры других микроорганизмов через исследуемый образец направляют, например, поток электронов, имеющих более короткую длину волны, чем свет. Поэтому такие микроскопы называются электронными. Они позволяют заглянуть уже не только в наномасштаб, но и «увидеть» структуры размером в несколько ангстрем – то есть даже отдельные молекулы и атомы. Но такие приборы очень сложны и дороги, поэтому их применяют в научных целях, а для повседневной практики, например, диагностики инфекций, ищут другие способы. Зачастую так гораздо проще и удобнее. Но вот чтобы подтвердить открытие новых вирусов или других мельчайших микроорганизмов, всё же нужно представить их электронные микрофотографии.

Так размеры и относительно простое устройство «микробов», которое природа комбинирует во множество разнообразных вариантов, сделали их реальными хозяевами нашего мира. Простота и неприхотливость позволяют им приспосабливаться к почти любым условиям среды. Именно по распространению микроорганизмов определяют границы биосферы Земли. И они гораздо шире освоенных любыми другими обитателями планеты.

Например, споры бактерий и грибов потоки воздуха заносят в атмосферу на 15—20 км, куда даже не все самолёты залетают. Но выше они пробраться не могут, так как без защиты находящегося на этой высоте озонового слоя жёсткий ультрафиолет стерилизует всё живое. В экспериментальных сверхглубоких скважинах микроорганизмов находили до глубины 3,5—4 км. Некоторые виды прекрасно чувствуют себя в термальных водах гейзеров и вулканов, имеющих почти температуру кипятка. Даже в туннелях под 4-м энергоблоком Чернобыльской электростанции, где произошло разрушение ядерного реактора, обнаружили микрооорганизмы, выживающие в условиях жесточайшей радиации.

Долгое время считалось, что полноценные экосистемы в океане могут существовать только до той глубины, куда проникает свет, а значит, есть фотосинтезирующие организмы как основа пищевой цепи. А дальше, мол, идёт тёмная и холодная «мёртвая зона» с редкими обитателями, поглощающими то, что падает из верхних слоёв воды. Однако в середине XX века в центральных частях океанов, где проходят стыки литосферных плит и постоянно поднимается магма из недр планеты, открыли необычные образования, похожие на вулканы. Они выбрасывают разогретую до 300—400 градусов Цельсия воду, перенасыщенную минеральными солями и тяжёлыми металлами. Из-за колоссального давления на глубине нескольких тысяч метров она не кипит, и в свете прожекторов батискафов исходит со дна чёрными вертикальными потоками, получившими за свой вид название «курильщиков».

Каково же было удивление учёных, когда они обнаружили, что в этом аду прекрасно чувствуют себя микроорганизмы, научившиеся в отсутствие света извлекать энергию из химических связей тех соединений, которые выбрасывали «курильщики». Они легли в основу пищевой пирамиды, и вокруг «курильщиков» сформировались настоящие оазисы жизни из моллюсков и рыб, никогда не видевших солнечного света.

Микроорганизмы, способные выживать и размножаться при очень высоких или очень низких показателях температуры, давления, в агрессивной химической среде или других крайне неблагоприятных условиях, называют экстремофильными. Их изучение помогает узнавать пределы приспособляемости жизни. А гены этих «экстремалов» и кодируемая ими биохимия, возможно, помогут не только в будущем земным колонистам осваивать далёкие планеты, но уже сейчас лечить некоторые заболевания.

Учитывая всё вышеприведённое, можно сказать, что в отечественной микробиологии микроорганизмы – это искусственно выделенная разнородная группа объектов микромира (живых организмов и сложных органических молекул), объединенных микроскопическими размерами, относительной простотой устройства и повсеместным распространением в биосфере.

Микробиология же изучает их строение, функционирование, происходящие в них биохимические процессы, размножение и передачу наследственного материала из поколения в поколение, условия обитания и, наконец, изменение с течением времени (эволюцию).

Однако сразу необходимо сказать, что почти никогда микробиология не исследует свой объект – микроорганизмов – как «самих по себе». В гораздо большей степени её интересуют их связь друг с другом и влияние на макромир (мир, который мы ощущаем непосредственно с помощью органов чувств, в первую очередь – зрения). Особенно это важно для медицинской микробиологии, рассматривающей взаимодействие микроорганизмов, в том числе патогенных, с организмом человека.

