banner banner banner
Искусственный интеллект на службе бизнеса
Искусственный интеллект на службе бизнеса
Оценить:
Рейтинг: 0

Полная версия:

Искусственный интеллект на службе бизнеса

скачать книгу бесплатно

В определенный момент поворота ручки точность прогнозов ИИ достигает порогового значения и меняет бизнес-модель Amazon. Прогнозы становятся настолько точными, что компании выгоднее присылать вам товары, которые вы предположительно захотите купить, чем ждать, пока вы закажете их на сайте.

В таком случае другие магазины вам уже не нужны, а каждая покупка будет стимулировать следующую. Amazon получит основную долю содержимого вашего кошелька. Очевидно, что это выгодно Amazon, но также удобно и вам. Магазин доставляет покупки до того, как вы их совершили, и таким образом избавляет вас от траты времени на шопинг. С поворотом регулятора точности на максимум бизнес-модель Amazon меняется с «сначала оплата, потом доставка» на «сначала доставка, потом оплата».

Разумеется, покупатели не захотят возиться с возвратом нежелательных товаров. Поэтому Amazon вложится в отладку этого процесса – скажем, раз в неделю служба доставки будет собирать невостребованные посылки[13 - Amazon уже работает над потенциальными проблемами безопасности по этому плану. В 2017 году она запустила Amazon Key – систему, позволяющую доставщикам открыть входную дверь клиента и оставить посылку внутри помещения. Происходящее записывается на видеокамеру для контроля.].

Но если такая бизнес-модель лучше, почему Amazon до сих пор ее не внедрила? Дело в том, что сегодня издержки сбора и обработки возвратов перевешивают рост дохода от большей доли покупок. Например, сейчас мы вернули бы 80 % доставленных товаров. Это трудоемко для нас и затратно для Amazon. Прогноз недостаточно точен, чтобы на его основе Amazon внедряла бы новую бизнес-модель.

Возможен иной вариант: Amazon обращается к новой стратегии до того, как точность прогнозов достигнет качественного уровня, исходя из предположения, что однажды это принесет выгоду. Благодаря раннему запуску ИИ соберет больше данных за короткий срок и усовершенствуется. В Amazon понимают, что чем раньше они стартуют, тем сложнее будет конкурентам их нагнать. Качественный прогноз привлечет больше покупателей, что увеличит объем данных для обучения ИИ и, в свою очередь, приведет к повышению качества прогнозов, а далее этот цикл неоднократно повторится. Раннее внедрение обойдется дорого, но опоздание может стать роковым[14 - Любопытно отметить, что некоторые стартапы уже мыслят в этом направлении. Stitch Fix использует машинное обучение для прогнозирования, какая одежда понравится пользователям, и отправляет им посылку. Затем нежелательные вещи возвращают. В 2017 году Stitch Fix успешно провел IPO по этой модели – вероятно, первым из всех «ориентированных на ИИ» стартапов.].

Мы не утверждаем, что Amazon будет или должна внедрять такую практику, хотя для скептиков у нас есть неожиданная новость: в 2013 году Amazon получила патент США на «опережающую доставку»[15 - См. US Patent Number 8,615,473 B2; Kopalle, P. Why Amazon’s Anticipatory Shipping is Pure Genius // Forbes. 2014. January 29 // https://www.forbes.com/sites/onmarketing/2014/01/28/why-amazons-anticipatoryshipping-is-pure-genius/#2a3284174605 (https://www.forbes.com/sites/onmarketing/2014/01/28/why-amazons-anticipatoryshipping-is-pure-genius/#2a3284174605).]. Несомненно, вращение регулятора точности прогнозов коренным образом повлияет на стратегию. В данном примере оно меняет бизнес-модель Amazon с «сначала оплата, потом доставка» на «сначала доставка, потом оплата», создает стимул для вертикальной интеграции посредством организации услуги по возврату товаров (в том числе грузового автопарка) и ускоряет получение инвестиций. И все это вследствие поворота регулятора точности прогностической машины.

