

А.В. Красикова, Т.В. Куликова

ХРОМОСОМЫ ТИПА ЛАМПОВЫХ ЩЕТОКСОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ И ПЕРСПЕКТИВЫ ИССЛЕДОВАНИЙ

УДК 576.316.353 ББК 28.05 К78

Рецензент д-р биол. наук Д. С. Боголюбов (ФГБУН Ин-т цитологии РАН)

Красикова А. В., Куликова Т. В.

К78 — Хромосомы типа ламповых щеток: современные представления и перспективы исследований. — СПб.: Изд-во С.-Петерб. ун-та, 2019. — 104 с.

ISBN 978-5-288-05984-1

Издание содержит обзор современных работ по хромосомам типа ламповых щеток. Рассмотрены механизмы поддержания хромомерно-петлевой организации хромосом типа ламповых щеток, характер транскрипции на латеральных петлях хромосом, классификация формирующихся в определенных локусах хромосом ядерных доменов. Описаны методы работы с хромосомами типа ламповых щеток, которые позволяют использовать этот объект для развития исследований в актуальных направлениях клеточной и молекулярной биологии, биологии развития и цитогенетики.

Научный труд предназначен ученым и специалистам, профиль научнопедагогической деятельности которых связан со структурой и функцией хромосом и ядерных телец, транскрипцией и процессингом РНК, регуляторными и архитектурными некодирующими РНК, и может быть полезен студентам и аспирантам естественнонаучных факультетов вузов и академических институтов.

> УДК 576.316.353 ББК 28.05

Издание осуществлено при финансовой поддержке Российского фонда фундаментальных исследований по проекту № 19-14-00024, не подлежит продаже.

В оформлении обложки использован рисунок авторов

[©] Санкт-Петербургский государственный университет, 2019

ОГЛАВЛЕНИЕ

Предис	юви	e		
Глава 1.	Современные представления о хромосомах типа ламповых щеток			
	1.1.	Гипертранскрипционный тип оогенеза		
	1.2.	Ядро ооцита при гипертранскрипционной активности хромосом		
	1.3.	Организация хромосом типа ламповых щеток		
	1.4.	Строение центромерных районов хромосом типа ламповых щеток		
	1.5.	Строение терминальных районов хромосом типа ламповых щеток		
	1.6.	Хроматин хромосом на стадии ламповых щеток		
	1.7.	Котранскрипционные этапы процессинга РНК. Состав РНП-матрикса латеральных петель хромосом типа ламповых щеток		
	1.8.	Спектр последовательностей, транскрибируемых на хромосомах типа ламповых щеток		
Глава 2.	Acc	оциированные с хромосомами типа ламповых щеток		
		рные домены		
	2.1.	Сложные петли хромосом типа ламповых щеток как локус-ассоциированные ядерные домены		
	2.2.	Ядрышки		
		Коилинсодержащие тельца: тельце гистонового локуса, «жемчужины» и осевые гранулы		
	2.4.	Центромерные белковые тела		
		Спагетти-маркер		
Глава 3.	Me	годы работы с ядрами растущих ооцитов		
	и хр	омосомами типа ламповых щеток		
	3.1.	Методы работы с ядрами растущих ооцитов. Исследования трехмерной организации хромосом типа ламповых щеток		
	3.2.	Методы микроинъекций генно-инженерных конструкций, антител и других молекул в цитоплазму и ядро ооцита		

	3.3.	Микрохирургические методы получения препаратов хромосом типа ламповых щеток	59				
	3.4.	Флуоресцентная гибридизация <i>in situ</i> и иммунофлуоресцентное окрашивание хромосом типа ламповых щеток	_				
	3.5.	Микродиссекция хромомеров и маркерных структур	61				
	3.6.	Сканирующая электронная микроскопия хромосом типа ламповых щеток	62				
Глава 4. Перспективы исследований хромосом типа							
	лам	повых щеток	63				
	4.1.	Гипотезы о функциональном значении хромосом типа ламповых щеток	_				
	4.2.	Фундаментальные открытия, сделанные с помощью хромосом типа ламповых щеток	65				
	4.3.	Перспективы исследований	67				
Приложения							
	П. 1	. Протокол получения препаратов хромосом типа ламповых щеток	_				
	П. 2	. Протокол иммунофлуоресцентного окрашивания препаратов хромосом типа ламповых щеток	75				
	П. 3	. Протоколы ДНК/(ДНК+РНК-транскрипт) флуоресцентной гибридизации <i>in situ</i> на препаратах хромосом типа ламповых щеток	77				
	П. 4	. Протокол 3D иммунофлуоресцентного окрашивания ядер ооцитов	81				
	П. 5	. Протокол 3D РНК-флуоресцентной гибридизации in situ ядер ооцитов	82				
Словарь терминов							
Литература							

