

А. П. Волощенко

С. П. Тарасов

П. П. Пивнев

Нелинейные волновые процессы

учебное пособие

УДК 534.222 ББК 32.875

B686

Печатается по решению кафедры электрогидроакустической и медицинской техники Института нанотехнологий, электроники и приборостроения Южного федерального университета (протокол № 21 от 5 февраля 2020 г.)

Репензенты:

начальник отдела, главный конструктор АО «НИИП им. В. В. Тихомирова», кандидат технических наук А. В. Скнаря генеральный директор ООО «УльтраНК», кандидат технических наук И. Г. Деренский

Волощенко, А. П.

В686 Нелинейные волновые процессы: учебное пособие / А. П. Волощенко, С. П. Тарасов, П. П. Пивнев; Южный федеральный университет. – Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2020. – 114 с.

ISBN 978-5-9275-3572-9

В учебном пособии изложены результаты теории и практики нелинейных акустических волн, а также сведения об основных нелинейных характеристиках, сопровождающих распространение этих волн. Приведены примеры и задачи по расчету характеристик нелинейных параметрических антенн.

Пособие предназначено для студентов, обучающихся по направлениям 12.04.01 «Приборостроение», 12.04.04 «Биотехнические системы и технологии», а также научных работников по специальностям 01.04.06 «Акустика» и 05.11.06 «Акустические приборы и системы».

УДК 534.222 ББК 32.875

ISBN 978-5-9275-3572-9

- © Южный федеральный университет, 2020
- © Волощенко А. П., Тарасов С. П., Пивнев П. П., 2020
- © Оформление. Макет. Издательство Южного федерального университета, 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
1. УРАВНЕНИЯ ГИДРОДИНАМИКИ И ЗАКОНЫ COXPA- НЕНИЯ	1
1.1. Уравнение Навье – Стокса. Уравнение непрерывности	1
1.2. Уравнение состояния	1
1.3. Закон сохранения импульса. Радиационное напряжение	1
2. УРАВНЕНИЯ НЕЛИНЕЙНОЙ АКУСТИКИ. РАСПРОСТРА-	
НЕНИЕ НЕЛИНЕЙНЫХ ВОЛН	2
2.1. Числа Маха и Рейнольдса. Малые параметры	2
2.2. Уравнение нелинейной акустики с точностью до квадратич-	
ных членов	2
2.3. Метод медленно изменяющегося профиля. Уравнение Хох-	
лова – Заболотской – Кузнецова для звуковых пучков	2
2.4. Плоские нелинейные волны	2
2.4.1. Уравнение Бюргерса	2
2.4.2. Решение уравнения Бюргерса для малых чисел Рейнольдса	2
2.4.3. Решение уравнения Бюргерса. Эффект «насыщения»	2
2.4.4. Развитие нелинейных эффектов при больших числах	
Рейнольдса	2
2.4.5. Распространение нелинейных волн после образования	
разрыва	3
2.4.6. Гармонический состав волн конечной амплитуды	3
2.4.7. Затухание волн конечной амплитуды	3
2.4.8. Отражение волны конечной амплитуды от границы	
раздела	3
2.5. Сферические и цилиндрические одномерные волны конеч-	
ной амплитуды	3
2.6. Волны в средах с дисперсией	3
2.6.1. Уравнение Кортевега – де Вриза	4
2.6.2. Метод последовательных приближений для уравнения КДВ	4
2.6.3. Стационарное решение уравнения КДВ. Солитоны	4
2.6.4. Волны на поверхности жидкости конечной глубины	4

