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1. Boundaries of sets

The continuity axiom of real numbers 1A/00:00 (09:55)

Real numbers have a large amount of properties associated with arithmetic
operations (addition, multiplication), as well as with comparison operations.
These properties are studied in detail in the course of algebra. For our pur-
poses, the property of real numbers, called the continuity axiom, will play
a special role.

The continuity axiom of the set of real numbers.

Let X , Y be nonempty subsets of the set R with the following property:
for any two elements x ∈ X, y ∈ Y the inequality x ≤ y holds. Then there
exists a number c ∈ R such that for any elements x ∈ X, y ∈ Y the inequality
x ≤ c ≤ y holds.

Remark.

The set of rational numbers does not have this property. Indeed, consider
two nonempty subsets of the set of rational numbers:

X =
{
x ∈ Q : 1 < x <

√
2
}
, Y =

{
y ∈ Q :

√
2 < y < 2

}
.

Obviously, the inequality x ≤ y holds for any elements x ∈ X, y ∈ Y ,
but there is no rational number c satisfying the condition x ≤ c ≤ y for all
x ∈ X, y ∈ Y , since the number

√
2 is irrational.

Boundaries and exact boundaries of number sets

Bounded sets of numbers: basic definitions 1A/09:55 (16:59)

Definition.

A number set X is called upper-bounded (or bounded from above) if there
exists a real number M such that for any element x from the set X the
estimate x ≤ M is true:

∃M ∈ R ∀ x ∈ X x ≤ M .

If a set X is not bounded from above, then this means that

∀M ∈ R ∃ x ∈ X x > M .
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A number set X is called lower-bounded (or bounded from below) if there
exists a real number m such that for any element x from the set X the
estimate x ≥ m holds:

∃m ∈ R ∀ x ∈ X x ≥ m.
If the set X is not bounded from below, then this means that

∀m ∈ R ∃ x ∈ X x < m.
A number set X is called bounded if it is upper-bounded and lower-

bounded:
∃m,M ∈ R ∀ x ∈ X m ≤ x ≤ M .

The number M that appears in the definition of a upper-bounded set is
called the upper bound of this set, and the number m that appears in the
definition of a lower-bounded set is called the lower bound of this set.

If the set X is bounded, then
∃M0 > 0 ∀ x ∈ X |x| ≤ M0.

As M0, one can take the maximum of the numbers |m| and |M |, where m
and M are numbers from the definition of a bounded set.

Exact boundaries of number sets:
the first definition 1A/26:54 (03:38)

Definition 1 of supremum and infimum.

If X is an upper-bounded set, then the smallest upper bound of the set
X is called the supremum of the set X , or its least upper bound (or its exact

upper bound) and is denoted as follows: supX.
If X is a lower-bounded set, then the largest lower bound of the set X is

called the infimum of the set X, or its greatest lower bound (or its exact lower

bound) and is denoted as follows: infX.

Theorems on the existence
of the exact boundaries 1A/30:32 (06:43)

Theorem 1 (on the existence of the least upper bound).

A nonempty set bounded from above has the least upper bound.
Proof.

Let X be a given set. Denote by B the set of all its upper bounds. The
set B is not empty, since by condition X is bounded from above. Then the
estimate x ≤ y is true for any x ∈ X , y ∈ B.

Thus, the conditions of the continuity axiom of real numbers are satisfied,
if we take the set X as the set A.
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By the continuity axiom, we obtain:

∃ c ∈ R ∀ x ∈ X, y ∈ B x ≤ c ≤ y.

So, the number c is the least upper bound, because:
1) c is the upper bound of the set X , since ∀ x ∈ X x ≤ c,
2) c is the smallest upper bound, since ∀ y ∈ B c ≤ y. �
The following theorem can be proved in a similar way.
Theorem 2 (on the existence of the greatest lower bound).

A nonempty set bounded from below has the greatest lower bound.
Corollary.

A nonempty bounded set X has the least upper bound and greatest lower
bound.

Exact boundaries of number sets:
the second definition 1B/00:00 (13:34)

Definition 2 of supremum and infimum.

