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Chapter 1

Straight lines on the

plane

1.1 Coordinates on the plane

1.1.1 Definition of coordinates

The place of a point M on a straight line is fully determined by its

distance OM from a fixed point O on the line, if we know on which side of

the point O is the point M (right or left), see Fig. 1.

A
−2 −1

O
0

B
1

C
2

M

Fig. 1. Coordinate axis.

It is assumed that on this line there is used some unit in which the distances

are measured. The fixed point O is called the origin. The distance OM of

the point M �= O, taken with the sign “plus” if M lies to the right of the

origin and with the sign “minus” when M lies to the left from O, is called

the coordinate of M .The coordinate of the point O is set to zero. In this

case, an arrow is added to the line indicating the positive direction on it.
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Let us select, on a given line, an arbitrary origin O, a unit of measure,

and a definite positive direction. Then any real number, regarded as the co-

ordinate of a point M , fully determines the position of M on this line. And

conversely, every point on the line has one and only one coordinate. In gen-

eral case the coordinate of a point is usually denoted by the letter x, which,

as we told above, may be any real number. In this case we write M(x). For

instance, A(−2), B(1), C(2) (Fig. 1).

Such a line is called the coordinate axis. The distance between the

points M1(x1) and M2(x2) on the coordinate axis is found by the formula

|M1M2| = |x2 − x1|. The midpoint of the segment M1M2 is the point

M
(
x1+x2

2

)
.

To locate a point on the plane that is, to determine its position, there is

used the following well known approach. We suppose that there is defined

a unit to measure distances on the plane. We draw two lines at right angles

on the plane, the point of intersection of these lines is called the origin and

is usually denoted by the letter O. Then we define positive directions on

each of the lines denoting these directions by arrows (see Fig. 2, the points

on the axes match unit steps).

O x

y
A(2, 3)

M

N

B(−3, 2)

C(−2,−3) D(3,−3)

Fig. 2. Coordinates on the plane
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We emphasize that on the both lines there is an origin, a unit of measure and

a positive direction. Therefore, there are defined coordinates on the both

lines. These two lines are called the axes of coordinates. To distinguish

these lines one of them is called the axis Ox, x-axis, or axis of abscissas,

and the other is called the axis Oy, the y-axis, or axis of ordinates.

Now we take an arbitrary point A on the plane, and project it on each

axis, i.e. we drop the perpendiculars AM and AN from A on the axes. The

coordinate x of the point M on the x-axis is called the abscissa of A. The

coordinate y of the point N on the y-axis is called the ordinate of A. The

position of the point A on the plane is fully determined if its abscissa x

and its ordinate y are both given. The two numbers x, y are also called the

coordinates of the point A. This fact is denoted as follows: A(x, y). In some

cases there is used the notation (x, y) without denoting the point itself. For

example, it is possible to say: “let us take the points (1, 2) and (−4, 3)”.

As a consequence of the correspondence given above, we can state that

every point on the plane has two definite real numbers as coordinates; con-

versely, every pair of real numbers defines one and only one point of the

plane.

The plane equipped with the coordinate system is called the coordinate

plane. The coordinate system we are using is called the Cartesian (or

rectangular) coordinate system. The concept of Cartesian coordinates may

be generalized to the case when the axes are not necessarily perpendicular

to each other, and there are different units along the axes. In the following

we don’t use such a generalization.

The axes divide the plane into four parts which are called the first, sec-

ond, third and fourth quadrants (Fig. 3). Quadrants are also numbered

with Arabic numerals (1, 2, 3, 4) or Roman numerals (I, II, III, IV) and the

numbering is counterclockwise. The inequalities defining the quadrants are

given below.

Quadrant I: x > 0, y > 0; quadrant II: x < 0, y > 0;
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quadrant III: x < 0, y < 0; quadrant IV: x > 0, y < 0.

O x

y

First

quadrant

Second

quadrant

Third

quadrant

Fourth

quadrant

Fig. 3. Quadrants on the plane

1.1.2 Distance between two points

Let us consider two points M1(x1, y1) and M2(x2, y2) on the plane. To

find the distance d between these points, we drop perpendiculars M1P1,

M2P2 on the x-axis and perpendiculars M1Q1, M2Q2 on the y-axis (Fig. 4).