Глава 1

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ХРОМОСОМАХ ТИПА ЛАМПОВЫХ ЩЕТОК

1.1. Гипертранскрипционный тип оогенеза

Все многоклеточные организмы, размножающиеся половым путем, способны формировать высокоспециализированные клетки — гаметы. В ходе дифференцировки обоих типов гамет (яйцеклеток и сперматозоидов) их геномы редуцируются в результате мейотических делений, чтобы, слившись, сформировать зиготу — клетку, способную дать начало новому индивидууму. Оогенез — процесс формирования яйцеклетки — имеет особое значение, поскольку формирующаяся после оплодотворения зигота наследует от яйцеклетки не только генетическую информацию, но и цитоплазматический материал. В цитоплазме ооцита (созревающей яйцеклетки) накапливаются питательные вещества, рибосомы, митохондрии и множество ферментативных комплексов, используемых эмбрионом на ранних стадиях развития. Кроме того, ооцит запасает множество разнообразных материнских матричных РНК (мРНК), которые в ходе эмбриогенеза будут служить матрицами для синтеза белков. Материнская цитоплазма необходима не только для энергетической и пластической (строительной, синтетической) поддержки ранних этапов развития эмбриона; в ходе оогенеза в ней накапливаются факторы эпигенетической регуляции экспрессии генома зародыша, такие, например, как короткие регуляторные РНК и ДНК-метилтрансферазы. Таким образом, цитоплазма яйцеклетки формирует среду, определяющую ход ранних этапов развития эмбриона, а эмбриогенез берет начало в оогенезе [Дондуа, 2018].

Роль цитоплазмы женских половых клеток эволюционно консервативна, однако в разных филогенетических группах сформированы разные механизмы достижения цитоплазмой функциональной зрелости. Различия этих способов определяют разнообразие типов оогенеза и связаны со степенью вовлеченности в синтез накапливаемых

ооцитом веществ генетического и синтетического аппаратов самого ооцита, клеток гонад и других органов и тканей. Например, в ходе эволюции трофической функции яйцеклетки нагрузка, связанная с синтезом питательных веществ, переносится сначала с ооцита на специализированные желточные клетки в гонадах (у низших беспозвоночных), а затем выводится за пределы гонады и возлагается на клетки печени (у позвоночных) или жирового тела (у насекомых) [Гилберт, 2010]. В разных типах оогенеза различаются также и источники запасаемых ооцитом матричных и регуляторных материнских РНК. Так, согласно одной из классификаций, различают полигеномный и гипертранскрипционный типы оогенеза [Дондуа, 2018]. Оогенез называют полигеномным, если ядерный аппарат ооцита не участвует в синтезе материнских РНК, а их синтез осуществляется в ядрах специализированных клеток гонады. Например, у насекомых из отряда двукрылых ядро ооцита транскрипционно неактивно, а синтез информационных и регуляторных РНК осуществляется в ядрах так называемых питающих клеток [Bogolyubov, Parfenov, 2008]. Питающие клетки имеют общее с ооцитом происхождение, т. е. относятся к клеткам зародышевого пути. В ядрах данных клеток происходит политенизация хромосом, что позволяет увеличить производительность транскрипции, а следовательно, и ускорить оогенез.

Гипертранскрипционным называется тип оогенеза, при котором наибольшую активность в синтезе материнских РНК проявляет ядерный аппарат самого ооцита. По такому пути происходит оогенез у рыб, амфибий, рептилий, а также у насекомых из таких отрядов, как прямокрылые, стрекозы и поденки. В некоторых таксономических группах животных и ядро ооцита, и ядра окружающих фолликулярных клеток вносят свой, неравноценный, вклад в производство материнской РНК. По такому, сочетанному, типу осуществляется оогенез, например, у птиц [Гагинская, 1975].