Поэтому можно ввести такое определение: микробиология – это наука о микроорганизмах, изучающая закономерности их жизни и развития, а также изменения, вызываемые ими в организме людей, животных, растений и в неживой природе.

Для того, чтобы упорядоченно заниматься изучением всего перечисленного, в микробиологии выделяют ряд разделов. Во-первых, микробиологи предпочитают глубоко заниматься только какой-то одной группой микробов, в крайнем случае – несколькими смежными. Поэтому среди них есть бактериологи, вирусологи, протозоологи. Микология – это наука о вообще всех грибах, но некоторые микологи предпочитают заниматься только микроскопическими их видами, например, дрожжами. Так же, как и некоторые альгологи (вы ведь ещё не забыли, что это учёные, занимающиеся водорослями?). И микробиологи с удовольствием принимают их в свою «компанию».

Кроме того, разделы микробиологии выделяют ещё и по прикладному их значению: по той области хозяйственной деятельности, конкретные задачи которой призвана решать микробиология, или по тому объекту интересов человека, где требуется знание микробиологических аспектов. Это уже упомянутая медицинская микробиология, а также санитарная, ветеринарная, промышленная, почвенная, морская и даже космическая микробиология, изучающая вопросы возможного распространения микробов с естественными (кометы, метеориты) и искусственными (спутники, межпланетные станции) космическими телами, а также решающая проблемы микробного загрязнения на орбитальных станциях. Сюда же входит биотехнология – наука, разрабатывающая способы получения нужных человеку веществ при помощи живых организмов (чаще всего именно микроскопических).

Хотя на самом деле классификации разрабатывают скорее для удобства и наглядности, и абсолютно всё в их рамки не уложить. Теми же прионами из-за их необычности микробиологи вынуждены заниматься совместно с биохимиками и другими учёными – первыми белковую природу этого патогена предположили вообще радиобиолог и биофизик. Впрочем, даже самые первые и самые «микробиологи из микробиологов» Луи Пастер (чьё имя сейчас носит французский институт микробиологии, и одно только перечисление заслуг и открытий которого займёт целую страницу) и Роберт Кох (первооткрыватель возбудителя туберкулёза и во многом основоположник бактериологии) внесли фундаментальный вклад в эту науку, микробиологами в нынешнем понимании слова не являясь! Первый был по образованию, как бы это сейчас сказали, «технологом пищевой промышленности», а второй, тоже в современных терминах, – санитарным врачом. Это лишний раз доказывает условность всех классификаций и то, что крупные открытия всегда совершаются людьми широкого кругозора и – на стыке наук.

Например, микробиология чрезвычайно тесно связана со множеством наук и сфер деятельности человека: не только с фундаментальными химией и биологией, но также с генетикой, фармакологией, клинической медициной, химической и пищевой промышленностью, обеззараживанием сточных вод и даже производством материалов для электроники.

Ну а медицинская микробиология идёт рука об руку с иммунологией. Их попросту сложно рассматривать отдельно друг от друга.

Иммунитет, изучением которого занимается иммунология как наука, – это способ защиты организма от антигенов экзогенного (внешнего) и эндогенного (внутреннего) происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической индивидуальности каждого организма и, как следствие, вида в целом.

Сейчас это определение кажется слишком сложным, но по мере чтения книги вы разберётесь в терминах и поймёте, что иммунитет оберегает организм от опасностей внешних (микробы, инородные тела) и внутренних (опухолевые, отмершие и повреждённые клетки). Таким способом он поддерживает постоянство внутренней среды организма (гомеостаз), оберегает от повреждений его геном, что в конечном счете позволяет живому существу выжить и передать свои гены потомкам.

Ну а в заключение этой главы я хочу обратить внимание вот на что, уважаемый читатель. Классификации и определения очень важны, они – настоящие навигационные карты и маяки в мире микробиологии (да и любой другой науки) и том безграничном «микрокосмосе», который она изучает. Но чтобы по-настоящему понимать, и главное, любить микробиологию, так важно за строгими терминами и сложными взаимосвязями не терять живую и невероятно интересную связь науки с нашей каждодневной окружающей жизнью. В самом деле: ведь без микроскопических помощников-дрожжей у нас не было бы вкусного хлеба, а без плесени он бы не портился, но зато мы не получили бы из неё первые антибиотики. А если бы Александр Македонский не умер в возрасте 32 лет от инфекции (за давностью лет мы точно не знаем, какой именно, но по известным симптомам выбор лежит между брюшным тифом, малярией и лихорадкой Западного Нила), то вся история человечества могла пойти по совсем другому пути.