The number s is called the supremum of a number set X if
1) this number is the upper bound:

∀ x ∈ X x ≤ s;

2) this number is the smallest upper bound:

∀ ε > 0 ∃ x ∈ X x > s− ε.

The number i is called the infimum of a number set X if
1) this number is the lower bound:

∀ x ∈ X x ≥ i;

2) this number is the largest lower bound:

∀ ε > 0 ∃ x ∈ X x < i+ ε.

Obviously, definitions 1 and 2 are equivalent.
Example.

Let us prove that b is the least upper bound of the interval (a, b). By the
definition of an interval, the point b is the upper bound (since if x ∈ (a, b),
then a < x < b). It remains to show that b is the smallest upper bound, i. e.
that the following condition holds:

∀ ε > 0 ∃ x ∈ (a, b) x > b− ε.

Indeed, for such x it is possible, for example, to take the point b − ε
2 (or

any point of the interval (a, b) if b− ε
2 ≤ a).
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Maximum and minimum elements of a set 1B/13:34 (11:02)

Definition.

Let X be a nonempty upper-bounded set. If the condition supX ∈ X is
fulfilled, then the element supX is called the maximum element of the set X
and denoted by maxX.

Let X be a nonempty lower-bounded set. If the condition infX ∈ X is
fulfilled, then the element infX is called the minimum element of the set X
and denoted by minX .

Not each bounded nonempty set has a maximum or minimum element. For
example, the interval (a, b) has neither a minimum nor a maximum element.

A set consisting of a finite number of numbers always has a minimum and
maximum element. These elements can be found using the search algorithm
for the minimum or maximum element.

Theorem 1 (on the existence of a maximum element in

an upper-bounded integer set).

If a nonempty set X contains only integers and is bounded from above,
then it has a maximum element.

Proof.

If X is upper-bounded, then it has the least upper bound s: s = supX .
This means that ∀ x ∈ X x ≤ s; in addition, for ε = 1, there exists an element
x0 ∈ X such that x0 > s− 1.

Let us show that x0 = maxX . Since x0 ∈ X, we get: x0 ≤ s. The
inequality x0 > s−1 can be transformed to the form x0+1 > s, therefore all
integers starting from x0 + 1 do not belong to X . Thus, the estimate x ≤ x0
holds for all x ∈ X, which means that x0 is the upper bound of the set X and
x0 ≥ s. From the inequalities x0 ≤ s and x0 ≥ s it follows that x0 coincides
with the least upper bound s, therefore x0 = maxX. �

The following theorem can be proved in a similar way.
Theorem 2 (on the existence of a minimum element in

a lower-bounded integer set).

If a nonempty set X contains only integers and is bounded from below,
then it has a minimum element.

Uniqueness of exact boundaries 2A/00:00 (03:23)

Theorem (on the uniqueness of exact boundaries).

If the set X has the least upper bound or the greatest lower bound, then
this bound is uniquely determined.
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Proof.

Let us prove this statement by contradiction. Suppose that the set X has
two distinct least upper bounds: a = supX, b = supX, and a 	= b. Since
a 	= b, we obtain that one of two inequalities holds: a < b or b < a. If
a < b and a = supX, then the number b cannot be the least upper bound,
and if b < a and b = supX, then the number a cannot be the least upper
bound. The obtained contradiction means that our assumption is false, and
there exists the unique least upper bound.

The uniqueness of the greatest lower bound is proved similarly. �

Arithmetic operations on sets

Arithmetic operations on sets: definitions 1B/24:36 (06:09)

Definition.

Let X and Y be sets of real numbers. Then their sum X + Y is defined
as follows:

X + Y
def
= {z ∈ R : (∃ x ∈ X, y ∈ Y z = x+ y)}.

Example.

Let us find the sum of the sets [0, 1] and [2, 3] ([0, 1] and [2, 3] are seg-
ments).

For x ∈ [0, 1], we have: 0 ≤ x ≤ 1. For y ∈ [2, 3], we have: 2 ≤ x ≤ 3.
Then 2 ≤ x+ y ≤ 4. Therefore, [0, 1] + [2, 3] = [2, 4].

