

V.S. Pilidi

ANALYTIC GEOMETRY

textbook

UDC 514.122+514.123(075.8)
BBC 22.151.5

Published by decision of the educational-methodical commission of the I. I. Vorovich Institute of Mathematics, Mechanics, and Computer Science of the Southern Federal University (minutes No. 9 dated September 8, 2020)

Reviewers:

Doctor of physical and mathematical sciences, professor of the Department of Applied Mathematics of the Platov South-Russian State Polytechnic University (NPI), Professor A.E. Pasenchuk;

Candidate of physical and mathematical sciences, associate professor of the Department of Algebra and Discrete Mathematics of the Southern Federal University, Associate professor A.V. Kozak

Pilidi, V. S.
P32 Analytic geometry : textbook / V.S. Pilidi ; Southern Federal University. - Rostov-on-Don ; Taganrog : Southern Federal University Press, 2020. 195 p.

ISBN 978-5-9275-3576-7

The book contains material on analytic geometry included in the university discipline "Algebra and Geometry". In addition to detailed presentation of theoretical material, there are given problems in the volume that is quite sufficient both for practical classes and for students' independent work. Most problems are provided with detailed solutions. The book is addressed to students of the educational program "Theoretical Computer Science and Information Technologies" and can also be used by students of other educational programs.

Chapter 1

Straight lines on the plane

1.1 Coordinates on the plane

1.1.1 Definition of coordinates

The place of a point M on a straight line is fully determined by its distance $O M$ from a fixed point O on the line, if we know on which side of the point O is the point M (right or left), see Fig. 1.

Fig. 1. Coordinate axis.

It is assumed that on this line there is used some unit in which the distances are measured. The fixed point O is called the origin. The distance $O M$ of the point $M \neq O$, taken with the sign "plus" if M lies to the right of the origin and with the sign "minus" when M lies to the left from O, is called the coordinate of M.The coordinate of the point O is set to zero. In this case, an arrow is added to the line indicating the positive direction on it.

Let us select, on a given line, an arbitrary origin O, a unit of measure, and a definite positive direction. Then any real number, regarded as the coordinate of a point M, fully determines the position of M on this line. And conversely, every point on the line has one and only one coordinate. In general case the coordinate of a point is usually denoted by the letter x, which, as we told above, may be any real number. In this case we write $M(x)$. For instance, $A(-2), B(1), C(2)$ (Fig. 1).

Such a line is called the coordinate axis. The distance between the points $M_{1}\left(x_{1}\right)$ and $M_{2}\left(x_{2}\right)$ on the coordinate axis is found by the formula $\left|M_{1} M_{2}\right|=\left|x_{2}-x_{1}\right|$. The midpoint of the segment $M_{1} M_{2}$ is the point $M\left(\frac{x_{1}+x_{2}}{2}\right)$.

To locate a point on the plane that is, to determine its position, there is used the following well known approach. We suppose that there is defined a unit to measure distances on the plane. We draw two lines at right angles on the plane, the point of intersection of these lines is called the origin and is usually denoted by the letter O. Then we define positive directions on each of the lines denoting these directions by arrows (see Fig. 2, the points on the axes match unit steps).

Fig. 2. Coordinates on the plane

We emphasize that on the both lines there is an origin, a unit of measure and a positive direction. Therefore, there are defined coordinates on the both lines. These two lines are called the axes of coordinates. To distinguish these lines one of them is called the axis $O x, x$-axis, or axis of abscissas, and the other is called the axis $O y$, the y-axis, or axis of ordinates.

Now we take an arbitrary point A on the plane, and project it on each axis, i.e. we drop the perpendiculars $A M$ and $A N$ from A on the axes. The coordinate x of the point M on the x-axis is called the abscissa of A. The coordinate y of the point N on the y-axis is called the ordinate of A. The position of the point A on the plane is fully determined if its abscissa x and its ordinate y are both given. The two numbers x, y are also called the coordinates of the point A. This fact is denoted as follows: $A(x, y)$. In some cases there is used the notation (x, y) without denoting the point itself. For example, it is possible to say: "let us take the points $(1,2)$ and $(-4,3)$ ".

As a consequence of the correspondence given above, we can state that every point on the plane has two definite real numbers as coordinates; conversely, every pair of real numbers defines one and only one point of the plane.

The plane equipped with the coordinate system is called the coordinate plane. The coordinate system we are using is called the Cartesian (or rectangular) coordinate system. The concept of Cartesian coordinates may be generalized to the case when the axes are not necessarily perpendicular to each other, and there are different units along the axes. In the following we don't use such a generalization.