Содержание

3. ПАРАМЕТРИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ	47
4. ПАРАМЕТРИЧЕСКИЕ АНТЕННЫ	52
4.1. Модель излучающей и приемной антенн. Общие сведения	52
4.2. Теория излучающей параметрической антенн	55
4.2.1. Решение уравнения ХЗК методом последовательных	
приближений	55
4.2.2. Осевое распределение амплитуды и фазы волны раз-	
ностной частоты	59
4.2.3. Диаграмма направленности	61
4.2.4. Амплитудные характеристики	64
4.3. Параметрическая антенна в режиме излучения сложных	
сигналов	65
4.3.1. Передача ЛЧМ-сигналов	66
4.3.2. Самодетектирование акустических импульсов	67
4.4. Влияние плоских отражающих границ	68
4.4.1. Особенности расчета поля ВРЧ при отражении	68
4.4.2. Анализ характеристик излучающей антенны при отра-	
жении	70
4.5. Устройство излучающих параметрических антенн и некото-	
рые особенности измерения их характеристик	73
4.6. Приемные параметрические антенны	74
4.7. Применение параметрических антенн	77
5. ЗАДАЧИ ПО РАСЧЕТУ ОСНОВНЫХ ХАРАКТЕРИСТИК	
ПАРАМЕТРИЧЕСКОЙ АКУСТИЧЕСКОЙ АНТЕННЫ	79
5.1. Общие сведения	79
5.2. Соотношения для аналитического расчета акустического	
тракта параметрического излучателя	82
5.3. Расчет характеристик параметрического излучателя по но-	
мограммам	83
5.3.1. Основные параметры нелинейного акустического излу-	
чателя	84
5.3.2. Некоторые особенности расчета и вопросы оптимиза-	
ции параметрических излучателей	85

Содержание

5.3.3. Порядок расчета звукового давления ВРЧ в ближней	
зоне на оси излучателя по номограммам	88
5.3.4. Порядок расчета звукового давления ВРЧ в дальней	
зоне $(x > L_{\rm D})$ на оси излучателя с учетом затухания по но-	
мограммам	90
5.3.5. Порядок расчета ширины характеристики направлен-	
ности параметрического излучателя	92
5.4. Пример численного расчета типового задания	94
5.4.1. Расчет максимального уровня ВРЧ и амплитудно-ча-	
стотной характеристики параметрического излучателя	95
5.4.2. Расчет осевого распределения звукового давления пара-	
метрического излучателя	98
5.4.3. Расчет ширины характеристики направленности сиг-	
нала разностной частоты по уровню 0,7 в рабочем диапа-	
зоне частот	100
5.5. Задания по расчету акустического тракта нелинейных пара-	
метрических излучателей	101
OV KUROHERIYE	108
ЗАКЛЮЧЕНИЕ	108
СПИСОК ЛИТЕРАТУРЫ	110

1. УРАВНЕНИЯ ГИДРОДИНАМИКИ И ЗАКОНЫ СОХРАНЕНИЯ

В акустике длина волны намного больше, чем характерные межатомные расстояния. Поэтому используются уравнения механики сплошных сред. Основные уравнения механики сплошных сред нелинейны, они имеют разный вид в эйлеровых координатах. В эйлеровых координатах движение описывается в координатах неподвижного пространства. В лагранжевой системе координаты рассматриваемых точек связаны с движущимися элементами среды [1, 24, 28, 29, 31, 32, 34, 35].

1.1. Уравнение Навье – Стокса. Уравнение непрерывности

Уравнения гидродинамики в эйлеровых координатах имеют следующий вид:

1. Уравнение движения Навье - Стокса

$$\rho \frac{\partial \vec{v}}{\partial t} + \rho(\vec{v} \nabla) \vec{v} = -\nabla p + \eta \Delta \vec{v} + \left(\xi + \frac{\eta}{3}\right) \nabla \nabla \vec{v}. \tag{1}$$

2. Уравнение непрерывности

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0. \tag{2}$$

Здесь ρ — плотность среды; \vec{v} — скорость; p — давление; η , ξ — соответственно сдвиговая и объемная вязкость среды.

Система (1)–(2) — это четыре уравнения для пяти неизвестных (ρ, p, v_x, v_y, v_z) . Система неполная и должна быть дополнена уравнением состояния.