Definition.

Let X be the set of real numbers, λ ∈ R. Then the product of the set X
by the number λ is defined as follows:

λX
def
= {z ∈ R : (∃ x ∈ X z = λx)}.

Remark.

Generally speaking, X +X 	= 2X. We give an example. Let X = {0, 1}.
Then X +X = {0, 1, 2}, 2X = {0, 2}. Therefore, X +X 	= 2X.

Theorems on the exact boundaries
of the sum of sets 1B/30:45 (12:50)

Theorem 1 (on the least upper bound of the sum of sets).

Let X and Y be nonempty upper-bounded sets. Then

sup(X + Y ) = supX + supY .
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Proof.

1. Denote s = supX + supY and prove that s is an upper bound of the
set X + Y .

We consider an arbitrary element z of the set X + Y : z = x+ y for some
x ∈ X and y ∈ Y .

Since x ≤ supX, y ≤ supY , we obtain: z = x+ y ≤ supX + supY = s.
Thus, for an arbitrary element z ∈ X + Y , the estimate z ≤ s holds,

therefore, s is an upper bound.
2. Let us prove that s is the least upper bound of the set X + Y .
Let ε > 0 be an arbitrary positive number.
We will show that s− ε is not the upper bound of the set X + Y , that is,

there exists a number z0 = x0 + y0 ∈ X + Y such that z0 > s− ε.
By the definition of the least upper bound of the set X, we have:

∃ x0 ∈ X x0 > supX − ε

2
.

By the definition of the least upper bound of the set Y , we have:

∃ y0 ∈ Y y0 > supY − ε

2
.

Summing up these inequalities term by term, we obtain the required result:

z0 = x0 + y0 > supX + supY − ε = s− ε. �
The following theorem can be proved in a similar way.
Theorem 2 (on the greatest lower bound of the sum of

sets).

Let X and Y be nonempty lower-bounded sets. Then

inf(X + Y ) = infX + inf Y .

Theorems on the exact boundaries
of the product of a set by a number 2A/03:23 (04:13)

Theorem 1 (first theorem on the exact boundaries of the

product of a set by a number).

Let X be a nonempty upper-bounded set, λ > 0. Then

sup(λX) = λ supX .

Proof.

1. Let λx ∈ λX.
Since for x ∈ X we have x ≤ supX, we obtain: λx ≤ λ supX.
Therefore, λ supX is an upper bound of the set λX.
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2. Let us choose ε > 0.
By the definition of the least upper bound of the set X, we have

∃ x′ ∈ X x′ > supX − ε

λ
.

Consequently,

λx′ > λ
(
supX − ε

λ

)
= λ supX − ε.

Thus, we found the element λx′ ∈ λX such that the inequality
λx′ > λ supX − ε holds for the selected ε. Therefore, λ supX is the least
upper bound of the set λX. �

The following theorem can be proved in a similar way.
Theorem 2 (second theorem on the exact boundaries of the

product of a set by a number).

1. Let X be a nonempty lower-bounded set, λ > 0. Then
inf(λX) = λ infX .

2. Let X be a nonempty upper-bounded set, λ < 0. Then
inf(λX) = λ supX .

3. Let X be a nonempty lower-bounded set, λ < 0. Then
sup(λX) = λ infX .
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Neighborhood and symmetric neighborhood of a point

Neighborhood and symmetric neighborhood:
definition and properties 2A/07:36 (13:32)

Definition.

Let A be a point on a number line: A ∈ R. The neighborhood UA

of the point A is any interval (a, b) containing this point. The symmetric

ε-neighborhood U ε
A of the point A is the interval (A− ε, A+ ε), where ε > 0

is a number called the radius of the symmetric neighborhood.
The intersection of any nonempty finite set of neighborhoods of the point A

is a neighborhood of the point A. The intersection of any nonempty finite set
of symmetric neighborhoods of the point A is a symmetric neighborhood of
the point A.

