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PREFACE

Detection and recognition of objects from their images, irrespective of their orientation,
scale, and view, is a very important research subject in computer vision, if not computer
vision itself. This book focuses on a subset of the object recognition techniques proposed
so far by the computer vision community, those employing the idea of projection to match
image patterns, and on a specific class of target objects, faces, to illustrate general object
recognition approaches. Face recognition and interpretation is a critical task for people, and
one at which they excel. Over the last two decades it has received increasing attention from the
computer vision community for a variety of reasons, ranging from the possibility of creating
computational models of interesting human recognition tasks, to the development of practical
biometric systems and interactive, emotion-aware, and capable human–machine interfaces.

The topics covered in this book have been investigated over a period of about 30 years by
the image processing community, providing increasingly better computer vision solutions to
the problem of automatic object location and recognition. While many books on computer
vision are currently available that touch upon some of the topics addressed in the present
book, none of them, to the best of the author’s knowledge, provides a coherent, in-depth cov-
erage of template matching, presenting a varied set of techniques from a common perspective.
The methods considered present both theoretical and practical interest by themselves as well
as enabling techniques for more complex vision systems (stereo vision, robot navigation,
image registration, multimedia retrieval, target tracking, landmark detection, just to mention
a few). The book contains many photographs and diagrams that help the user grasp qualitative
and quantitative aspects of the material presented. The software available on the book’s web
site provides a high-level image processing environment and image datasets to explore the
techniques presented in the book.

Knowledge of basic calculus, statistics, and probability theory is a prerequisite for the
reader. The material covered in the book is at the level of (advanced) undergraduate students
or introductory Ph.D. courses and will prove useful to researchers and developers of computer
vision systems addressing a variety of tasks, from robotic vision to quality control and
biometric systems. It may be used for a special topics course on image analysis at the
graduate level. Another expected use is as a supporting textbook for an intensive short
course on template matching, with the possibility of choosing between a theoretical and an
application-oriented bias. The techniques are discussed at a level that makes them useful also
for the experienced researcher and make the book an essential learning kit for practitioners in
academia and industry.

Rarely, if ever, does a book owe its existence to the sole author, and this one certainly
does not. First a tribute to the open source software community, for providing the many tools
necessary to describe ideas and making them operational. To Jaime Vives Piqueres and to
Matthias Baas, my gratitude for providing me with technical help on the rendering of the
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three-dimensional models appearing in the book. To Andrew Beatty at Singular Inversions,
appreciation for providing me with a free copy of their programs for the generation of three-
dimensional head models. A blossomy ‘whoa’ to Filippo Brunelli, for using these programs
to generate the many virtual heads popping up in the figures of the book and feeding some of
the algorithms described. To Carla Maria Modena, a lot of thanks for helping in the revision
of the manuscript. And, finally, very huge thanks indeed to Tomaso Poggio, the best colleague
I ever had, and the main culprit for the appearance of this book, as the first epigraph in the
book tells you.

Roberto Brunelli
Trento, Italy



1 INTRODUCTION

Somewhere, somewhen,
a two headed strategic meeting
on face recognition and matters alike:
t: What about using template matching?
r: Template matching?
t: Yes, a simple technique to compare patterns . . .
r: I’ll have a look.

Faces’ faces – r’s virtual autobiography
ROBERTO BRUNELLI

Go thither; and, with unattainted eye,
Compare her face with some that I shall show,
And I will make thee think thy swan a crow.

Romeo and Juliet
WILLIAM SHAKESPEARE

Computer vision is a wide research field that aims at creating machines that see, not in
the limited meaning that they are able to sense the world by optical means, but in the
more general meaning that they are able to understand its perceivable structure. Template
matching techniques, as now available, have proven to be a very useful tool for this intelligent
perception process and have led machines to superhuman performance in tasks such as face
recognition. This introductory chapter sets the stage for the rest of the book, where template
matching techniques for monochromatic images are discussed.

1.1. Template Matching and Computer Vision

The whole book is dedicated to the problem of template matching in computer vision. While
template matching is often considered to be a very basic, limited approach to the most
interesting problems of computer vision, it touches upon many old and new techniques in
the field.