Иногда систему (1)—(2) дополняют уравнением сохранения энергии, учитывая, что количество тепла, выделяемое в системе в результате диссипативных процессов, равно произведению изменения энтропии S на температуру среды T:

$$\rho T \left[\frac{\partial S}{\partial t} + (\vec{v} \nabla) S \right] = \frac{\eta}{2} \left[\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} - \frac{2}{3} \delta_{ik} (\nabla \vec{v}) \right]^2 + \xi (\nabla \vec{v})^2 + \chi \nabla \nabla T, \tag{3}$$

где χ – коэффициент теплопроводности; δ_{ik} – символ Кронекера.

Добавление уравнения (3) не улучшает ситуацию разрешимости системы уравнений (1)—(2), так как добавляются еще две неизвестные функции: энтропия — S и температура T. Требуется учесть еще термодинамические условия движения жидкости, из которых может быть получено уравнение состояния. Система уравнений (1)—(3) нелинейна.

1.2. Уравнение состояния

Уравнение состояния для газов и жидкостей описывает зависимость между плотностью ρ , давлением p и энтропией S в среде.

В звуковой волне при быстрых изменениях плотности не успевает происходить процесс переноса тепла между участками сжатия и растяжения. В этом случае движение изоэнтропично.

Для газов при этом можно пользоваться адиабатическим уравнением состояния Пуассона:

$$p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma},\tag{4}$$

где p_0 – невозмущенное давление; ρ_0 – невозмущенная плотность среды; $\gamma = C_p/C_v$ – отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме.

Если нужно учесть поглощение звука, то вместо выражения (4) в одномерном случае может быть использовано модельное уравнение, дополненное диссипативным членом:

$$p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma} - b \frac{\partial v}{\partial z}.$$
 (5)

Здесь $b = \frac{4}{3}\eta + \xi + \chi(1/C_v - 1/C_p)$ — диссипативный коэффициент среды, учитывающий кроме вязкости еще и теплопроводность. Добавочное диссипативное напряжение в уравнении (5) пропорционально $\sim \partial v/\partial z$, так как вязкость и теплопроводность проявляются, когда есть градиент скорости.

Уравнение (4) справедливо для газов. Теория жидкого состояния до конца не разработана и не позволяет получить точное уравнение состояния. Однако имеется довольно много полуэмпирических и эмпирических уравнений состояния, удовлетворительно описывающих экспериментальные

данные. В гидроакустике часто используют эмпирическое уравнение состояния Тэта:

$$P = P_0 \left[\left(\frac{\rho}{\rho_0} \right)^{\gamma_0} - 1 \right], \tag{6}$$

где P — избыточное давление; P_0 и γ_0 — эмпирические постоянные. P_0 иногда называют внутренним давлением. Внутреннее давление в жидкостях порядка 10^9 Па, что связано с сильным межмолекулярным давлением в жидкости.

Таблица 1 Значение параметра у₀ для жидкостей

Жидкость	γο
Азот жидкий	4,2
Ацетон	10,0
Бензин А-70	11,2
Вода	6,1
Глицерин	10,4
Скипидар	10,5
Спирт метиловый	9,7
Спирт этиловый	10,8
Трансформаторное масло	7,5

Для полного давления в жидкости $(P+P_0)$ из (6) следует аналог уравнения (4). Поскольку в уравнениях нелинейной акустики будут встречаться в основном производные от уравнения (6), то далее не будет делаться различие между уравнениями (6) и (4), даже если берется лишь избыточное давление. Поэтому все последующие результаты, в которых используется γ , могут быть применены для жидкостей $\gamma \to \gamma_0$. В дальнейшем для газов и жидкостей будет использоваться одно и то же обозначение нелинейного параметра γ . Значения γ_0 для некоторых жидкостей приведены в табл. 1, откуда следует, что параметр γ_0 для различных жидкостей меняется незначительно. В настоящее время имеется ряд теоретических и экспериментальных работ, показывающих, что при насыщении жидкости или пластмасс пузырьками какого-либо газа параметр γ может быть увеличен на 2 или 3 порядка [1, 24, 28, 29, 31, 32, 34, 35].