The union of any nonempty (not necessarily finite) set of neighborhoods
of A is a neighborhood of A. The union of any nonempty (not necessarily
finite) set of symmetric neighborhoods of A is a symmetric neighborhood
of A.

Remark.

Any neighborhood (a, b) of the point A contains a symmetric neighbor-
hood:

(a, b) ⊃ (A− ε, A+ ε), where ε = min {|A− a|, |A− b|}.

Supplement. Intersection of neighborhoods 3A/00:00 (01:21)

In describing the properties of neighborhoods of points, we noted that the
intersection of any nonempty finite set of neighborhoods of a given point is
a neighborhood of this point. Now we show that in the case of an infinite set
of neighborhoods, this statement is not true. To do this, it’s enough to give
an example.

Consider the set of intervals
(− 1

n ,
1
n

)
, n ∈ N. All such intervals are neigh-

borhoods of the point 0. However, their intersection consists of a single
point 0. Indeed, for any point x 	= 0, there exists a number n0 ∈ N such
that |x| ≥ 1

n0
. So, the point x does not belong to the interval

(− 1
n0
, 1
n0

)
,
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and therefore it does not belong to the intersection of all such intervals for n
from 1 to ∞.

Thus, the intersection of all intervals
(− 1

n ,
1
n

)
, n ∈ N, consists of a single

point 0. But a single point is not a neighborhood. So, we have shown that
the intersection of an infinite number of neighborhoods of a point will not
necessarily be its neighborhood.

Definition of the limit of a sequence

Sequence: definition and examples 2A/21:08 (06:29)

Definition.

The map f : N → X , where N is the set of natural numbers, is called the
sequence of elements (or terms) x1 = f(1), x2 = f(2), . . . , xn = f(n), . . . and
denoted by {xn}. An element xn is called the common term of the sequence.

A sequence is called a numerical one if X = R.
Examples of sequences.{

1
n

}
: 1, 12 ,

1
3 ,

1
4 , . . . ,

1
n , . . .{

n2
}
: 1, 4, 9, 16, . . . , n2, . . .

How to define the limit of a sequence? 2A/27:37 (07:52)

If we consider the sequence
{

1
n

}
and go through its elements in ascending

order of their indices, then they will come closer and closer to the point 0. It
is natural to assume that the number 0 will be the limit of the sequence

{
1
n

}
.

Another example of a sequence whose limit is 0 is the sequence{ (−1)n

n

}
=

{−1, 12 ,−1
3 ,

1
4 , . . .

}
. This sequence is interesting in that its ele-

ments approach the point 0 from different sides.
If we consider the sequence

{
n2
}
, then its elements will not approach any

finite number, so it is natural to assume that this sequence has no finite limit.
What property of point 0 allows us to consider it as the limit of the se-

quences
{

1
n

}
and

{ (−1)n

n

}
? To describe such a property, it is easiest to use

the notion of a neighborhood of a point. The point A will be the limit of the
sequence {xn} if for any neighborhood UA of this point all elements of the
sequence, except, perhaps, a finite number of its initial elements, will lie in
this neighborhood. In other words, it is required that any neighborhood UA

contains an infinite number of elements of the sequence {xn}, and outside it
there is a finite number of elements.
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It is easy to see that only the point 0 satisfies the indicated condition for
the sequences

{
1
n

}
and

{ (−1)n

n

}
.

In this definition, it is important not only that in any neighborhood there
is an infinite number of elements of the sequence, but also that only a finite
number remains outside the neighborhood. Without the second condition,
it would turn out that the sequence {(−1)n} = {1,−1, 1,−1, . . . } has two
limits: −1 and 1, however, the presence of several limits of one sequence
would lead to problems in constructing the theory of limits.

Symmetric neighborhoods can also be used in the definition of the limit;
this version of definition is often more convenient to use.

Definition of the limit of a sequence in the language
of neighborhoods 2A/35:29 (05:33), 2B/00:00 (01:07)

Definition 1 of the sequence limit (in the language of neigh-

borhoods).