We get the right triangle ΔM1M2R with the legs M1R, M2R and the

hypotenuse M1M2. From the equalities

M1R = P1P2 = |x2 − x1|, M2R = Q1Q2 = |y2 − y1|,
and the Pythagorean theorem we get that

d2 = (x2 − x1)
2 + (y2 − y1)

2,

d =
√
(x2 − x1)2 + (y2 − y1)2 .

The distance d between the points M1(x1, y1) and M2(x2, y2) is ob-

tained by the formula d =
√
(x2 − x1)2 + (y2 − y1)2 .
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O x

y

P1 P2

Q1

Q2

R

M2

M1

Fig. 4. Distance between two points

1.1.3 Midpoint of a Segment

Let us take two points A(a1, a2) and C(c1, c2) on the coordinate plane.

Coordinates of the midpoint B of the segment AC are the arithmetic means

of the corresponding coordinates of A and C, that is, if B(b1, b2) then

b1 =
a1 + c1

2
, b2 =

a2 + c2
2

.

To prove the first relation we drop the perpendiculars AP , BQ and CR

on the x-axis (see Fig. 5). Then the point Q becomes the midpoint of

the segment PR. On the x-axis the points P and R have the following

coordinates: P (a1) and R(c1). Therefore the point Q has the coordinate
a1+c1

2 , and this value is the first coordinate of the point B. Similarly we get

that the second coordinate of the point B is a2+c2
2 , so B

(
a1+c1

2 , a2+c2
2

)
.

The midpoint of the segment AC where A(a1, a2), C(c1, c2) is the

point B
(
a1+c1

2 , a2+c2
2

)
.
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y

A

B

C

O xP Q R

Fig. 5. Midpoint of a segment

1.1.4 Vectors on the coordinate plane

A vector is a directed segment of a line, that is, a segment for which it

is indicated which of its boundary points is the beginning point and which

is the ending point. The vector with the beginning point A and the ending

point B is usually denoted by
−→
AB. The points A and B are also called

the tail and head of the vector
−→
AB, respectively. Vectors are sometimes

indicated by small Latin letters with the arrow (sometimes with the dash)

above them, for example �a or ā. Another common use is to mark vectors

in bold characters: a. The length |−→AB| of the vector
−→
AB is defined by the

equality |−→AB| = |AB|, i.e. it is the length of the segment AB. In the

special case when the points A and B coincide then the vector
−→
AB =

−→
AA is

denoted by �0 (or 0̄ and 0) and is called the zero vector. The length of the

zero vector equals zero and its direction is assumed to be undetermined. It

is assumed that the vector may be displaced parallel to itself. It means that

if the vectors
−→
AB and

−−−→
A1B1 have equal lengths, i.e. |−→AB| = |−−−→A1B1| and the

same directions they are considered to be equal (see Fig. 6).
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�a

�b
�c

Fig. 6. Equal vectors: �a = �b = �c

Vectors lying on parallel straight lines are called collinear 1). The zero

vector is considered to be collinear with any vector.

�a
�b

�0

�d

Fig. 7. Collinear vectors

Remark. It should be noted that the binary relation “two vectors are

collinear” in the case of vectors on the plane (and in the case of vectors

in the space considered below) is not transitive. It means that collinearity

of vectors �a and �b and collinearity of vectors �b and �c do not necessarily

1) We use the definition of parallel lines, which is slightly different from the “school” one. We assume

that two straight lines are parallel if they are equal, or if they have no common points. Such a definition is

also used in mathematical texts. In our case it somewhat facilitates the statements about collinear vectors

and parallel straight lines.
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imply collinearity of vectors �a and �c. For example for any vectors �a and �c

the pairs �a and �0, �0 and �c are collinear, while �a and �c are not necessarily

collinear.

Now we introduce operation with vectors.

Mu l t i p l i ca t i o n b y a s ca l a r . For a vector �a and a number λ, the

product �b = λ�a is uniquely determined by the following properties: |�b| =
|λ| |�a|, if �a �= �0 then �b has the same direction as �a if λ > 0 and the opposite

direction if λ < 0, if �a = �0 or λ = 0 then from the equality given above we

get that �b = �0 and the question of its direction does not arise.

The numbers that vectors are multiplied by are usually called scalars.

�x α�x β�x

Fig. 8. Multiplication of a vector by a scalar: α > 0, β < 0

Add i t i o n . Addition of vectors is performed according to the rule in-

dicated in the following figure. This rule is called the parallelogram (or the

triangle) rule. The meaning of these words is clear from the following figure.