Что это означает для стратегии? Во-первых, необходимо инвестировать в сбор информации относительно того, как быстро и насколько высоко вырастет точность прогнозов в вашем и в смежных секторах. Во-вторых, разработка тезиса о стратегических возможностях, образовавшихся в результате вращения регулятора точности, потребует финансовых вложений.

Чтобы начать «научное фантазирование», закройте глаза, мысленно возьмитесь за регулятор прогностической машины и, следуя бессмертным словам члена группы Spinal Tap[16 - Spinal Tap – вымышленная британская рок-группа из одноименного псевдодокументального фильма 1984 года. Прим. перев.], поверните его на 11 часов.

План книги

Прежде всего необходимо построить фундамент для стратегического внедрения прогностических машин в своей организации. Именно так мы структурировали книгу – возводили пирамиду от основания.

В части I (#C1) мы заложим фундамент и объясним, как машинное обучение повышает качество прогнозов. Затем разберемся, чем новые преимущества отличаются от статистики, которой вас учили или которой уже занимаются ваши аналитики. Далее мы затронем ключевые дополняющие факторы прогнозов – данные, особенно те, что необходимы для качественной прогностики, – и расскажем, как убедиться, что они у вас есть. И в завершение рассмотрим, когда прогностические машины работают эффективнее человека и в каких случаях людям и машинам целесообразно объединить усилия для получения максимально точных прогнозов.

В части II (#litres_trial_promo) мы опишем роль прогнозов в качестве вводных для принятия решений и объясним значение еще одной составляющей, пока недооцененной в сфере ИИ, – суждений. Прогнозы помогают принимать решения, снижая неопределенность, а благодаря суждениям выявляется ценность. В экономической терминологии суждением называется определение окупаемости, целесообразности, дохода и прибыли. Самое значительное свойство прогностических машин состоит в том, что они повышают ценность суждения.

В части III (#litres_trial_promo) перейдем к практике. Прогностические машины оснащены инструментами ИИ в соответствии с конкретными задачами. Мы опишем шаги, помогающие определить, когда создание (или покупка) инструментов ИИ максимально повысит доход. Иногда такие инструменты идеально укладываются в рабочий процесс, но бывает, что побуждают изменить его. Также мы познакомим вас с важным подспорьем для уточнения ключевых требований к инструментам – «шаблоном ИИ».

В части IV (#litres_trial_promo) вернемся к стратегии. Как в описанном нами эксперименте с Amazon, иногда ИИ настолько масштабно влияет на экономику задачи, что преобразует компанию или промышленность. Тогда он становится краеугольным камнем стратегии организации. В результате воздействия на стратегию ИИ переключает на себя внимание высшего руководства помимо менеджеров продукта и инженеров.

Как правило, заранее предусмотреть степень влияния ИИ на стратегию нельзя. Например, немногие, опробовав инструменты поиска Google, предсказывали, что они преобразуют медиаиндустрию и лягут в основу самых успешных компаний планеты.

Помимо возможностей получения прибыли ИИ несет системные риски, способные повлиять на бизнес. Все сосредоточены на рисках ИИ для человечества, но мало кто обращает внимание на опасность ИИ для организаций. К примеру, некоторые прогностические машины, обучаемые на полученных от человека данных, заодно усваивают ненужные отклонения и стереотипы.

Книгу завершает часть V (#litres_trial_promo), в которой мы отвечаем на вопросы о широком влиянии ИИ на общество и касаемся пяти основных спорных тем.

1. Сохранятся ли рабочие места? Ответим: да.

2. Усугубится ли проблема неравенства? Вероятно.

3. Будут ли несколько крупнейших компаний контролировать весь мир? Зависит от обстоятельств.

4. Страны погрузятся в политику «гонки уступок», лишат нас приватности и безопасности ради конкурентного преимущества отечественных компаний? Некоторые – да.

5. Наступит ли конец света? До него достаточно времени, чтобы успеть с пользой применить полученную информацию.

Выводы

• Экономика предлагает четкое представление о влиянии удешевления прогнозов на бизнес. Прогностические машины будут использоваться как для традиционных (управление запасами и прогнозирование спроса), так и для новых задач (беспилотное управление и машинный перевод). Падение цен на прогнозы повлияет на ценность других вещей, повысит ценность дополняющих факторов (данных, суждения и действий) и снизит ценность эквивалентов (человеческого прогноза).