The axes divide the plane into four parts which are called the first, second, third and fourth quadrants (Fig. 3). Quadrants are also numbered with Arabic numerals (1, 2, 3, 4) or Roman numerals (I, II, III, IV) and the numbering is counterclockwise. The inequalities defining the quadrants are given below.

$$
\text { Quadrant I: } \quad x>0, y>0 ; \quad \text { quadrant II: } \quad x<0, y>0 \text {; }
$$

quadrant III: $\quad x<0, y<0 ; \quad$ quadrant IV: $x>0, y<0$.

Fig. 3. Quadrants on the plane

1.1.2 Distance between two points

Let us consider two points $M_{1}\left(x_{1}, y_{1}\right)$ and $M_{2}\left(x_{2}, y_{2}\right)$ on the plane. To find the distance d between these points, we drop perpendiculars $M_{1} P_{1}$, $M_{2} P_{2}$ on the x-axis and perpendiculars $M_{1} Q_{1}, M_{2} Q_{2}$ on the y-axis (Fig. 4).

We get the right triangle $\Delta M_{1} M_{2} R$ with the legs $M_{1} R, M_{2} R$ and the hypotenuse $M_{1} M_{2}$. From the equalities

$$
M_{1} R=P_{1} P_{2}=\left|x_{2}-x_{1}\right|, \quad M_{2} R=Q_{1} Q_{2}=\left|y_{2}-y_{1}\right|,
$$

and the Pythagorean theorem we get that

$$
\begin{gathered}
d^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{gathered}
$$

The distance d between the points $M_{1}\left(x_{1}, y_{1}\right)$ and $M_{2}\left(x_{2}, y_{2}\right)$ is obtained by the formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

Fig. 4. Distance between two points

1.1.3 Midpoint of a Segment

Let us take two points $A\left(a_{1}, a_{2}\right)$ and $C\left(c_{1}, c_{2}\right)$ on the coordinate plane. Coordinates of the midpoint B of the segment $A C$ are the arithmetic means of the corresponding coordinates of A and C, that is, if $B\left(b_{1}, b_{2}\right)$ then

$$
b_{1}=\frac{a_{1}+c_{1}}{2}, \quad b_{2}=\frac{a_{2}+c_{2}}{2} .
$$

To prove the first relation we drop the perpendiculars $A P, B Q$ and $C R$ on the x-axis (see Fig. 5). Then the point Q becomes the midpoint of the segment $P R$. On the x-axis the points P and R have the following coordinates: $P\left(a_{1}\right)$ and $R\left(c_{1}\right)$. Therefore the point Q has the coordinate $\frac{a_{1}+c_{1}}{2}$, and this value is the first coordinate of the point B. Similarly we get that the second coordinate of the point B is $\frac{a_{2}+c_{2}}{2}$, so $B\left(\frac{a_{1}+c_{1}}{2}, \frac{a_{2}+c_{2}}{2}\right)$.

The midpoint of the segment $A C$ where $A\left(a_{1}, a_{2}\right), C\left(c_{1}, c_{2}\right)$ is the point $B\left(\frac{a_{1}+c_{1}}{2}, \frac{a_{2}+c_{2}}{2}\right)$.

Fig. 5. Midpoint of a segment

1.1.4 Vectors on the coordinate plane

A vector is a directed segment of a line, that is, a segment for which it is indicated which of its boundary points is the beginning point and which is the ending point. The vector with the beginning point A and the ending point B is usually denoted by $\overrightarrow{A B}$. The points A and B are also called the tail and head of the vector $\overrightarrow{A B}$, respectively. Vectors are sometimes indicated by small Latin letters with the arrow (sometimes with the dash) above them, for example \vec{a} or \bar{a}. Another common use is to mark vectors in bold characters: a. The length $|\overrightarrow{A B}|$ of the vector $\overrightarrow{A B}$ is defined by the equality $|\overrightarrow{A B}|=|A B|$, i.e. it is the length of the segment $A B$. In the special case when the points A and B coincide then the vector $\overrightarrow{A B}=\overrightarrow{A A}$ is denoted by $\overrightarrow{0}$ (or $\overline{0}$ and $\mathbf{0}$) and is called the zero vector. The length of the zero vector equals zero and its direction is assumed to be undetermined. It is assumed that the vector may be displaced parallel to itself. It means that if the vectors $\overrightarrow{A B}$ and $\overrightarrow{A_{1} B_{1}}$ have equal lengths, i.e. $|\overrightarrow{A B}|=\left|\overrightarrow{A_{1} B_{1}}\right|$ and the same directions they are considered to be equal (see Fig. 6).