The number A ∈ R is called the limit of a sequence {xn} if for any neigh-
borhood UA of the point A there exists a natural number N ∈ N such that
all elements xn with numbers greater than N will be contained in the neigh-
borhood UA. Formally we may write the previous condition as follows:

∀UA ∃N ∈ N ∀n > N xn ∈ UA.

Definition of the limit of a sequence
in the language of symmetric neighborhoods 2B/01:07 (19:41)

Definition 2 of the sequence limit (in the language of sym-

metric neighborhoods).

The number A ∈ R is called the limit of a sequence {xn} if for any
ε-neighborhood V ε

A of the point A with radius ε > 0 there exists a natu-
ral number N ∈ N such that all elements xn with numbers greater than N

will be contained in the neighborhood V ε
A:

∀V ε
A ∃N ∈ N ∀n > N xn ∈ V ε

A.

Theorem (on the equivalence of two definitions of the limit

of a sequence).

Definitions 1 and 2 of the limit of a sequence are equivalent.
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Proof.

Obviously, if A is the limit of a sequence in the sense of definition 1, then A
is also the limit in the sense of definition 2, since any symmetric neighborhood
is a neighborhood.

Let us prove the opposite. Let A be the limit of {xn} in the sense of
definition 2. We show that A is the limit of {xn} in the sense of definition 1.

Let UA be an arbitrary neighborhood of A. We can choose the symmetric
neighborhood V ε

A containing in UA: V ε
A ⊂ UA.

According to definition 2, for the neighborhood of V ε
A there exists N ∈ N

such that xn ∈ V ε
A for all n > N . But V ε

A ⊂ UA, so xn ∈ UA for all n > N .
Thus, since the choice of the neighborhood UA is arbitrary, the point A is
also the limit in the sense of definition 1. �

Definition 2 can be reformulated as follows.
Definition 3 of the sequence limit (in the language ε–N).

The number A ∈ R is called the limit of a sequence {xn} if for any number
ε > 0 there exists a natural number N ∈ N such that for any n > N the
following inequality holds: A−ε < xn < A+ε, or, equivalently, |xn−A| < ε:

∀ ε > 0 ∃N ∈ N ∀n > N |xn − A| < ε.

Such a definition is called a definition in the language ε–N .
Limit notations: limn→∞ xn = A, lim

n→∞xn = A or xn → A as n → ∞
(“xn approaches A as n approaches infinity”).

A sequence with a limit A ∈ R is called a convergent one (to the limit A).

Examples of finding the limit
of the sequence using the definition 2B/20:48 (11:47)

1. xn = 1
n .

We will show that limn→∞ 1
n = 0.

Let us select an arbitrary ε > 0 and find N such that for all n > N the
estimate

∣∣ 1
n − 0

∣∣ < ε holds, that is, 1
n < ε.

The inequality 1
n < ε is equivalent to the inequality n > 1

ε .
Let N =

[
1
ε

]
, where [x] is the integer part of the number x.

Taking into account that n is natural, we get that for all n >
[
1
ε

]
the

following estimate holds: n ≥ [
1
ε

]
+ 1.

This estimate can be continued if we use the property of the integer part
of a real number ([x] ≤ x < [x] + 1):

n ≥
[
1

ε

]
+ 1 >

1

ε
.
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We have obtained that for all natural numbers n > N , where N =
[
1
ε

]
,

the estimate n > 1
ε holds.

Therefore,

∀ ε > 0 ∃N =

[
1

ε

]
∀n > N

1

n
< ε.

This means that limn→∞ 1
n = 0.

2. xn = (−1)n

n .
In this case, the limit will also be 0.
The proof is completely similar to the proof the sequence from the exam-

ple 1, since the inequality
∣∣∣ (−1)n

n − 0
∣∣∣ < ε may be written in the same form

as in the example 1: 1
n < ε.

Example of a sequence without limit 2B/32:35 (08:29)

We can say that the number A is the limit of a sequence {xn} if any

neighborhood of the number A contains all elements of the sequence except,
perhaps, some finite amount of its starting elements.