The two terms template and matching are used in everyday language, but recalling the
definitions more closely related to their technical meaning is useful:

template/pattern

1. Anything fashioned, shaped, or designed to serve as a model from which
something is to be made: a model, design, plan, outline.

Template Matching Techniques in Computer Vision: Theory and Practice Roberto Brunelli
© 2009 John Wiley & Sons, Ltd



2 TEMPLATE MATCHING TECHNIQUES IN COMPUTER VISION

2. Something formed after a model or prototype, a copy; a likeness, a similitude.

3. An example, an instance; esp. a typical model or a representative instance.

matching

1. Comparing in respect of similarity; to examine the likeness or difference of.

A template may additionally exhibit some variability: not all of its instances are exactly equal
(see Figure 1.1). A simple example of template variability is related to its being corrupted
by additive noise. Another important example of variability is due to the different viewpoints
from which a single object might be observed. Changes in illumination, imaging sensor, or
sensor configuration may also cause significant variations. Yet another form of variability
derives from intrinsic variability across physical object instances that causes variability
of the corresponding image patterns: consider the many variations of faces, all of them
sharing a basic structure, but also exhibiting marked differences. Another important source of
variability stems from the temporal evolution of a single object, an interesting example being
the mouth during speech. Many tasks of our everyday life require that we identify classes
of objects in order to take appropriate actions in spite of the significant variations that these
objects may exhibit. The purpose of this book is to present a set of techniques by which
a computer can perform some of these identifications. The techniques presented share two
common features:

• all of them rely on explicit templates, or on representations by which explicit templates
can be generated;

• recognition is performed by matching: images, or image regions, are set in comparison
to the stored representative templates and are compared in such a way that their
appearance (their image representation) plays an explicit and fundamental role.

The simplest template matching technique used in computer vision is illustrated in
Figure 1.2. A planar distribution of light intensity values is transformed into a vector x which
can be compared, in a coordinate-wise fashion, to a spatially congruent light distribution
similarly represented by vector y:

d(x, y)= 1

N

N∑
i=1

(xi − yi)
2 = 1

N
‖x − y‖2

2 (1.1)

s(x, y)= 1

1+ d(x, y)
. (1.2)

A small value of d(x, y) or a high value of s(x, y) is indicative of pattern similarity. A simple
variation is obtained by substituting the L2 norm with the Lp norm:

dp(x, y)= 1

N

N∑
i=1

(xi − yi)
p = 1

N
‖x − y‖p

p. (1.3)

If x is representative of our template, we search for other instances of it by superposing it on
other images, or portions thereof, searching for the locations of lowest distance d(x, y) (or
highest similarity s(x, y)).
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Figure 1.1. Templates from two very common classes: characters and ‘characters’, i.e. faces. Both
classes exhibit intrinsic variability and can appear corrupted by noise.

The book shows how this simple template matching technique can be extended to become
a flexible and powerful tool supporting the development of sophisticated computer vision
systems, such as face recognition systems.

While not a face recognition book, its many examples are related to automated face
perception. The main reason for the bias is certainly the background of the author, but there
are at least three valid reasons for which face recognition is a valid test bed for template
matching techniques. The first one is the widespread interest in the development of high-
performing face recognition systems for security applications and for the development of
novel services. The second, related reason is that, over the last 20 years, the task has become
very popular and it has seen a significant research effort. This has resulted in the development
of many algorithms, most of them of the template matching type, providing material for
the book. The third reason is that face recognition and facial expression interpretation are
two tasks where human performance is considered to be flawless and key to social human
behavior. Psychophysical experiments and the evolution of matching techniques have shown
that human performance is not flawless and that machines can, sometimes, achieve super
human performance.

1.2. The Book

A modern approach to template matching in computer vision touches upon many aspects,
from imaging, the very first step in getting the templates, to learning techniques that are key
to the possibility of developing new systems with minimal human intervention. The chapters
present a balanced description of all necessary concepts and techniques, illustrating them
with examples taken from face processing tasks.
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Figure 1.2. The simplest template matching technique: templates are represented as vectors (a) and they
are matched by computing their distance in the associated vector space. The template is moved over the
image, as a sliding window (b), and the difference between the template and the image is quantified
using Equation 1.1, searching for the minimum value (c), or Equation 1.2, searching for the maximum
value (d).