�a

�b

�a+�b

Fig. 9. Sum of vectors
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Su b t ra c t i o n . The difference of the vectors �a and �b is the single vector

�c = �a−�b such that �c+�b = �a.

�b

�c = �a−�b

�a

Fig. 10. Difference of vectors

In the given below definition of scalar product and in some other cases

we use such an agreement.

A product containing probably undetermined factors is set to be zero

if at least one of the factors being the part of this product takes the

zero value.

S ca l a r p rodu c t . For any nonzero vectors �a and �b there is defined

the angle ϕ between them satisfying the condition 0 � ϕ � π. To find

this angle we use parallel translation and reduce the vectors to the common

initial point. If one of these vectors takes the zero value then this angle is

considered undetermined. The scalar product of these vectors is the number

denoted by �a�b which equals the product |�a| · |�b| ·cosϕ. Sometimes the scalar

product is also denoted as (�a,�b) or �a ·�b and is called the dot product.

Coo rd i n a t e s o f a v ec t o r . For the points A(a1, a2) and B(b1, b2) on

the coordinate plane the coordinates of the vector
−→
AB are assumed to be

equal b1 − a1 and b2 − a2 respectively. This fact is written in the following

form:
−→
AB = {b1 − a1, b2 − a2}. The operations with the vectors introduced

above may be written in the coordinate form as follows: if λ is a number,
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�a = {a1, a2}, �b = {b1, b2}, then

|�a| =
√
a21 + a22 , λ�a = {λa1, λa2},

�a+�b = {a1 + b1, a2 + b2}, �a−�b = {a1 − b1, a2 − b2}.

In order to find conditions of collinearity in the coordinate form, we

introduce the following additional agreement: the equality

A

B
=
C

D
(1)

means that AD = BC. Being the standard fact in the case when the

denominators do not vanish, such an agreement makes it possible to consider

the expressions of the form (1) in the cases when B = 0 or D = 0. For

instance the relations
1

0
=

2

0
,

1

0
=

0

0
are valid from this point of view. Of course, “fractions” of this kind define

no numerical values. Such an agreement allows to give the collinearity

condition in an easy-to-remember form.

Remark. For such “fractions” the usual transitivity property of the

equality relation may be violated. For instance we have the following equal-

ities understood in the sense indicated above

1

2
=

0

0
,

0

0
=

1

3
,

but, of course 1
2 �= 1

3 . That is why, speaking below (page 20) about the

conditions when two equations define the same straight line, it is said that

the relations (7) are equivalent to three equalities.

We consider two vectors �a = {a1, a2} and �b = {b1, b2} on the coordinate

plane. These vectors are collinear if and only if at least one of the following

relations is valid: �b = λ�a for some scalar λ, �a = μ�b for some scalar μ (if

�a �= �0 and �b �= �0 then these properties take place simultaneously). Hence

we get that the vectors �a and �b are collinear if and only if

a1
b1

=
a2
b2
.
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For instance for any vector �x = {x1, x2} and the zero vector �0 = {0, 0} we

have the relation which is valid from the “extended” point of view:

x1
0

=
x2
0
.

Using the notion of second order determinant, the condition of collinearity

may be given in the following form: the vectors �a = {a1, a2} and �b = {b1, b2}
are collinear if and only if ∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣ = 0.

Now we are going to express the scalar product in the coordinate form.

First we remind some well known fact from the school math course.

The law of cosines

A

C

B

Fig. 11. For the triangle ΔABC the following equality is valid:

|BC|2 = |AB|2 + |AC|2 − 2|AB| · |AC| · cosA.

Theorem 1. For the vectors �a = {a1, a2} and �b = {b1, b2} on the coor-

dinate plane the following equality holds �a�b = a1b1 + a2b2.

Proof. If �a = �0 or �b = �0 then the formula being proved is obviously

true, since both sides take zero value.

Now we turn to the case �a �= �0 and �b �= �0. Let ϕ be the angle between

these vectors. We will consider two cases, whether these vectors are collinear

or not.
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1) Assume that that the vectors �a and �b are not collinear. In this case

0 < ϕ < π.