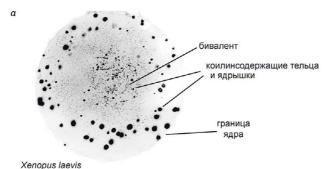
1.2. Ядро ооцита при гипертранскрипционной активности хромосом

При гипертранскрипционном и сочетанном типах оогенеза происходит характерная трансформация ядерного аппарата, обеспечивающая интенсивную транскрипцию определенных участков генома. При этом ядро ооцита значительно увеличивается в размере, а хроматин деконденсируется. Так, диаметр ядра ооцита шпорцевой лягушки достигает 400 мкм, что позволяет видеть ядро невооружен-

ным глазом. Здесь стоит напомнить, что диаметр интерфазного ядра в соматических клетках у этого же вида составляет в среднем 10 мкм, таким образом, объем ядра ооцита в $\sim 10^5$ раз больше объема ядра соматической клетки. Благодаря крупным размерам ядер ооцитов клеточное ядро впервые обнаружено и описано при исследовании ооцитов курицы с помощью простой лупы. Ядро ооцита тогда было названо зародышевым пузырьком ([Purkinje, 1825], цит. по [Gall et al., 2004]).

Растущие ооциты амфибий и птиц являются исключительно удобными и широко используемыми модельными объектами для изучения структуры и функции эукариотического ядра и других общебиологических проблем [Callan, 1986; Macgregor, 1986; Morgan, 2002; Gall et al., 2004; Gaginskaya et al., 2009]. Ядра ооцитов амфибий на протяжении многих лет служат модельным объектом для исследования различных внутриядерных органелл. В ооцитах амфибий подробно изучены особенности морфофункциональной и молекулярной организации ядрышек и других внутриядерных телец, участвующих в динамике компонентов аппарата экспрессии генов ([Gall et al., 1999; Квасов и др., 2000; Gall, 2000; Gall et al., 2004] и др.).

В ядрах ооцитов амфибий помимо хромосом присутствуют многочисленные экстрахромосомные тельца (рис. 1, а): 1500-2000 экстрахромосомных ядрышек, достигающих 10-15 мкм в диаметре, 50-100 не связанных с хромосомами телец, и кроме этого, тысячи кластеров интерхроматиновых гранул (КИГ) [Gall et al., 2004]. Изучению ядрышек в ооцитах амфибий способствовало открытие явления амплификации генов рибосомной РНК (рРНК), приводящей к появлению сотен экстрахромосомных ядрышек [Gall, 1968]. Показано, что 90 % запасаемой ооцитом РНК представлено рРНК, что в случае гипертранскрипционного типа оогенеза обеспечивается амплификацией, т.е. множественным копированием локуса ядрышкового организатора. В ядре растущего ооцита шпорцевой лягушки экстрахромосомные ядрышки лежат на периферии ядра, что обеспечивает быстрый экспорт рибосомных субчастиц в цитоплазму ооцита, а на более поздних стадиях ядрышки мигрируют в центр ядра. Амплифицированные гены рРНК в экстрахромосомных ядрышках послужили удобным объектом для разработки метода гибридизации in situ [Gall, Pardue, 1969], который стал одним из наиболее широко используемых в молекулярной цитогенетике.


Интересно, что у половозрелых самок птиц, в отличие от амфибий, амплификации ядрышкого организатора в оогенезе не происходит, более того, ядрышковый организатор на хромосоме остается неактивным [Koshel et al., 2016]. Таким образом, в ядре ооцита половоз-

релой самки ядрышки не формируются. В этом случае необходимый пул рРНК, запасаемой в ооплазме, обеспечивается фолликулярными клетками [Koshel et al., 2016], тогда как синтез других материнских РНК осуществляется в ядре самого ооцита.

Интенсивная транскрипция на хромосомах в ооцитах животных с гипертранскрипционным и сочетанным типами оогенеза приводит к значительной декомпактизации хромосом. В результате они приобретают характерную форму, которая первым исследователям напомнила щетки для чистки стекол керосиновых ламп (или ершики для мытья бутылок), в связи с чем для хромосом этого типа Й. Рюкертом был предложен метафорический термин «хромосомы типа ламповых щеток» ([Rückert, 1892], цит. по [Callan, 1986]).

Хромосомы типа ламповых щеток формируются в начале большого роста ооцитов, на диплотенной стадии профазы первого мейотического деления. У позвоночных период диплотены первой профазы мейоза, в котором хромосомы имеют форму ламповых щеток, может быть исключительно длительным (до нескольких лет). Первые данные о хромосомах этого типа, обнаруженных В. Флеммингом в ядрах ооцитов аксолотля Ambystoma mexicanum, были опубликованы около 140 лет назад ([Flemming, 1882], цит. по [Callan, 1986]). Хромосомы типа ламповых щеток обнаружены у позвоночных (рыб, амфибий, рептилий, птиц) и беспозвоночных (насекомых). Среди млекопитающих они не формируются, за исключением яйцекладущих. Наиболее подробно хромосомы типа ламповых щеток охарактеризованы у хвостатых амфибий с большим размером генома (тритонов, саламандр и аксолотля) [Callan, 1986; Macgregor, 1986], у шпорцевой лягушки — распространенного модельного объекта [Gall, 2014], и у домашней курицы с хорошо охарактеризованным кариотипом и геномом [Gaginskaya et al., 2009]. В последнее время к решению различных биологических задач также привлекаются хромосомы типа ламповых щеток рептилий [Lisachov et al., 2019] и рыб (личное сообщение Д. В. Дедуха).