A complete description of the imaging process, be it in the case of humans, animals, or
computers, would require a (very large) book by itself and we will not attempt it. Chapter 2
discusses some aspects of it that turn out to be critical in the design of artificial vision systems.
The basics of how images are created using electromagnetic stimuli and imaging devices are
considered. Simple concepts from optics are introduced (including distortion, depth of field,
aperture, telecentric lens design) and eyes and digital imaging sensors briefly described. The
sampling theorem is presented and its impact on image representation and common image
processing operations such as resizing is discussed.
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Chapter 3 formally introduces template matching as an hypothesis testing problem. The
Bayesian and frequentist approaches are considered with particular emphasis on the Neyman–
Pearson paradigm. Matched filters are introduced from a signal processing perspective and
simple pattern variability is addressed with the normalized Pearson correlation coefficient.
Hypothesis testing often requires the statistical estimation of the parameters characterizing
the associated decision function; some subtleties in the estimation of covariance matrices are
discussed.

A major issue in template matching is the stability of similarity scores with respect to noise
extended to include unmodelled phenomena. Many commonly used estimators suffer from a
lack of robustness: small perturbations in the data can drive them towards uninformative
values. Chapter 4 addresses the concept of estimator robustness in a technical way, presenting
applications of robust statistics to the problem of pattern matching.

Linear correspondence measures like correlation and the sum of squared differences
between intensity distributions are fragile. Chapter 5 introduces similarity measures based
on the relative ordering of intensity values. These measures have demonstrable robustness
both to monotonic image mappings and to the presence of outliers.

While finding a single, well-defined shape is useful, finding instances of a class of shapes
can be even more useful. Intraclass variability poses new problems for template matching
and several interesting solutions are available. Chapter 6 focuses on the use of projection
operators on a one-dimensional space to solve the task. The use of projection operators on
multidimensional spaces is covered in Chapter 8.

Finding simple shapes, such as lines and circles, in images may look like a simple task but
computational issues coupled with noise and occlusions require some not so naive solutions.
In spite of the apparent diversity of lines and areas, it turns out that common approaches to the
detection of linear structures can be seen as an efficient implementation of matched filters.
Chapter 7 describes how to compute salient image discontinuities and how simple shapes
embedded in the resulting map can be located with the Radon/Hough transform.

The representation of images of even moderate resolution requires a significant amount
of numeric data, usually one (three) values per pixel if the typical array-based method is
adopted. Chapter 8 investigates the possibility of alternative ways of representing iconic data
so that a large variety of images can be represented using vectors of reduced dimensionality.
Besides significant storage savings, these approaches provide significant benefits to template
detection and recognition algorithms, improving their efficiency and effectiveness.

Chapter 9 addresses a couple of cases that are not easily reduced to pattern detection and
classification. One such case is the detailed estimation of the parameters of a parametric
curve: while Hough/Radon techniques may be sufficient, accurate estimation may benefit
from specific approaches. Another important case is the comparison of anatomical structures,
such as brain sections, across different individuals or, for the same person, over time.
Instead of modeling the variability of the patterns within a class as a static multidimensional
manifold, we may focus on the constrained deformation of a parameterized model and
measure similarity by the deformation stress.

The drawback of template matching is its high computational cost which has two distinct
origins. The first source of complexity is the necessity of using multiple templates to
accommodate the variability exhibited by the appearance of complex objects. The second
source of complexity is related to the representation of the templates: the higher the
resolution, i.e. the number of pixels, the heavier the computational requirements. Besides
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some computational tricks, Chapter 10 presents more organized, structural ways to improve
the speed at which template matching can be performed.

Matching sets of points using techniques targeted at area matching is far from optimal,
with regard to both efficiency and effectiveness. Chapter 11 shows how to compare sparse
templates, composed by points with no textural properties, using an appropriate distance.
Robustness to noise and template deformation as well as computational efficiency are
analyzed.