Fig. 6. Equal vectors: $\vec{a}=\vec{b}=\vec{c}$

Vectors lying on parallel straight lines are called collinear ${ }^{1}$. The zero vector is considered to be collinear with any vector.

Fig. 7. Collinear vectors

Remark. It should be noted that the binary relation "two vectors are collinear" in the case of vectors on the plane (and in the case of vectors in the space considered below) is not transitive. It means that collinearity of vectors \vec{a} and \vec{b} and collinearity of vectors \vec{b} and \vec{c} do not necessarily

[^0]imply collinearity of vectors \vec{a} and \vec{c}. For example for any vectors \vec{a} and \vec{c} the pairs \vec{a} and $\overrightarrow{0}, \overrightarrow{0}$ and \vec{c} are collinear, while \vec{a} and \vec{c} are not necessarily collinear.

Now we introduce operation with vectors.
Multiplication by a scalar. For a vector \vec{a} and a number λ, the product $\vec{b}=\lambda \vec{a}$ is uniquely determined by the following properties: $|\vec{b}|=$ $|\lambda||\vec{a}|$, if $\vec{a} \neq \overrightarrow{0}$ then \vec{b} has the same direction as \vec{a} if $\lambda>0$ and the opposite direction if $\lambda<0$, if $\vec{a}=\overrightarrow{0}$ or $\lambda=0$ then from the equality given above we get that $\vec{b}=\overrightarrow{0}$ and the question of its direction does not arise.

The numbers that vectors are multiplied by are usually called scalars.

Fig. 8. Multiplication of a vector by a scalar: $\alpha>0, \beta<0$
Addition. Addition of vectors is performed according to the rule indicated in the following figure. This rule is called the parallelogram (or the triangle) rule. The meaning of these words is clear from the following figure.

Fig. 9. Sum of vectors

Subtraction. The difference of the vectors \vec{a} and \vec{b} is the single vector $\vec{c}=\vec{a}-\vec{b}$ such that $\vec{c}+\vec{b}=\vec{a}$.

Fig. 10. Difference of vectors

In the given below definition of scalar product and in some other cases we use such an agreement.

A product containing probably undetermined factors is set to be zero if at least one of the factors being the part of this product takes the zero value.

Scalar product. For any nonzero vectors \vec{a} and \vec{b} there is defined the angle φ between them satisfying the condition $0 \leqslant \varphi \leqslant \pi$. To find this angle we use parallel translation and reduce the vectors to the common initial point. If one of these vectors takes the zero value then this angle is considered undetermined. The scalar product of these vectors is the number denoted by $\vec{a} \vec{b}$ which equals the product $|\vec{a}| \cdot|\vec{b}| \cdot \cos \varphi$. Sometimes the scalar product is also denoted as (\vec{a}, \vec{b}) or $\vec{a} \cdot \vec{b}$ and is called the dot product.

Coordinates of a vector. For the points $A\left(a_{1}, a_{2}\right)$ and $B\left(b_{1}, b_{2}\right)$ on the coordinate plane the coordinates of the vector $\overrightarrow{A B}$ are assumed to be equal $b_{1}-a_{1}$ and $b_{2}-a_{2}$ respectively. This fact is written in the following form: $\overrightarrow{A B}=\left\{b_{1}-a_{1}, b_{2}-a_{2}\right\}$. The operations with the vectors introduced above may be written in the coordinate form as follows: if λ is a number,
$\vec{a}=\left\{a_{1}, a_{2}\right\}, \vec{b}=\left\{b_{1}, b_{2}\right\}$, then

$$
\begin{array}{cl}
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}, & \lambda \vec{a}=\left\{\lambda a_{1}, \lambda a_{2}\right\}, \\
\vec{a}+\vec{b}=\left\{a_{1}+b_{1}, a_{2}+b_{2}\right\}, & \vec{a}-\vec{b}=\left\{a_{1}-b_{1}, a_{2}-b_{2}\right\} .
\end{array}
$$

In order to find conditions of collinearity in the coordinate form, we introduce the following additional agreement: the equality

$$
\begin{equation*}
\frac{A}{B}=\frac{C}{D} \tag{1}
\end{equation*}
$$

means that $A D=B C$. Being the standard fact in the case when the denominators do not vanish, such an agreement makes it possible to consider the expressions of the form (1) in the cases when $B=0$ or $D=0$. For instance the relations

$$
\frac{1}{0}=\frac{2}{0}, \quad \frac{1}{0}=\frac{0}{0}
$$

are valid from this point of view. Of course, "fractions" of this kind define no numerical values. Such an agreement allows to give the collinearity condition in an easy-to-remember form.