In order to show that the number A is not the limit of a sequence {xn}, it
suffices to select some neighborhood of the number A, outside which there is
an infinite number of elements of the sequence {xn}.

Formally, the statement that the number A is not the limit of a sequence
{xn} can be written by applying the negation operation to one of definitions
of the limit, for example (for definition 3):

∀ ε > 0 ∃N ∈ N ∀n > N |xn − A| < ε,

∃ ε > 0 ∀N ∈ N ∃n > N |xn − A| ≥ ε.

Let ϕn = (−1)n : −1, 1,−1, 1, . . .
Let us prove that this sequence has no limit. To do this, we use the above

negation of the statement that the number A is the limit of the sequence
{ϕn}.

Let A = 1. Choose ε = 1
2 . Then for any natural number N there exists

an odd number n > N , for which ϕn = −1 and, therefore, this element of the
sequence is not contained in the ε-neighborhood of the point 1. Therefore,
the number A = 1 is not the limit of the sequence {ϕn}.

Let A = −1. Then, choosing ε = 1
2 , we obtain that for any natural

number N there exists an even number n > N , for which ϕn = 1 and,
therefore, this element of the sequence is not contained in the ε-neighborhood
of the point −1. Therefore, the number A = −1 is also not the limit of the
sequence {ϕn}.
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Let A be a number other than 1 and −1. Let ε = min {|A− 1|, |A+ 1|}.
Then for the ε-neighborhood of the point A, all elements of the sequence {ϕn}
will be out of this neighborhood. Therefore, all such numbers also cannot be
the limit of the sequence {ϕn}.

The simplest properties of the limit of a sequence

The uniqueness theorem
for the limit of a convergent sequence 3A/01:21 (13:39)

Theorem (on the uniqueness of the limit of a convergent

sequence).

A convergent sequence cannot have two different limits.
Proof.

We prove the theorem by contradiction. Suppose that A and B are differ-
ent limits of the given sequence {xn}:

lim
n→∞xn = A, lim

n→∞xn = B, A 	= B.

Then the points A and B have disjoint neighborhoods UA and UB:
UA ∩ UB = ∅.

By the definition of the limit of a sequence, we have for the neighbor-
hood UA:

∃N1 ∈ N ∀n > N1 xn ∈ UA. (1)

Similarly, for the neighborhood UB, we have:

∃N2 ∈ N ∀n > N2 xn ∈ UB. (2)

Let N = max {N1, N2}. Then, by virtue of relations (1) and (2),
xn ∈ UA ∩ UB for n > N .

But the neighborhoods of UA and UB do not intersect. That means that
for n > N xn ∈ ∅, which is impossible. The obtained contradiction means
that our assumption was incorrect, and the sequence {xn} cannot have two
different limits. �

A theorem on the boundedness
of a convergent sequence 3A/15:00 (12:09)

Definition.

A sequence {xn} is called bounded if there exists M > 0 such that for all
n ∈ N the estimate |xn| ≤ M holds:
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∃M > 0 ∀n ∈ N |xn| ≤ M .

Theorem (on the boundedness of a convergent sequence).

A convergent sequence is bounded.
Proof.

Let A = limn→∞ xn. Then for ε = 1 we have:

∃N ∈ N ∀n > N |xn − A| < 1.

Applying the triangle inequality for the absolute value of sum, we get:

|xn| = |(xn − A) + A| ≤ |xn − A|+ |A| < 1 + |A|.
Thus, for any n > N we have |xn| < M1, where M1 = 1 + |A|.
In addition, the set {|x1|, |x2|, . . . , |xN |} is finite and therefore has the

maximum element with the value M2. So, the estimate |xn| ≤ M2 holds for
all n ≤ N .

Taking M = max {M1,M2}, we get:

∀n ∈ N |xn| ≤ M . �
Remark.

The converse assertion is not true: the bounded sequence is not necessarily
convergent. As an example, we can use the previously considered sequence
{ϕn} = {(−1)n}. Obviously, it is bounded, since ∀n ∈ N |ϕn| ≤ 1, but we
have proved that it has no limit.