When the probability distribution of the templates is unknown, the design of a classifier
becomes more complex and many critical estimation issues surface. Chapter 12 presents
basic results upon which two interrelated, powerful classifier design paradigms stand:
regularization networks and support vector machines.

Many applications in image processing rely on robust detection of image features and
accurate estimation of their parameters. Features may be too numerous to justify the process
of deriving a new detector for each one. Chapter 13 exploits the results presented in Chapter 8
to build a single, flexible, and efficient detection mechanism. The complementary aspect of
detecting templates considered as a set of separate features will also be addressed and an
efficient architecture presented.

Template matching techniques are a key ingredient of many computer vision systems,
ranging from quality control to object recognition systems among which biometric identi-
fication systems have today a prominent position. Among biometric systems, those based
on face recognition have been the subject of extensive research. This popularity is due to
many factors, from the non-invasiveness of the technique, to the high expectations due to the
widely held belief that human face recognition mechanisms perform flawlessly. Building a
face recognition system from the ground up is a complex task and Chapter 14 addresses all
the required practical steps: preprocessing issues, feature scoring, the integration of multiple
features and modalities, and the final classification stage.

The process of developing a computer vision system for a specific task often requires the
interactive exploration of several alternative approaches and variants, preliminary parameter
tuning, and more. Appendix A introduces AnImAl, an image processing package written
for the R statistical software system. AnImAl, which relies on an algebraic formalization
of the concept of image, supports interactive image processing by adding to images a self-
documenting capability based on a history mechanism. The documentation facilities of the
resulting interactive environment support a practical approach to reproducible research.

A key need in the development of algorithms in computer vision (as in many other
fields) is the availability of large datasets for training and testing them. Ideally, datasets
should cover the expected variability range of data and be supported by high-quality
annotations describing what they represent so that the response of an algorithm can be
compared to reality. Gathering large, high-quality datasets is, however, time consuming.
An alternative is available for computer vision research: computer graphics systems can be
used to generate photorealistic images of complex environments together with supporting
ground truth information. Appendix B shows how these systems can be exploited to generate
a flexible (and cheap) evaluation environment.

Evaluation of algorithms and systems is a complex task. Appendix C addresses four related
questions that are important from a practical and methodological point of view: what is a
good response of a template matching system, how can we exploit data to train and at the
same time evaluate a classification system, how can we describe in a compact but informative
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way the performance of a classification system, and, finally, how can we compare multiple
classification systems for the same task in order to assess the state of the art of a technology?

The exposition of the main chapter topics is complemented by several intermezzos which
provide ancillary material or refresh the memory of useful results. The arguments presented
are illustrated with several examples from a very specific computer vision research topic:
face detection, recognition, and analysis. There are three main reasons for the very biased
choice: the research background of the author, the relevance of the task in the development
of biometrics systems, and the possibility that a computational solution to these problems
helps understanding (and benefits from the understanding of) the way people do it. Some
of the images appearing in the book are generated using the computer graphics techniques
described in Appendix B and the packages POV-ray (The Povray Team 2008), POVMan
(Krouverk 2005), Aqsis (The Aqsis Team 2007), and FaceGen (Singular Inversions 2008).

Intermezzo 1.1. The definition of intermezzo

intermezzo

1. A brief entertainment between two acts of a play; an entr’acte.

2. A short movement separating the major sections of a lengthy composition or work.

References to relevant literature are not inserted throughout chapter text but are postponed
to a final chapter section. Their order of presentation follows the structure of the chapter.
All papers on which the chapter is based are listed and pointers to additional material are
also provided. References are not meant to be exhaustive, but the interested reader can find
additional literature coverage in the cited papers.

1.3. Bibliographical Remarks

This book, while addressing a very specific technique of computer vision, touches upon
concepts and methods typical of other fields, from optics to machine learning and its
comprehension benefits from readings in these fields.

Among the many books on computer vision, the one by Marr (1982) is perhaps the
most fascinating. The book by Horn (1986) still provides an excellent introduction to the
fundamental aspects of computer vision, with a careful treatment of image formation. A more
recent book is that by Forsyth and Ponce (2002).