Глава 2. Мы были, есть и будем есть!

2.1. Экология микроорганизмов

Итак, мы бегло ознакомились с микроорганизмами и узнали, как тесно, оказывается, мы сосуществуем с ними на нашей планете. Хотя справедливее было бы сказать: «на их планете» – мало того, что микробы забрались во все самые потаённые углоки Земли, так ещё общая биомасса одних только бактерий превышает массу всех людей планеты в 10 тысяч раз! А может и больше: учёные пока не могут точно оченить биомассу микробных сообществ океана и геосферы (населяющих различные пещеры, полости и просто поры горных пород).

Тем, какие отношения складываются у микроскопических обитателей планеты друг с другом, людьми и другими живыми существами, а также со средой обитания, занимается наука экология.

Когда звучит слово «экология», обычно оно ассоциируется с защитой природы, краснокнижных животных и с глобальным потеплением. В действительности это гораздо более широкое понятие: термин экология происходит от латинских слов «ойкос» – дом, обиталище, и «логос» – наука, учение.

Если представить наше жилище, особенно частный сельский дом с участком, то окажется, что вся наша жизнь будет тесно связана с ним: здесь мы не просто находим безопасное убежище и место отдыха, но и питаемся, общаемся друг с другом, развиваемся, воспитываем потомство, а приусадебное хозяйство служит нам средством воспроизводства пищи. То есть дом является местом нашего глубокого взаимодействия с окружающим миром. В этом смысле название «экология» хорошо отражает суть данной науки.

Одной из самых важных задач экологии является изучение пищевых (трофических) цепочек, поскольку питание наряду с дыханием считаются первыми и самыми важными признаками живого. Питание и дыхание нужны не просто для нормального роста организма, но и для самого его существования. Лишь немногие организмы могут приостанавливать или существенно замедлять эти процессы, да и то на ограниченное время (анабиоз, образование цист и спор).

Вспомним, что такое питание. Упрощённо – это процесс поглощения вещества и энергии. К энергии мы чуть позже вернёмся, а пока разберёмся с веществом.

Жизнь на планете Земля – углеродная. То есть все органические молекулы – белки, жиры, углеводы, нуклеиновые кислоты – так или иначе имеют «скелет» из атомов углерода С. Поэтому в каком-то смысле можно сказать, что питание – это поглощение источников углерода и [источников] энергии. То есть живые клетки могут из углеродных «кирпичиков» складывать собственные структуры. Для этого они могут взять готовый углерод или разломать «на кирпичи» другие клетки либо их отмершие остатки. Правда, поскольку углерод в форме угля, графита или алмаза очень неудобен для использования в биохимических процессах, то наиболее простым его источником для живых существ является углекислый газ СО

. Плюс нужна вода как универсальный растворитель и источник другого важного элемента – водорода Н. Существа, которые могут из этих простых компонентов синтезировать свои сложные молекулы – буквально «строить сами себя», – называются автотрофами (от греч. «аутос» – сам, самостоятельно). Те, которые разлагают органические субстраты, чтобы затем собрать из них свои молекулы и клетки, обозначаются термином гетеротрофы («гетерос» – другой, чуждый). Поскольку автотрофам, в отличие от гетеротрофов, не нужно никого «разбирать на запчасти», а вот их самих разбирают все, кому не лень, то именно автотрофы являются первоосновой всех трофических (пищевых) цепочек. На языке экологии – продуцентами.

Однако, чтобы соединить простые неорганические молекулы в сложные органические, нужно затратить энергию, которая уходит на образование химических связей. Здесь организмы (и микроорганизмы в частности) тоже пошли разными путями. Одни научились использовать энергию солнца. Их назвали фототрофами («фотос» – свет) или фотосинтезирующими организмами. Поскольку только фототрофы могут использовать солнечную энергию, поступающую на нашу планету извне, из космоса, то именно они являются основными продуцентами на планете.

Но не все умеют питаться от солнышка, некоторые предпочитают что повкуснее: организмы, получающие энергию из расщеплённых химических связей, называют хемотрофами. Причём последние делятся на хемолитотрофных, которым достаточно энергии неорганических молекул (аммиак, сероводород и др. – от «литос», камень), и хемоорганотрофных – которые меньше чем «бифштексом» из органики не довольствуются.