Remark. For such "fractions" the usual transitivity property of the equality relation may be violated. For instance we have the following equalities understood in the sense indicated above

$$
\frac{1}{2}=\frac{0}{0}, \quad \frac{0}{0}=\frac{1}{3},
$$

but, of course $\frac{1}{2} \neq \frac{1}{3}$. That is why, speaking below (page 20) about the conditions when two equations define the same straight line, it is said that the relations (7) are equivalent to three equalities.

We consider two vectors $\vec{a}=\left\{a_{1}, a_{2}\right\}$ and $\vec{b}=\left\{b_{1}, b_{2}\right\}$ on the coordinate plane. These vectors are collinear if and only if at least one of the following relations is valid: $\vec{b}=\lambda \vec{a}$ for some scalar $\lambda, \vec{a}=\mu \vec{b}$ for some scalar μ (if $\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \overrightarrow{0}$ then these properties take place simultaneously). Hence we get that the vectors \vec{a} and \vec{b} are collinear if and only if

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}} .
$$

For instance for any vector $\vec{x}=\left\{x_{1}, x_{2}\right\}$ and the zero vector $\overrightarrow{0}=\{0,0\}$ we have the relation which is valid from the "extended" point of view:

$$
\frac{x_{1}}{0}=\frac{x_{2}}{0} .
$$

Using the notion of second order determinant, the condition of collinearity may be given in the following form: the vectors $\vec{a}=\left\{a_{1}, a_{2}\right\}$ and $\vec{b}=\left\{b_{1}, b_{2}\right\}$ are collinear if and only if

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=0
$$

Now we are going to express the scalar product in the coordinate form. First we remind some well known fact from the school math course.

The law of cosines

Fig. 11. For the triangle $\triangle A B C$ the following equality is valid:

$$
|B C|^{2}=|A B|^{2}+|A C|^{2}-2|A B| \cdot|A C| \cdot \cos A
$$

Theorem 1. For the vectors $\vec{a}=\left\{a_{1}, a_{2}\right\}$ and $\vec{b}=\left\{b_{1}, b_{2}\right\}$ on the coordinate plane the following equality holds $\vec{a} \vec{b}=a_{1} b_{1}+a_{2} b_{2}$.

Proof. If $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ then the formula being proved is obviously true, since both sides take zero value.

Now we turn to the case $\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \overrightarrow{0}$. Let φ be the angle between these vectors. We will consider two cases, whether these vectors are collinear or not.

1) Assume that that the vectors \vec{a} and \vec{b} are not collinear. In this case $0<\varphi<\pi$.

Considering the triangle defined by the vectors \vec{a}, \vec{b} and $\vec{a}-\vec{b}$ (see Fig. 12) and applying the law of cosines we get:

$$
|\vec{a}-\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2 \underbrace{|\vec{a}||\vec{b}| \cos \varphi}_{\vec{a} \vec{b}},
$$

whence

$$
\begin{equation*}
\vec{a} \vec{b}=\frac{|\vec{a}|^{2}+|\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2}}{2} \tag{2}
\end{equation*}
$$

Fig. 12.
Simplifying the numerator of the last fraction we get:

$$
\begin{gathered}
|\vec{a}|^{2}+|\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2}=a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-\left(a_{1}-b_{1}\right)^{2}-\left(a_{2}-b_{2}\right)^{2} \\
=a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}-a_{1}^{2}+2 a_{1} b_{1}-b_{1}^{2}-a_{2}^{2}+2 a_{2} b_{2}-b_{2}^{2} \\
=2\left(a_{1} b_{1}+a_{2} b_{2}\right) .
\end{gathered}
$$

Hence from (2) we get: $\vec{a} \vec{b}=a_{1} b_{1}+a_{2} b_{2}$.
2) Assume now that nonzero vectors \vec{a} and \vec{b} are collinear. Then $\varphi=0$ or $\varphi=\pi$. First we will find the value of the product $|\vec{b}| \cos \varphi$.