Basic notions of probability and statistics can be found in Papoulis (1965). Pattern
classification is considered in detail in the books by Fukunaga (1990) and Duda et al. (2000).
Other important reference books are Moon and Stirling (2000) and Bishop (2007).

A very good, albeit concise, reference for basic mathematical concepts and results is the
Encyclopedic Dictionary of Mathematics (Mathematical Society of Japan 1993). A wide
coverage of numerical techniques is provided by Press et al. (2007).

Two interesting papers on computer and human face recognition are those by Sinha et al.
(2006) and O’Toole et al. (2007). The former presents several results on human face analysis
processes that may provide guidance for the development of computer vision algorithms. The
latter presents some results showing that, at least in some situations, computer vision efforts
resulted in algorithms capable of superhuman performance.
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2 THE IMAGING PROCESS

I have a good eye, uncle; I can see a church by daylight.

Much Ado About Nothing
WILLIAM SHAKESPEARE

A complete description of the imaging process, be it in the case of humans, animals, or
computers, would require a (very large) book by itself and we will not attempt it. Rather, we
discuss some aspects of it that turn out to be critical in the design of artificial vision systems.
The basics of how images are created using electromagnetic stimuli and imaging devices will
be considered. Simple concepts from optics will be introduced (including distortion, depth
of field, aperture, telecentric lens design). Eyes and digital imaging sensors will be briefly
considered. The sampling theorem is presented and its impact on image representation and
common image processing operations such as resizing is discussed.

2.1. Image Creation

Computer vision can be considered as the science and technology of machines that see,
obtaining information on the real world from images of it. Images are created by the
interaction of light with objects and they are captured by optical devices whose nature may
differ significantly.

2.1.1. LIGHT

What is commonly understood by light is actually a propagating oscillatory disturbance in the
electromagnetic field which describes the interaction of charged particles, such as electrons.
The field derives from the close interaction of varying electric and magnetic fields whose
coupling is described by a set of partial differential equations known as Maxwell’s equations.
An important consequence of them is the second-order partial differential equation that
describes the propagation of electromagnetic waves through a medium or in vacuum. The
free space version of the electromagnetic wave equation is(

∇2 − 1

c

∂2

∂t2

)
E = 0 (2.1)

where E is the electric field (and similarly for the magnetic field B): light is a visible solution
of this equation. From the theory of Fourier decomposition, the finite spatio-temporal extent
of real physical waves results in the fact that they can be described as a superposition of an
infinite set of sinusoidal frequencies. In many cases we may then limit our analysis to pure
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Intermezzo 2.1. Convolution and its properties

As convolution, and the closely related cross-correlation, play a significant role in our analysis of template
matching techniques, it is useful to recall their definitions and their most important properties. Both
operations feature a continuous and a discrete definition. The convolution of two real continuous functions
f and g is a new function defined as

(f ∗ g)(x)=
∫

f (y)g(x − y) dy (2.2)

where integration is extended to the domain over which the two functions are defined. The cross-correlation
is a new function defined as

(f ⊗ g)(x)=
∫

f (y)g(x + y) dy. (2.3)

The discrete versions are

(f ∗ g)(i)=
∑
j

f (j)g(i − j) (2.4)

(f ⊗ g)(i)=
∑
j

f (j)g(i + j). (2.5)

The two operations provide the same result when one of the two argument functions is even. The main
properties of convolution are

f ∗ g = g ∗ f (2.6)

f ∗ (g + h)= (f ∗ g)+ (f ∗ h) (2.7)

f ∗ (g ∗ h)= (f ∗ g) ∗ h (2.8)

(f ∗ g)(x − a)= f (x − a) ∗ g(x) (2.9)

d

dx
(f ∗ g)(x)=

(
d

dx
f

)
∗ g (2.10)

support(f ∗ g)= support(f ) ∪ support(g). (2.11)

Convolution and correlation can be extended in a straightforward way to the multidimensional case.

sinusoidal components that we can write conveniently in complex form, remembering that
we should finally get the real or imaginary part of the complex results:

E(x, t)=E0e
k·x−ωt (2.12)

where k is the wave vector representing the propagating direction and the angular frequency
ω is related to frequency f by ω = 2πf . The electric and magnetic fields for the plane
wave represented by Equation 2.12 are perpendicular to each other and to the direction of
propagation of the wave. The velocity of the wave c, the wavelength λ, the angular frequency
ω, and the size of the wave vector k are related by

c = ω

k
= ωλ

2π
= f λ. (2.13)

Besides wavelength, two other properties of light are of practical importance: its polarization
and its intensity. Polarization and its usefulness in imaging are considered in Intermezzo 2.2.
Even if we described light using the wave equation, there are no sensors to detect directly its
amplitude and phase. The only quantity that can be detected is the intensity I of the radiation
incident on the sensor, the irradiance; that is, the time average of the radiation energy which
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Figure 2.1. The process of light propagation. The goal of computer vision is to deduce the path of light
from its observation at a sensing surface.

crosses unit area in unit time. For a plane wave

I (x1, x2)∝ E2
0 (2.14)

where (x1, x2) represents a point on the (real or virtual) surface at which we perform the
measurement (see Figure 2.1). Deriving information on the world from the two-dimensional
intensity map I (x1, x2) is the goal of computer vision. Plane waves are not the only solution
to Maxwell’s equations, spherical waves being another very important one. A spherical wave
is characterized by the fact that its components depend only on time and on the distance r

from its center, where the light source is located (see Intermezzo 2.3). Energy conservation
requires the irradiance of a spherical wave to decay as r−2, a fact often appreciated when
photographing with a flash unit. A spherical wave can be approximated with a plane wave
when r is large; in many cases of interest plane waves can then provide a good approximation
of light waves. Two entities (see Figure 2.2) are fundamental for studying light propagation:

Definition 2.1.1. A wavefront is a surface over which an optical disturbance has a constant
phase.

Definition 2.1.2. Rays are lines normal to the wavefronts at every point of intersection.

The discovery of the photoelectric effect, by which light striking a metal surface ejects
electrons whose energy is proportional to the frequency and not the intensity of light, led to
quantum field theory: interactions among particles are mediated by other particles, the photon
being the mediating particle for the electromagnetic field. Photons have an associated energy

Eλ = hc

λ
(2.15)
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Figure 2.2. A graphical illustration of some important optics concepts described in the chapter.

where h is Planck’s constant: from a particle point of view, intensity is related to the
number of photons. As we will see, both wave and particle aspects of light have important
consequences in the development of systems that sense the world using electromagnetic
radiation, and they fix some fundamental limits for them. The speed of light depends on
the medium of propagation, and in a linear, isotropic, and non-dispersive material is

c = c0

n
(2.16)

where n is the refractive index of the medium and c0 is the speed of light in vacuum.
Usually n > 1 and it depends on frequency: it generally decreases with decreasing frequency
(increasing wavelength). When light crosses the boundary between media with different
refractive indexes it changes its direction and is partially reflected. These effects allow us
to control the propagation of light by interposing properly shaped elements of different
refractive indexes. The refraction of light crossing the boundary of two different isotropic
media results in a change of the propagation direction obeying Snell’s law

n1 sin θ1 = n2 sin θ2 (2.17)

where θ1 represents the angle with respect to the normal of the boundaries: when n2 > n1 the
light will be deflected towards the normal (see Figure 2.2). When n1 > n2, so that light passes
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Intermezzo 2.2. Polarized light

The vector representing the electric field can be decomposed into two orthogonal components. In the
case of a simple harmonic wave the two components have the same frequency but may have different
phases. However, if they have the same phase, the direction of the electric vector remains constant and its
changes are restricted to a constant plane: the light is linearly polarized. Polarized light may result from
the reflection of unpolarized light from dielectric materials (as electric dipoles do not emit in the direction
along which they oscillate) or from selective transmission of one of the two components of the electric
field (e.g. using a Glan–Thomson prism). A natural cause of partially polarized light is light scattering by
small particles. Polarized light is important in computer vision because it can be selectively filtered using
polarizers according to Malu’s law:

I = I0 cos2 θi (2.18)

where I0 is the intensity of the polarized light, I the intensity transmitted by the filter, and θi is the angle of
the polarized light to that of the polarizer (see Figure 2.2). Reflection preserves polarization while diffusion
by scattering surfaces does not, producing instead unpolarized light. Let us consider an inspection problem
where the integrity of a non-metallic marker overlying a metallic object must be verified. The visible
metallic parts of the object produce a lot of glare that may severely impair the imaging of the marker.
However, if we illuminate the specimen with polarized light and we observe the scene with a properly
rotated polarizer we may get rid of the reflections from the metal parts (suppressed by Malu’s law) while
still perceiving a fraction of the unpolarized light from the diffusing surfaces. Another case is the inspection
of specimens immersed in water. In this case the water surface reflects partially polarized light. Polarization
of reflected light is complete at the Brewster angle θB = arctan(n2/n1), n2, n1 being the refractive indexes
of the materials, that for visible light is approximately 53° to the normal for an air–water interface. These
reflections, which would prevent a clear image of objects below the surface, can be reduced using a properly
oriented polarizer.

The detection of reflected light polarization is of help in several image understanding applications,
including the discrimination of dielectric/metal material, segmentation of specularities, and separation of
specular and diffuse reflection components (Wolff 1995).

from a dense to a less dense medium, e.g. from water to air, we may observe total internal
reflection: no refracted ray exists.

Different frequencies of oscillation give rise to the different forms of electromagnetic
radiation, from radio waves at the lowest frequencies, to visible light at the intermediate
frequencies, to gamma rays at the highest frequencies. The whole set of possibilities is known
as the electromagnetic spectrum and the nomenclature for the main portions is reported
in Table 2.1. The study of the properties and behavior of visible light, with the addition
of infrared and ultraviolet light, and of its interaction with matter is the subject of optics,
itself an important area of physics. As light is an electromagnetic wave, similar phenomena
occur over the complete electromagnetic spectrum and can also be found in the analysis of
elementary particles due to wave–particle duality, the fact that matter exhibits both wave-like
and particle-like properties.

2.1.2. GATHERING LIGHT

Images are created by controlling light propagation with optical devices so that we can
effectively detect its intensity without disrupting the information it contains on the world
through which it traveled. Refraction of light by means of media with different refractive
indexes, the lenses, is the basis of optical systems. Interposition of glass elements of different
shapes and refractive indexes, allows us to control the propagation of light so that different
rays emitted by a single point in the world can be focused into a corresponding image of
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Table 2.1. The different portions of the electromagnetic spectrum. The most common unit for
wavelength is the angstrom (10−10 m).

Region Frequency (Hz) Wavelength (Å)

Radio < 3× 109 > 109

Microwave 3× 109 to 3× 1012 109–106

Infrared 3× 1012 to 4.3× 1014 106–7000
Visible 4.3× 1014 to 7.5× 1014 7000–4000
Ultraviolet 7.5× 1014 to 3× 1017 4000–10
X-rays 3× 1017 to 3× 1019 10–0.1
Gamma rays > 3× 1019 < 0.1

Intermezzo 2.3. Light sources

There are many sources of light that we encounter daily, such as the sun, incandescent bulbs, and fluorescent
tubes. The basic mechanism underlying light emission is atomic excitation and relaxation. When an atom
adsorbs energy, its outer electrons move to an excited state from which they relax to the ground state,
returning the energy in the form of photons, whose wavelength is related to their energy. The specification
of the spectral exitance or spectral flux density, the emitted power per unit area per unit wavelength interval,
characterizes a light source. The human eye is sensitive to a limited range of electromagnetic radiation and
it perceives different wavelengths as different colors: the longer wavelengths as red, the shorter ones as
blue.