Considering the triangle defined by the vectors �a,�b and �a−�b (see Fig. 12)
and applying the law of cosines we get:

|�a−�b|2 = |�a|2 + |�b|2 − 2 |�a| |�b| cosϕ︸ ︷︷ ︸
�a�b

,

whence

�a�b =
|�a|2 + |�b|2 − |�a−�b|2

2
. (2)

�b �a−�b

�a

ϕ

Fig. 12.

Simplifying the numerator of the last fraction we get:

|�a|2 + |�b|2 − |�a−�b|2 = a21 + a22 + b21 + b22 − (a1 − b1)
2 − (a2 − b2)

2

= a21 + a22 + b21 + b22 − a21 + 2a1b1 − b21 − a22 + 2a2b2 − b22

= 2(a1b1 + a2b2).

Hence from (2) we get: �a�b = a1b1 + a2b2.

2) Assume now that nonzero vectors �a and �b are collinear. Then ϕ = 0

or ϕ = π. First we will find the value of the product |�b| cosϕ.
If ϕ = 0 then �b = λ�a for some λ > 0, |�b| = λ|�a|, cosϕ = 1, and

|�b| cosϕ = λ|�a|. (3)
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If ϕ = π then �b = λ�a for some λ < 0, |�b| = |λ| · |�a| = −λ|�a|, cosϕ = −1

and we again get the equality (3).

From (3) we obtain

�a�b = |�a| |�b| cosϕ︸ ︷︷ ︸
λ|�a|

= λ|�a|2 = λ(a21 + a22)

= a1 λa1︸︷︷︸
b1

+a2 λa2︸︷︷︸
b2

= a1b1 + a2b2.

In this case the formula under consideration is also valid.

Corollary. The scalar multiplication has the following properties

a) �a�a = |�a |2, �a�a = 0 if and only if �a = �0;

b) (�a+�b)�c = �a�c+�b�c, �a(�b+ �c) = �a�b+ �a�c,

c) (λ�a)�b = λ(�a�b), �a(λ�b) = λ(�a�b).

The property a) follows from the definition of scalar product, the other

properties are immediate consequences of the coordinate form of scalar prod-

uct.

For nonzero vectors �a = {a1, a2} and �b = {b1, b2} from the relation

�a�b = |�a| · |�b| · cosϕ where ϕ is the angle between these vectors we get that

cosϕ = �a�b

|�a|·|�b| or in the coordinate form

cosϕ =
a1b1 + a2b2√

a21 + a22
√
b21 + b22

. (4)

Definition. Nonzero vectors �a and �b are called orthogonal if the angle

between them equals π/2. The zero vector is considered orthogonal to any

vector.

We will prove that the �a and �b are orthogonal if and only if �a�b = 0. This

relation is valid if one of the given vectors is the zero vector. In the case

�a �= �0 and �b �= �0 we denote by ϕ the angle between these vectors and take

into account that 0 � ϕ � π. We get the chain of equivalent relations:

ϕ =
π

2
, cosϕ = 0, |�a| · |�b| · cosϕ = 0, �a�b = 0.
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Passing to the coordinate form, we obtain the following statement: the

vectors �a = {a1, a2} and �b = {b1, b2} are orthogonal if and only if a1b1 +

a2b2 = 0.

1.2 Straight line on the plane

1.2.1 Equations of straight lines

The straight line is uniquely determined if we know some its point and

a nonzero vector which is orthogonal to this line. Assume that a straight

line � is determined by a point M0 and a vector �n �= �0. The point M is on

the line � if and only if the vectors �n and
−−−→
M0M are orthogonal (see Fig. 13).

x

y

O

N

M0

M �n

Fig. 13. Equation of the straight line:

the point M is on the line, the point N is not on the line

Therefore the equation of the line takes the vector form �n
−−−→
M0M = 0.

Assume that M0(x0, y0), �n = {A,B}. Then for a point M(x, y) we get

that
−−−→
M0M = {x−x0, y− y0} and the equation of the straight line takes the

form

A(x− x0) + B(y − y0) = 0, (5)
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or Ax + By − (Ax0 + By0) = 0. Denoting C = −(Ax0 + By0) we rewrite

the obtained equation in the final form Ax+By + C = 0.

Equations of this form are called linear. Since �n �= �0 we have the addi-

tional condition |A|+ |B| �= 0 (or, equivalently A2+B2 �= 0). We note that

such an equation of the straight line is not unique. The same line is defined

by the equation 2Ax + 2By + 2C = 0, or more generally by the equations

αAx+ αBy + αC = 0 for arbitrary α �= 01).