If $\varphi=0$ then $\vec{b}=\lambda \vec{a}$ for some $\lambda>0,|\vec{b}|=\lambda|\vec{a}|, \cos \varphi=1$, and

$$
\begin{equation*}
|\vec{b}| \cos \varphi=\lambda|\vec{a}| . \tag{3}
\end{equation*}
$$

If $\varphi=\pi$ then $\vec{b}=\lambda \vec{a}$ for some $\lambda<0,|\vec{b}|=|\lambda| \cdot|\vec{a}|=-\lambda|\vec{a}|, \cos \varphi=-1$ and we again get the equality (3).

From (3) we obtain

$$
\begin{aligned}
\vec{a} \vec{b} & =|\vec{a}| \underbrace{|\vec{b}|}_{\lambda|\vec{a}|} \cos \varphi
\end{aligned}=\lambda|\vec{a}|^{2}=\lambda\left(a_{1}^{2}+a_{2}^{2}\right) .
$$

In this case the formula under consideration is also valid.
Corollary. The scalar multiplication has the following properties
a) $\vec{a} \vec{a}=|\vec{a}|^{2}, \vec{a} \vec{a}=0$ if and only if $\vec{a}=\overrightarrow{0}$;
b) $(\vec{a}+\vec{b}) \vec{c}=\vec{a} \vec{c}+\vec{b} \vec{c}, \vec{a}(\vec{b}+\vec{c})=\vec{a} \vec{b}+\vec{a} \vec{c}$,
c) $(\lambda \vec{a}) \vec{b}=\lambda(\vec{a} \vec{b}), \vec{a}(\lambda \vec{b})=\lambda(\vec{a} \vec{b})$.

The property a) follows from the definition of scalar product, the other properties are immediate consequences of the coordinate form of scalar product.

For nonzero vectors $\vec{a}=\left\{a_{1}, a_{2}\right\}$ and $\vec{b}=\left\{b_{1}, b_{2}\right\}$ from the relation $\vec{a} \vec{b}=|\vec{a}| \cdot|\vec{b}| \cdot \cos \varphi$ where φ is the angle between these vectors we get that $\cos \varphi=\frac{\vec{a} \vec{b} \mid}{|\overrightarrow{|a|}| \vec{b} \mid}$ or in the coordinate form

$$
\begin{equation*}
\cos \varphi=\frac{a_{1} b_{1}+a_{2} b_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}}} \tag{4}
\end{equation*}
$$

Definition. Nonzero vectors \vec{a} and \vec{b} are called orthogonal if the angle between them equals $\pi / 2$. The zero vector is considered orthogonal to any vector.

We will prove that the \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \vec{b}=0$. This relation is valid if one of the given vectors is the zero vector. In the case $\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq \overrightarrow{0}$ we denote by φ the angle between these vectors and take into account that $0 \leqslant \varphi \leqslant \pi$. We get the chain of equivalent relations:

$$
\varphi=\frac{\pi}{2}, \quad \cos \varphi=0, \quad|\vec{a}| \cdot|\vec{b}| \cdot \cos \varphi=0, \quad \vec{a} \vec{b}=0
$$

Passing to the coordinate form, we obtain the following statement: the vectors $\vec{a}=\left\{a_{1}, a_{2}\right\}$ and $\vec{b}=\left\{b_{1}, b_{2}\right\}$ are orthogonal if and only if $a_{1} b_{1}+$ $a_{2} b_{2}=0$.

1.2 Straight line on the plane

1.2.1 Equations of straight lines

The straight line is uniquely determined if we know some its point and a nonzero vector which is orthogonal to this line. Assume that a straight line ℓ is determined by a point M_{0} and a vector $\vec{n} \neq \overrightarrow{0}$. The point M is on the line ℓ if and only if the vectors \vec{n} and $\overrightarrow{M_{0} M}$ are orthogonal (see Fig. 13).

Fig. 13. Equation of the straight line:
the point M is on the line, the point N is not on the line

Therefore the equation of the line takes the vector form $\vec{n} \overrightarrow{M_{0} M}=0$.
Assume that $M_{0}\left(x_{0}, y_{0}\right), \vec{n}=\{A, B\}$. Then for a point $M(x, y)$ we get that $\overrightarrow{M_{0} M}=\left\{x-x_{0}, y-y_{0}\right\}$ and the equation of the straight line takes the form

$$
\begin{equation*}
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)=0, \tag{5}
\end{equation*}
$$

or $A x+B y-\left(A x_{0}+B y_{0}\right)=0$. Denoting $C=-\left(A x_{0}+B y_{0}\right)$ we rewrite the obtained equation in the final form $A x+B y+C=0$.