Итак, имея две группы по два раздела в каждой, мы можем получить 2*2=4 типа живых существ (4 типа питания):

Фотоавтотрофы – синтезируют сложную органику из СО2 и воды за счёт энергии солнца. Классический пример вы хорошо знаете – это растения и водоросли. Некоторые простейшие (эвглена зелёная) и бактерии, такие как цианобактерии (они же сине-зелёные водоросли, которые, как мы узнали в предыдущей главе, вовсе не водоросли), тоже фотоавтотрофы.

Хемоавтотрофы – образно говоря, играют в те же игрушки, только запитывают их не от солнечных батарей, а используют дешёвые батарейки: синтезируют сложную органику из простых молекул, но за счёт энергии неорганических соединений. Если помните такие необычные океанические образования из предыдущей главы, как «чёрные курильщики», то вот там именно серные и сульфатредуцирующие бактерии, а также археи, в отсутствие света, а значит, и фотоавтотрофов, берут на себя роль продуцентов в этих необычных экосистемах.

Фотогетеротрофы – редкий тип питания, когда энергию света организмы направляют не на фотосинтез, а на расщепление чужих органических молекул для синтеза собственных. Представлен, например, пурпурными бактериями.

Наконец, хемогетеротрофы – самый распространённый тип питания, когда органика служит одновременно источником и энергии, и углерода. Мы, например, с вами типичные хемоорганогетеротрофы. И большинство микроорганизмов – тоже. Хотя, как вы наверняка заметили, бактерии успели захватить все типы питания, но патогенными для человека могут быть только хемооргано(гетеро)трофные. Ещё бы: ведь мы их конкуренты за еду и энергию!

Подробнее про типы питания вы можете прочесть в доступных учебниках и Интернете. А что же дыхание? Если мы говорим не о внешнем дыхании человека и других животных, а о дыхании как биохимическом процессе, то, упрощённо, в его основе лежит окисление – отрыв электрона от молекулы вещества. Электроны как раз и есть та самая энергия. Поэтому про хемотрофов, например, иначе говорят, что хемолитотрофы используют неорганические доноры электронов, а хемоорганотрофы – органические. Стоп: так окисление – это про дыхание или про питание? В том-то и дело, что эти два процесса неразрывно связаны и составляют основу метаболизма – обмена веществ. Так, растения в ходе фотосинтеза могут нарабатывать глюкозу, чтобы потом полимеризовать её до целлюлозы и построить из неё свои стебли, а могут запасти в виде других полисахаридов (например, крахмала) в клубнях и семенах. И будущий росток станет, наоборот, расщеплять этот запас на простые сахара для дальнейшего создания уже собственных структур, а в процессе дыхания – на углекислый газ и энергию, которой на рост требуется много, а листьев для фотосинтеза пока ещё нет.

Так же могут поступать и органогетеротрофы, в том числе и мы с вами. В процессах метаболизма мы можем расщеплять органические полимеры пищи до составляющих их мономеров и синтезировать их них собственные: из аминокислот – белки, из жирных кислот – липиды, из моносахаридов – сложные углеводы, а уже из всего этого набора – клетки, ткани и органы. Но на всё это требуется энергия. Поэтому часть получаемых из пищи органических молекул (и даже ставшие по какой-то причине ненужными свои) в цикле дыхания расщепляется с образованием энергии. Так, один грамм белков и углеводов может дать 4 килокалории энергии, а один грамм жиров – целых 9.

Конечно, клетки не умеют поглощать энергию непосредственно в виде электронов, мы всё-таки не кремниевые чипы, а углеродные «анималькули» («зверушки» на латыни). Поэтому дыхание включает не просто окисление, а длинный цикл окислительно-восстановительных реакций, в итоге которых лежит универсальная энергетическая «валюта» клетки – аденозинтрифосфат (АТФ) – она может использоваться в любых реакциях биосинтеза. Для большинства организмов, включая и нас с вами, окислителем в этих циклах служит кислород. Для многих микроорганизмов – тоже, но… не для всех. Например, ряд бактерий и дрожжевых грибов обходятся без него. Вместо окислительного дыхания они используют брожение. В этом процессе углеводы расщепляются не полностью до СО2 и воды – остаются непереработанные соединения: спирты, органические кислоты и др. Это менее выгодно в плане выхода энергии, но биохимически проще и позволяет захватить такие экологические ниши, где дышащие кислородом воздуха аэробы не выживают, а значит, не создают конкуренции.