The vector �n defining the straight line is called its normal vector. It is

obvious that it is defined up to a nonzero scalar factor.

We are going to give conditions when two lines are parallel, orthogonal

or coincide.

Assume that we have two straight lines �1 and �2 defined by the following

equations

A1x+B1y + C1 = 0, A2x+B2y + C2 = 0.

Then the following assertion is valid. The lines �1 and �2 are parallel if and

only if A1 = αA2, B1 = αB2 for some scalar α, or equivalently A1

A2
= B1

B2
.

The proof is reduced to the corresponding statement for the normal

vectors n1 = {A1, b1}, n2 = {A2, b2}, since the straight lines are parallel if

and only if their normal vectors are collinear. Now it remains to apply the

given above collinearity condition for the case of vectors.

We apply similar arguments to obtain conditions when the given lines

are orthogonal. This property is valid if and only if the normal vectors n1

and n2 are orthogonal.

Using the given above orthogonality condition for vectors we get that

the straight lines �1 and �2 are orthogonal if and only if A1A2 +B1B2 = 0.

1) It will be proved below that such equations with arbitrary values of the parameter α �= 0 exhaust all

possible linear equations of this straight line.



Contents

1 Straight lines on the plane 4

1.1 Coordinates on the plane . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Definition of coordinates . . . . . . . . . . . . . . . . 4

1.1.2 Distance between two points . . . . . . . . . . . . . . 7

1.1.3 Midpoint of a Segment . . . . . . . . . . . . . . . . . 8

1.1.4 Vectors on the coordinate plane . . . . . . . . . . . . 9

1.2 Straight line on the plane . . . . . . . . . . . . . . . . . . . 17

1.2.1 Equations of straight lines . . . . . . . . . . . . . . . 17

1.2.2 Special cases of equations of straight lines . . . . . . 20

1.2.3 Distance of a point from a line . . . . . . . . . . . . . 21

1.2.4 Intercepts . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.5 Pencils of straight lines . . . . . . . . . . . . . . . . . 27

1.2.6 Normal equations of straight lines . . . . . . . . . . . 29

1.3 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Some tasks on straight lines on the plane . . . . . . . . . . . 34

2 Second order curves on the plane 37

2.1 The circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 The ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

192



C 193

2.2.1 Definition and equation of the ellipse . . . . . . . . . 43

2.2.2 Directrices . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.3 Tangent to the ellipse . . . . . . . . . . . . . . . . . . 50

2.2.4 Parametric equations of the ellipse . . . . . . . . . . 53

2.3 The hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Definition and equation of the hyperbola . . . . . . . 54

2.3.2 Directrices . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.3 Tangent to the hyperbola . . . . . . . . . . . . . . . 62

2.4 The parabola . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Polar equations of second order curves . . . . . . . . . . . . 68

3 Analytic geometry in the space 70

3.1 Cartesian coordinates in the space . . . . . . . . . . . . . . . 70

3.1.1 Distance between two points . . . . . . . . . . . . . . 72

3.1.2 Vectors in the space . . . . . . . . . . . . . . . . . . 73

3.2 Plane in the space . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Equation of the plane . . . . . . . . . . . . . . . . . . 86

3.2.2 Special cases of equations of planes . . . . . . . . . . 89

3.2.3 Distance of a point from a plane . . . . . . . . . . . . 91

3.2.4 Equation of the plane in the intercept form . . . . . . 94

3.2.5 Pencils and bundles of planes . . . . . . . . . . . . . 95

3.2.6 Normal equation of the plane . . . . . . . . . . . . . 98

3.3 Straight line in the space . . . . . . . . . . . . . . . . . . . . 99

3.4 Some tasks on straight lines and planes in the space . . . . . 107

4 Problems 110



194 C

4.1 Straight lines on the plane . . . . . . . . . . . . . . . . . . . 110

4.2 Second order curves on the plane . . . . . . . . . . . . . . . 114

4.3 Analytic geometry in the space . . . . . . . . . . . . . . . . 124

5 Answers and solutions 134

5.1 Straight lines on the plane . . . . . . . . . . . . . . . . . . . 134

5.2 Second order curves on the plane . . . . . . . . . . . . . . . 141

5.3 Analytic geometry in the space . . . . . . . . . . . . . . . . 164