• Организации могут использовать прогностические машины, внедряя инструменты ИИ с целью выполнения текущей стратегии. Когда инструменты станут мощнее, они изменят саму стратегию. Например, если Amazon сможет прогнозировать желания покупателей, то перейдет с модели «сначала оплата, потом доставка» на модель «сначала доставка, потом оплата» – будет доставлять товары до размещения заказов. Такой переход преобразит организацию.

• В результате новых стратегий, разработанных с учетом преимуществ ИИ, мы встанем перед фактом его влияния на общество. Наш выбор будет зависеть от потребностей и предпочтений и наверняка в разных странах и культурах окажется разным. Мы разделили книгу на пять частей в соответствии с уровнями влияния ИИ и от основы пирамиды – прогнозов – начнем подниматься выше: прогностика, принятие решений, инструменты, стратегия и общество.

Часть I. Прогностика

Глава 1. Волшебство прогностических машин

Что общего у Гарри Поттера, Белоснежки и Макбета? Их действиями движет пророчество, то есть прогноз. Даже в «Матрице», фильме о разумных машинах, сюжетом управляет вера персонажей в предсказания. Повсюду, от религии до сказок, знание будущего имеет решающее значение. Предсказания влияют на наше поведение и принятие решений.

Древние греки чтили своих многочисленных оракулов за пророческие способности, но их предсказания иногда бывали такими туманными, что сбивали с толку вопрошающих. Например, однажды царь Лидии Крёз задумал рискованный штурм Персидской империи. И поскольку не доверял полностью ни одному оракулу, решил проверить каждого, прежде чем просить совета о нападении на Персию. Ко всем оракулам он разослал гонцов. На сотый день они должны были спросить, что Крёз делает прямо сейчас. Ближе всех к истине оказался оракул из Дельф, поэтому царь обратился за пророчеством к нему[17 - В качестве напоминания о том, как важно правильно интерпретировать прогноз: дельфийский оракул предсказал, что великая империя будет уничтожена, если царь атакует. Воодушевленный Крёз напал на Персию, но, к его удивлению, Лидийская империя рухнула. Прогноз в принципе оказался верным, просто неправильно понятым.].

Как и в примере с Крёзом, прогноз может касаться и настоящего. Мы предполагаем, правомерная или мошенническая операция проводится по кредитной карте, злокачественная опухоль на снимке или доброкачественная, в камеру телефона смотрит владелец iPhone или посторонний человек.

Слово «прогноз» происходит от греческого слова ?????????, буквально означающего «предузнавание» (то есть знание того, что произойдет), но в современном понимании это скорее способность видеть скрытую информацию как в будущем, так и в прошлом и настоящем. Наверное, самый известный символ магического предсказания – хрустальный шар. И хотя в нашем представлении он связан с гадалками, обещающими финансовое процветание или успех в любви, в книге Фрэнка Баума «Волшебник страны Оз» Дороти с его помощью видит, что делает ее тетя Эм в настоящем. Все это приводит нас к определению прогностики.

Волшебство прогностики

Несколько лет назад Ави Голдфарб обнаружил, что в казино Лас-Вегаса с его кредитной карты снята крупная сумма. Но он в это время был совершенно в другом месте. А в Лас-Вегас ездил лишь однажды и очень давно – азартные игры не вписываются в его экономическое мировоззрение. После продолжительных переговоров банк отменил транзакцию и выдал новую карту.

Недавно неприятность повторилась. Кто-то снова сделал покупку по кредитной карте Ави. Но на этот раз он даже не успел увидеть транзакцию, так что ему не пришлось сто раз описывать ситуацию вежливому, но строгому сотруднику службы поддержки. Ави сообщили по телефону о подозрительной операции по карте и что уже выслали новую по почте.

Банк совершенно правильно заключил, исходя из потребительских привычек Ави и тонны другой информации, что транзакция мошенническая. И был настолько уверен в этом, что даже не стал блокировать карту до выяснения обстоятельств.