Такие микроорганизмы, которым не требуется кислород, называются анаэробными или, коротко, анаэробами («аэрос» – воздух, приставка «ан-» означает отсутствие). Самые хитрые из них приспособились переключаться с одного режима на другой – их называют нестрогими или факультативными анаэробами (как факультатив в школе – когда посещение вроде как не обязательно, если, конечно, завуча не боишься). Так ведут себя, например, коринебактерии – некоторые из них в норме обитают на слизистой носоглотки человека, но вот коринебактерия дифтерии может вызвать тяжёлую респираторную инфекцию. В довакцинальную эпоху дифтерия была причиной смерти множества детей (взрослые ей тоже болеют, но летальность у детей выше по причине некоторых особенностей дыхательной системы: например, у детей более узкий просвет воздухоносных путей, и они быстрее перекрываются из-за специфического дифтерийного воспаления).

Однако некоторые бактерии настолько «увлеклись» бескислородной жизнью, что кислород начал оказывать на них губительное воздействие. Они вообще не живут и не размножаются в его присутствии. Типичным представителем таких облигатных анаэробов являются бактерии-возбудители ботулизма. Их споры переносят открытый воздух, но размножаться начинают только в герметично укупоренных банках, домашних консервах и вакуумных упаковках, в результате чего возможно сильнейшее пищевое отравление – от ботулизма до сих пор бывают смертельные случаи. Другие представители того же рода бактерий, клостридии столбняка и газовой гангрены – возбудители раневых инфекции, при которых споры бактерий прорастают в глубине раны и выделяют токсины. Столбняк у непривитых людей легко может закончиться смертью от паралича дыхательных мышц, а газовая гангрена – летальным исходом от заражения крови, если раньше не произвести ампутацию поражённой конечности.

Ну а некоторым микроорганизмам кислород всё же требуется, но в очень небольшом количестве – они носят романтичное название микроаэрофилы («микро» – мало, «филос» – любящий, ну а «аэрос» вы уже должны были запомнить). К таковым относятся кампилобактерии – возбудители кишечных инфекций – и хеликобактерии (доказана роль хеликобактер пилори как одной из причин воспаления слизистой желудка – гастрита, – с последующим развитием у человека язвенной болезни желудка).

Справедливости ради нужно сказать, что наши клетки тоже умеют функционировать в режиме анаэробиоза, правда, не все и недолго. Например, когда вы в спортзале, кряхтя, не можете поднять штангу, потому что «забились» мышцы, это в них «забилась» молочная кислота – кровь не успевает снабжать кислородом миоциты, мышечные клетки, и они временно переходят на молочнокислое брожение. Нужно тренироваться постепенно, но систематически, чтобы адаптировать кровеносное русло и биохимию мышц. Чем вы хуже бактерий?!

Однако не все решают моральную дилемму «хуже—лучше» честным путём – что в нашем мире, что в мире микробов. Зачем упахиваться фотосинтезом, если можно расщепить готовое? Зачем ждать, пока соседняя клетка «уйдёт на радугу», чтобы поживиться её остатками, если можно ей «слегка помочь»? Среди микробов немало таких же падальщиков и коварных хищников, как и в макромире.

Однако прежде чем начать «грабить к0р0ваны» живых клеток, нужно чтобы было кого грабить. Говоря в терминах экологии, нужны те, кто переведёт неорганический углерод и солнечную (чаще всего, но – как мы только что видели – возможны другие варианты) энергию в органические соединения и энергию их химических связей. Нужны продуценты! Какие организмы ими являются, мы уже упомянули выше.

Все живые существа не вечны, и даже если кто-то не «помог» им закончить жизненный путь раньше времени, всё равно обычный цикл рождения и роста закончится отмиранием. Но складывающие их органические молекулы при этом не пропадают бесследно. Да, под действием окружающей среды они будут деградировать: тот же кислород является прекрасным окислителем и сам по себе, вне биохимических циклов клеток. Но полный распад в обычных условиях потребует много времени. Поэтому было бы странно, если бы не нашлось охотников до такого количество дармовой органики. Хотя на самом деле это не «охотники» вовсе, а «подбиратели» всего, что плохо лежит. Однако не нужно с пренебрежением относиться к роли организмов-редуцентов: только представьте, какие завалы отмершей органики покрыли бы планету за миллиарды лет, если бы они не помогали в её разложении. Микроорганизмов-редуцентов называют сапрофитическими или сапротрофными (от «сапрос» – гниющий). Причём некоторые сапротрофы могут произвольно менять свой жизненный путь с сапрофитического на свободноживущий и обратно в зависимости от условий среды.