В гигантском ядре ооцита хромосомы типа ламповых щеток занимают центральную область ядра, не контактируя с ядерной оболочкой. В связи с этим такие хромосомы, так же как и ядра ооцитов, можно изолировать при помощи несложных микрохирургических манипуляций (см. главу 3). В трехмерном пространстве ядра хромосомы типа ламповых щеток не соприкасаются и расположены хаотично, в отличие от хромосомных территорий в интерфазном ядре соматических клеток (рис. 1, б) [Маслова, Красикова, 2011]. Актуален вопрос о том, как обеспечивается поддержание архитектуры генома в гигантских ядрах ооцитов, достигающих 400 мкм в диа-

6

Gallus gallus domesticus

Рис. 1. Ядро растущего ооцита при гипертранскрипционном оогенезе:

a — ядро, изолированное из ооцита шпорцевой лягушки $Xenopus\ laevis$, окрашенное специфичным для нуклеиновых кислот красителем Sytox green (лазерная сканирующая конфокальная микроскопия), видны биваленты хромосом типа ламповых щеток и экстрахромосомные ядерные структуры — кластеры интерхроматиновых гранул, коилинсодержащие тельца и амплифицированные ядрышки; δ — трехмерная реконструкция ядра ооцита курицы $Gallus\ gallus\ domesticus$, окрашенного специфичным для нуклеиновых кислот красителем Sytox green (лазерная сканирующая конфокальная микроскопия), изоповерхностям макромиди- и микрохромосом присвоены красный, синий и зеленый псевдоцвета соответственно. Масштабная линейка — 50 мкм (по [Маслова, Красикова 2011], с модификациями)

метре. Известно, что ядра ооцитов содержат очень много актина в глобулярной или полимеризованной форме [Clark, Merriam, 1977; Pederson, Aebi, 2005]. При этом при ингибировании полимеризации актина в зародышевых пузырьках происходят резкие изменения архитектуры ядра — все внутриядерные структуры агрегируют в ограниченном пространстве внутри ядра [Maslova, Krasikova,

2012]. Более того, ингибирование полимеризации актина в ядре ооцита приводит к подавлению транскрипции на хромосомах типа ламповых щеток.

1.3. Организация хромосом типа ламповых щеток

Фундаментальная проблема установления специфичной пространственной организации генома в разных типах клеток и механизмов ее регуляции относится к одному из наиболее актуальных направлений в изучении работы ядерного аппарата. В интерфазном ядре соматических клеток геном организован в иерархические домены начиная от петлевых структур хроматина и заканчивая обособленными хромосомными территориями. С помощью технологии захвата (фиксации) конформации хроматина для картирования взаимодействий хроматина на уровне всего генома (Ні-С) в интерфазном ядре можно обнаружить следующие компактные домены хроматина [Razin, Ulianov, 2017]. При низком разрешении матриц геномных контактов (от млн п. н. до десятков млн п. н.) выявляются два основных типа компартментов — А- и В-компартменты, — в которых участки хроматина преимущественно контактируют внутри компартмента одного и того же типа [Lieberman-Aiden et al., 2009]. А-компартмент обогащен маркерами транскрипционно активного хроматина, в то время как В-компартмент представляет собой в целом неактивный хроматин. При разрешении порядка 10-1000 т.п. н. на картах пространственных взаимодействий генома вдоль диагонали матрицы становятся различимы более мелкие домены, обогащенные локальными контактами и имеющие такие четко выраженные границы, что частота контактов внутри одного домена значительно выше, чем между соседними доменами. Эти контактные хроматиновые домены получили название топологически ассоциированных доменов (ТАД) [Dixon et al., 2012].

При максимально доступном разрешении матриц геномных контактов (1–10 т.п. н.) в геноме выявляются так называемые петлевые домены, часто соответствующие индивидуальным взаимодействиям промотера и энхансера [Rao et al., 2014]. Накопление данных Hi-C-анализа для разных типов клеток разных организмов ставит вопрос о поиске цитологических эквивалентов ТАД и А/В-компартментов. Это становится возможным при использовании микроскопии высокого разрешения и удобных модельных объектов исследования, таких как политенные хромосомы или хромосомы типа ламповых щеток.