1.3. Закон сохранения импульса. Радиационное напряжение

В звуковом поле возникают не зависящие от времени радиационные напряжения. В отличие от давления напряжение характеризуется тензорной величиной. По тензору напряжений T_{ij} можно определить компоненты вектора силы $F_i = T_{ij}n_i$, где n_i – компонента единичного вектора нормали к площадке, на которую действует сила. Таким образом, величина силы на единицу площади в этом случае зависит от ориентации выбранной площадки (в случае скалярного давления, как известно, такой зависимости нет). Несмотря на то, что в звуковом поле возникают именно радиационные напряжения и, следовательно, на предметы, помещенные в поле, действуют радиационные силы (т.е. векторные величины), до сих пор в акустической литературе широко используется старый термин «радиационное давление».

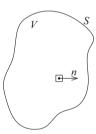


Рис. 1. К расчету изменения импульса в объеме V с поверхностью S в потоке

Рассмотрим силы, действующие на некоторый объем V (рис. 1), находящийся в потоке. Пренебрегая вязкостью, уравнения (1) и (2) запишем в виде

$$\rho \frac{\partial v_i}{\partial t} + \rho v_j \frac{\partial v_i}{\partial x_j} = -\frac{\partial p}{\partial x_i},\tag{7}$$

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_i)}{\partial x_i} = 0, \tag{8}$$

где суммирование, как обычно, проводится по дважды повторяющимся индексам. Умножая (8) на v_i и складывая с (7), получим

$$\frac{\partial(\rho v_{ij})}{\partial t} + \frac{\partial}{\partial x_{i}} \left[\rho v_{i} v_{j} + p \delta_{ij} \right] = 0. \tag{9}$$

Интегрируя (9) по объему V и преобразуя для дивергентной части объемный интеграл в поверхностный, получим закон сохранения импульса:

$$\frac{\partial}{\partial t} \oiint \rho v_i dV = - \oiint T^0_{ij} n_j dS, \tag{10}$$

где $T_{ij}^0 = \rho v_i v_j + p \delta_{ij}$, n_j – компоненты вектора внешней нормали к поверхности S объема V. Левая часть (10) представляет собой изменение импульса в объеме V, которое определяет силу F_i , действующую на этот объем. Следовательно,

$$F_i = - \oiint T_{ij}^0 n_j dS. \tag{11}$$

Тензор T^0_{ij} носит название тензора плотности потока импульса. В вязкой среде $T_{ij} = T^0_{ij} - \sigma'_{ij}$, $\sigma'_{ij} = \eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial v_i}{\partial x_i} \right) + \xi \delta_{ij} \frac{\partial v_i}{\partial x_i} - \xi \delta_{ij} \frac{\partial v_i}{\partial x_i}$ тензор вязких напряжений. В звуковой волне ρ , ν и р изменяются в пространстве и во времени. Постоянная радиационная сила определяется усреднением (11) (или соответствующего условия для вязкой среды) за период

$$\bar{F}_i = - \oiint \bar{T}_{ij}^0 n_i dS. \tag{12}$$

Радиационные напряжения возникают в звуковом поле вместе с полем. Однако это не означает, что они всегда сопровождаются возникновением радиационных сил. Для иллюстрации рассмотрим простейший пример плоской волны, распространяющийся в невязкой жидкости вдоль оси z (рис. 2). Определим радиационную силу, действующую на объем V, в виде кубика, две поверхности которого S_3 и S'_3 нормальны к оси z. В соответствии с (12) действующая на боковые поверхности S_1 , S'_1 , S_2 , S'_2 суммарная радиационная сила равна нулю из-за попарной компенсации сил на поверхности $S_1 - S'_2$ и $S_1 - S'_2$ (нормали к этим поверхностям направлены противоположно). Аналогично сила, действующая S'_3 , компенсируется силой, действующей на S_3 :

$$\oint \bar{T}_{33}^0 n_3 dS_3 = - \oint \bar{T}_{33}^0 n_3 dS_3'.$$
(13)