Ну а самый большой интерес представляют, конечно, потребители того, что дают продуценты, а частенько и самих продуцентов целиком. Их называют консументами. И они вовсе не склонны соблюдать последовательность продуцент – консумент – редуцент. Консумент вполне может скушать консумента! Тогда они называются консументами 1-го и 2-го порядка (как в известном анекдоте про «завтрак туриста», где заблудившийся турист встретил медведя и таким образом перешёл из 2-го порядка консументов в первый).

Консументы разнообразны и могут вести как свободный образ жизни, самостоятельно расщепляя доступные им органические субстраты, так и нахально «присоседиться» к другому организму, полностью или частично переложив на того обязанность снабжать себя любимого пищей и энергией (а в случае вирусов – и все остальные функции вроде размножения). Иногда, правда, соседство получается взаимовыгодным – один участник обменивается с другим чем-то полезным или они оказывают друг другу взаимные услуги (коралловые рыбки, например, очищают актинию от мусора и паразитов, а сами в момент опасности прячутся среди её стрекательных щупалец). Именно такой подход вам в школьном курсе биологии и экологии преподносили как симбиоз. На самом деле симбиоз – это любое тесное сосуществование двух организмов разных биологических видов. И в зависимости от полученных при нём вреда или выгоды для обоих участников оно делится на три типа:

Мутуализм – соотношение «польза/польза» – взаимовыгодное сотрудничество организмов (бифидо-, лакто— и энтеробактерии кишечной микрофлоры человека не только улучшают пищеварение, но и синтезируют ряд необходимых нам витаминов, получая взамен удобную среду обитания и обилие пищи);

Комменсализм (по-русски – «нахлебничество») – сочетание пользы с пофигизмом – когда одному участнику (комменсалу) сотрудничество выгодно, а другому (хозяину) нет, но он терпит и относится с пониманием (пример: рыбы-прилипалы, путешествующие на поверхности тела китообразных, а в мире микробов – многие бактерии в составе микрофлоры человека);

Паразитизм – соотношение «польза/вред»: организм-хозяин терпит убытки и лишения и всеми силами пытается от паразита (паратрофа – конкурента за пищу) избавиться, для чего эволюция и придумала иммунитет и другие защитные механизмы. Ну а для паразитов она придумала гены факторов агрессии, защиту от антибиотиков, капсулы против антител и много чего другого, чтобы тот самый иммунитет обойти. Эволюция работает на приспособление всех участников симбиоза.

Причём не всякое сосуществование можно с ходу отнести к той или иной категории. Так, бактерии-комменсалы в составе микрофлоры кожи человека получают подходящую среду обитания и питательный субстрат, ничего вроде бы не давая хорошего. Даже слегка наоборот: наш пот, к слову, почти не имеет собственного запаха – плохо пахнуть после спортзала или пробежки мы начинаем из-за деятельности бактерий и дрожжевых грибов, перерабатывающих пот и отмерший эпителий с образованием летучих соединений. Но если посмотреть шире, то эти бактерии так плотно заселяют наши покровы и настолько полно используют доступные здесь ресурсы, что болезнетворным микроорганизмам, попадающим на кожу, часто просто «негде зацепиться», чтобы размножиться до угрожающих нашему здоровью пределов. Да, иммунитет тоже работает, но бесполезные на первый взгляд комменсалы тут играют роль своего рода «ополчения», вспомогательной силы в борьбе с инфекцией. Это явление называется колонизационной резистентностью, и мы ещё вернёмся к нему в теме микрофлоры человека.

Бывает и наоборот. Вам наверняка говорили в школе, что лишайники – это взаимовыгодный симбиоз гриба и водоросли. Грибы формируют каркас, тело лишайника, защищают от агрессивной внешней среды, в частности от высыхания, доставляя через свои гифы влагу непосредственно к клеткам водоросли. А те делятся с грибом питательными веществами, получаемыми за счёт фотосинтеза. Данная стратегия позволяет лишайникам заселять такие экологические ниши, где ни грибы, ни водоросли по отдельности не выживают.