Equations of this form are called linear. Since $\vec{n} \neq \overrightarrow{0}$ we have the additional condition $|A|+|B| \neq 0$ (or, equivalently $A^{2}+B^{2} \neq 0$). We note that such an equation of the straight line is not unique. The same line is defined by the equation $2 A x+2 B y+2 C=0$, or more generally by the equations $\alpha A x+\alpha B y+\alpha C=0$ for arbitrary $\alpha \neq 0^{1}$.

The vector \vec{n} defining the straight line is called its normal vector. It is obvious that it is defined up to a nonzero scalar factor.

We are going to give conditions when two lines are parallel, orthogonal or coincide.

Assume that we have two straight lines ℓ_{1} and ℓ_{2} defined by the following equations

$$
A_{1} x+B_{1} y+C_{1}=0, \quad A_{2} x+B_{2} y+C_{2}=0
$$

Then the following assertion is valid. The lines ℓ_{1} and ℓ_{2} are parallel if and only if $A_{1}=\alpha A_{2}, B_{1}=\alpha B_{2}$ for some scalar α, or equivalently $\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}$.

The proof is reduced to the corresponding statement for the normal vectors $n_{1}=\left\{A_{1}, b_{1}\right\}, n_{2}=\left\{A_{2}, b_{2}\right\}$, since the straight lines are parallel if and only if their normal vectors are collinear. Now it remains to apply the given above collinearity condition for the case of vectors.

We apply similar arguments to obtain conditions when the given lines are orthogonal. This property is valid if and only if the normal vectors n_{1} and n_{2} are orthogonal.

Using the given above orthogonality condition for vectors we get that the straight lines ℓ_{1} and ℓ_{2} are orthogonal if and only if $A_{1} A_{2}+B_{1} B_{2}=0$.

[^1]
Contents

1 Straight lines on the plane 4
1.1 Coordinates on the plane 4
1.1.1 Definition of coordinates 4
1.1.2 Distance between two points 7
1.1.3 Midpoint of a Segment 8
1.1.4 Vectors on the coordinate plane 9
1.2 Straight line on the plane 17
1.2.1 Equations of straight lines 17
1.2.2 Special cases of equations of straight lines 20
1.2.3 Distance of a point from a line 21
1.2.4 Intercepts 24
1.2.5 Pencils of straight lines 27
1.2.6 Normal equations of straight lines 29
1.3 Polar coordinates 32
1.4 Some tasks on straight lines on the plane 34
2 Second order curves on the plane 37
2.1 The circle 37
2.2 The ellipse 43
2.2.1 Definition and equation of the ellipse 43
2.2.2 Directrices 48
2.2.3 Tangent to the ellipse 50
2.2.4 Parametric equations of the ellipse 53
2.3 The hyperbola 54
2.3.1 Definition and equation of the hyperbola 54
2.3.2 Directrices 60
2.3.3 Tangent to the hyperbola 62
2.4 The parabola 64
2.5 Polar equations of second order curves 68
3 Analytic geometry in the space 70
3.1 Cartesian coordinates in the space 70
3.1.1 Distance between two points 72
3.1.2 Vectors in the space 73
3.2 Plane in the space 86
3.2.1 Equation of the plane 86
3.2.2 Special cases of equations of planes 89
3.2.3 Distance of a point from a plane 91
3.2.4 Equation of the plane in the intercept form 94
3.2.5 Pencils and bundles of planes 95
3.2.6 Normal equation of the plane 98
3.3 Straight line in the space 99
3.4 Some tasks on straight lines and planes in the space 107
4 Problems 110
4.1 Straight lines on the plane 110
4.2 Second order curves on the plane 114
4.3 Analytic geometry in the space 124
5 Answers and solutions 134
5.1 Straight lines on the plane 134
5.2 Second order curves on the plane 141
5.3 Analytic geometry in the space 164

[^0]: ${ }^{1)}$ We use the definition of parallel lines, which is slightly different from the "school" one. We assume that two straight lines are parallel if they are equal, or if they have no common points. Such a definition is also used in mathematical texts. In our case it somewhat facilitates the statements about collinear vectors and parallel straight lines.

[^1]: ${ }^{1)}$ It will be proved below that such equations with arbitrary values of the parameter $\alpha \neq 0$ exhaust all possible linear equations of this straight line.