Общая сила, действующая на этот объем, равна нулю. Радиационные силы проявляются в тех случаях, когда в объеме по тем или иным причинам возникает изменение среднего по времени импульса. Это изменение может быть вызвано, например, поглощением звука (при этом из-за поглощения в объеме V интегралы в (13) не будут равны), рассеянием звука на препятствиях, односторонним излучением звука и т.д. Видно, что, например, в

плоской волне радиационное давление на плоскость, ориентированную нормально к направлению распространения звука, зависит от коэффициента отражения от этой плоскости: при нулевом коэффициенте отражения (полностью поглощающей плоскости) это давление будет в два раза меньше, чем при полностью отражающей звук поверхности, так как в последнем случае изменение импульса определяется как падающей, так и отраженной волной. Из (11) видно, что в звуковом поле радиационная сила в невязкой среде, действующая на единицу полностью поглощающей звук поверхности тела, имеет вид

$$P_i = \overline{\rho v_i v_i} n_i + \overline{p} \delta_{ij} n_j, \tag{14}$$

или в векторных обозначениях:

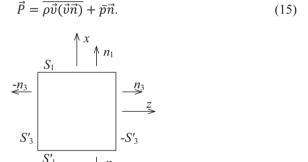


Рис. 2. Попарная компенсация радиационных сил, действующих на поверхность кубика, в плоской волне, распространяющейся вдоль оси z в невязкой среде

Часто \vec{P} называют просто радиационным давлением, не говоря об условиях его возникновения в звуковом поле, что может привести к неправильным выводам. Поэтому следует подчеркнуть еще раз, что (14) и (15) — это не реальное радиационное давление на какое-либо препятствие, а давление, которое могло бы возникнуть на поверхности гипотетического тела, полностью поглощающего звук. Из (15) формально следует, что радиационное давление равно среднему по времени давлению в звуковой волне только в случае абсолютно жесткого твердого тела (нормальная компонента скорости $(\vec{v}\vec{n})$), причем, согласно сказанному ранее, это тело еще

должно полностью поглощать звук. Это противоречивые требования, так как в такое тело потока звуковой энергии не будет. Поэтому равенство радиационного давления среднему по времени звуковому давлению в эйлеровой системе координат практически никогда не выполняется.

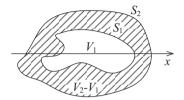


Рис. 3. К теореме определения радиационной силы, действующей на объем V_1 , по полю рассеяния звука объемом V_2 в недиссипативной среде

В реальных ситуациях зачастую бывает трудно определить для тела сложной формы со сложными импедансными условиями на границе интеграл по поверхности тела в выражении (12). В недиссипативной среде в этом необходимости нет: можно определить интеграл не на поверхности S_1 (см. рис. 3), а на некоторой другой поверхности S_2 , ограничивающей больший объем V_2 . Если в объеме $V_2 - V_1$ потери импульса нет, то

$$\frac{\partial}{\partial t} \iiint \rho v_i d(V_2 - V_1) = 0 = - \oiint T_{ij}^0 n_j dS_2 + \oiint T_{ij}^0 n_j dS_1.$$
 (16)

(разные знаки перед интегралами в (16) стоят потому, что для внутреннего объема берется внутренняя нормаль) и, следовательно:

$$\oiint \bar{T}_{ij}^0 n_j dS_1 = \oiint \bar{T}_{ij}^0 n_j dS_2, \tag{17}$$

т.е. сила, действующая на тело V_1 , равна силе, действующей на весь объем V_2 . Эта теорема позволяет по дальнему полю рассеяния звука объектом определить радиационную силу, при этом используются асимптотические решения для рассеянной волны. Естественно, что эта теорема справедлива в отсутствие диссипации в объеме $V_2 - V_1$, а также в том случае, когда в этом объеме нет дополнительных рассеивателей.

Радиационное давление – квадратичная величина относительно переменных поля. При расчете радиационного давления из (14) необходимо принимать во внимание величины второго порядка малости. Для плоской бегущей волны, например, из (14) следует