Однако сравнительно недавно учёные выяснили удивительное: «мир, дружба, жвачка» между двумя компонентами лишайника длятся только до тех пор, пока условия жизни приемлемые. Стоит начаться засухе, или окажется исчерпанным питательный субстрат, как грибы начинают обделять компаньонов водой и питательными веществами, забирая больше, чем дают, а при крайне тяжёлых обстоятельствах и вовсе выделяют пищеварительные ферменты, просто пожирая клетки водоросли. Это уже не симбиоз – это рабовладение какое-то получается!

2.2. Инфекционный процесс

Итак, теперь мы знаем: среди микроорганизмов немало таких, кто предпочитает поживиться за чужой счёт, нежели в поте цитоплазматической мембраны своей самостоятельно отыскивать органические субстраты в окружающей среде.

Любой организм, который питается за счёт организма другого вида, нанося ему при этом вред, с экологической точки зрения будет называться паразитом. Теперь нам интересно выяснить, как связаны паразитические микроорганизмы с явлением инфекции. И что вообще под этим словом понимают врачи и учёные.

Нужно сказать, что люди всегда размышляли над причинами явлений и процессов. Однако очень долгое время почти всё, что происходило вокруг независимо от их воли, они объясняли действием неких сверхъестественных сил: духов, богов и так далее. Можно сказать, это был религиозный этап познания окружающего мира. Но постепенно, по мере накопления знаний, стало возможным провести между явлениями логические связи. Люди начали понимать, что одни события являются следствием других, то есть они являются детерминированными. А значит, сами эти события можно предсказать, а некоторые – и предотвратить.

Так, если в древности любая заразная болезнь («мор», «поветрие») приписывалась гневу богов или проделкам духов, то постепенно люди стали замечать, что в низменных и заболоченных местностях с холодным климатом они болеют чаще, чем на открытых и солнечных, что найденные тушки павших животных лучше не употреблять в пищу и даже не охотиться в тех краях, где произошёл такой падёж. А если мор всё-таки случился, то не нужно контактировать с заболевшими, а тем более телами умерших, и вообще лучше на время уехать в другую местность, где болезни нет. Эти принципы «защиты временем, барьерами, расстоянием» остались непреложными и по сей день. И они предполагали уже не влияние сверхъестественной силы, а некоего физического начала: чего-то такого, что было невидимо, но реально существовало, и от чего, в отличие от воли богов или козней духов, можно было защититься путём определённых действий (сейчас бы мы назвали это «неспецифической профилактикой»), а не мистических ритуалов.

Конечно, огромный срок прошёл от первых представлений об этих мельчайших первопричинах заразных болезней до момента, когда их существование удалось подтвердить. Так, самые древние дошедшие до нас в письменном виде рассуждения о заражении людей «миазмами» оставил древнегреческий мыслитель Аристотель, живший в 5-м веке до нашей эры. Правда, он считал их неживыми и «самозарождающимися» в зловонных испарениях болот или смраде разлагающихся тел животных и людей, уже погибших от заразного заболевания.

Больше двух тысяч лет отделяет эти прозорливые измышления от момента, когда на границе XVI и XVII веков нашей эры, совсем недавно по историческим меркам, исследователям и учёным удалось создать первые микроскопы и открыть с их помощью удивительный мир «анималькулей» – живых микроскопических созданий. Это событие стало возможным в результате настоящей «научной коллаборации»: ведь успехам в оптике мы обязаны Галилео Галилею, совершенствованием микроскопов были заняты множество увлечённых людей из разных стран (даже наш знаменитый Михайло Ломоносов), а самые подробные и многочисленные описания «анималькулей» оставил Антуан ван Левенгук – голландский любитель микроскопии, за 50 лет наблюдений направивший в Лондонскую королевскую научную академию 300 писем-докладов с множеством подробных рисунков.

Но ещё пара веков пройдёт, прежде чем станет окончательно понятно, что заразные болезни не только человека, но и животных, и растений вызываются некоторыми из этих самых «анималькулей». Что они «виноваты» в порче продуктов питания и являются причиной брожения. Работы Луи Пастера (1822—1895 гг.) и Роберта Коха (1843—1910 гг.) пролили свет на многие из этих явлений: они помогли научиться выделять зловредных микробов из окружающей среды и от заболевших, а также дали точные критерии доказательства, что тот или иной микроб действительно является причиной определённой инфекции.