Вместо этого у Ави, как по волшебству, появилась другая карта, для чего он и пальцем не шевельнул. Конечно, хрустального шара у банка нет, но есть данные и надежная прогностическая машина. Повышение качества прогнозов позволило снизить риск мошенничества и одновременно, как выразился президент MasterСard по вопросам безопасности Аджай Бхалла, «избавить клиентов от ошибочного отклонения транзакций»[18 - MastercardRolls Out Artificial Intelligence across Its Global Network // Mastercard press release. 2016. November 30 // https://newsroom.mastercard.com/press-releases/mastercard-rolls-out-artificial-intelligence-across-its-globalnetwork/ (https://newsroom.mastercard.com/press-releases/mastercard-rolls-out-artificial-intelligence-across-its-globalnetwork/).].

В сфере бизнеса применение прогностики полностью соответствует ее определению как процесса заполнения информационных пробелов. Эмитентам необходимо знать, не была ли недавняя транзакция мошеннической. Для прогноза по конкретной операции используются данные о совершенных мошеннических (и правомерных) переводах денежных средств. В случае подтверждения неправомерности эмитент может заблокировать карту, а если прогноз сделан достаточно быстро, то успеет отменить и текущую транзакцию.

Данный принцип – когда из имеющейся информации выводится отсутствующая – положен в основу главных современных достижений ИИ в области перевода. Об этой цели говорилось еще в предании тысячелетней давности о Вавилонской башне; цивилизация шла к ней на протяжении всей своей истории. Раньше для разработки автоматических переводчиков нанимали лингвиста (владеющего каким-либо языком), чтобы он изложил грамматические правила в приемлемой для программирования форме[19 - Geitgey, A. Machine Learning Is Fun, Part 5: Language Translation with Deep Learning and the Magic of Sequences // Medium. 2016. August 21 // https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translationwith-deep-learning-and-the-magic-of-sequences-2ace0acca0aa/ (https://medium.com/%40ageitgey/machine-learning-is-fun-part-5-language-translationwith-deep-learning-and-the-magic-of-sequences-2ace0acca0aa/).]. Таким образом, например, если требовалось перевести фразу с испанского языка, слова не просто последовательно переводились, но существительные и прилагательные менялись местами, чтобы в итоге получилось грамотно составленное и понятное предложение.

Недавний рывок в развитии ИИ позволил поместить переводы в сферу прогностических задач. После этого качество Google Translate прямо-таки чудесным образом изменилось.

Рассказ Хемингуэя «Снега Килиманджаро» начинается такими словами: «Килиманджаро – покрытый вечными снегами горный массив высотой в 19 710 футов, как говорят, высшая точка Африки». В ноябре 2016 года профессор Юн Рекимото, ученый, IT-специалист из Токийского университета, переводил рассказ в Google-переводчике с японского языка на английский и получил такой результат: «Килиманджаро высота 19 710 футов гора снежный покров, и сказал самая высокая в Африке». На следующий день перевод выглядел уже по-другому: «Килиманджаро гора высотой 19 710 футов покрыта снегом и считается самой высокой в Африке».

Разница невероятная! Прошла всего одна ночь, а вместо корявого автоматического перевода получилось складное предложение, словно вместо недоучки работу делал человек, одинаково хорошо владеющий обоими языками.

Конечно, следует признать, что автору перевода до Хемингуэя далеко, но налицо явный прогресс. Вавилон возродился. И это не случайная перемена и не сбой: Google перекроила машинный переводчик с учетом недавних достижений в области ИИ, о которых мы рассказываем. Если быть точнее, Google-переводчик базируется на глубоком обучении повышению точности прогнозов.

Перевод заключается в определении японских эквивалентов английских слов и выражений. Прогнозируемые отсутствующие данные – это японские слова и их грамматический порядок. Если на основании данных иностранного языка составлять алгоритм слов и их правильный порядок на известном языке, то перевод получается читабельным. А если сделать все точно, то не всегда можно догадаться, что это перевод.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 10 форматов)