Excitation by thermal energy results in the emission of photons of all energies, and the corresponding
light spectrum is continuous. The finite time over which all electron transitions happen and atomic thermal
motion are responsible for the fact that light emission is never perfectly monochromatic but characterized
by a frequency bandwidth �ν inversely proportional to the temporal extent of the events associated with
the emission

�ν ≈ 1

�τc

where �τc is also known as coherence time. For a blackbody, i.e. a perfect absorber, Planck’s radiation law
holds

I (λ, t)= 2hc2

λ5

1

ehc(λkt)−1 − 1
and the wavelength of maximum exitance λpeak obeys Wien’s law

λpeak T = 2.9 × 106 nm K

so that the hotter the body, the bluer the light. Thermal light sources can then be indexed effectively by their
temperature.

When light passes through an absorbing medium, each wavelength may undergo selective absorption:
the spectral distribution of light changes. The same thing happens by selective reflection from surfaces;
this is the reason why we see them in different colors. In most cases, light-detecting devices integrate
light of several wavelengths using a convolution mechanism: they compute a spectrally weighted average
of the incoming light. Multiple convolution kernels may operate on different spectral regions, resulting in
multichannel, or color, imaging. Different sensors are characterized by different kernels so that their colors
may differ: images from different sensors need to be calibrated so that they agree on the color they report.
When a single kernel is used, we have monochromatic vision. The light spectrum that a sensor perceives
depends then on the light sources and on the media and objects the light interacts with. It is sometimes
possible to facilitate the task of computer vision by means of appropriate lighting and environment colors.



THE IMAGING PROCESS 15

the point on a light-detecting device. A typical configuration is composed of several radially
symmetric lenses whose symmetry axes are all aligned along the optical axis of the system.

Computations are quite complex in the general case but may be simplified significantly by
considering the limit of small angles from the optical axis (the paraxial approximation) and,
at the same time, thin lenses with spherical surfaces immersed in air (see Figure 2.3). The
main property of a lens is its focal length f , the distance on the optical axis from its center to
a point onto which collimated light parallel to the axis is focused:

1

f
≈ (n− 1)

(
1

R1
− 1

R2

)
(2.19)

where R1 (R2) is the radius of curvature of the lens surface closest to (farthest from) the
light source, and n is shorthand for nlm = nl/nm, the relative refraction index of the lens
(nl) and the medium where the lens is immersed (nm). The formula can be derived using the
approximation sin θ ≈ θ in Snell’s law and considering spherical lenses. The focal length and
the dimensions w × h of the imaging surface determine the field of view (FOV) of the optical
system:

f = w

h

/
tan

(
FOV

2

)
. (2.20)

The reciprocal of the focal length is its optical power. Under the approximations considered
the thin lens equation relates the distance zo of an object from the lens to the distance zi at
which the object is focused

1

zo
+ 1

zi
= 1

f
. (2.21)

This can be most easily seen by considering two rays emanating from points on the object: a
ray parallel to the optical axis, which when refracted passes through the focal point, and one
passing undeflected through the optical center of the lens (the chief ray). If we put a screen
at distance zi from the lens, a point source at zo will be imaged as a point on the screen, but
if the screen is moved closer (or farther) from the lens, the image of the point is transformed
into a disc. The diameter c of the circle corresponding to the out of focus imaging of a point
source can be determined using the thin lens equation (see also Figure 2.3) and turns out to
be

c = A · |zo − z1|
zo

· f

z1 − f
= |zo − z1|

zo

· f 2

N(z1 − f )
(2.22)

where zo is the distance of the object from the lens, z1 is the distance for which the lens
is focused, A is the diameter of the incident light beam as it reaches the lens, the so-called
lens aperture, and N = f/A is the so-called f -number commonly used in photography. The
effective f -number Ne is defined as the ratio of the height to the diameter of the light cone
that emerges from the lens. The f -number is a measure of the light-gathering capability of a
lens. A way to reduce the diameter of the circle of confusion is then to reduce the aperture of
the optical system. As we will see, due to diffraction effects, there is a limiting useful aperture
size below which image quality will deteriorate (see Section 2.1.3). A quantity related to the
circle of confusion is the depth of field, a measure of the range over which the circle of
confusion is below some critical value. Another drawback of reducing the aperture of the
optical system is that the amount of light gathered by the system will decrease, resulting in
longer exposure time and increased noise (see Section 2.1.4 and Section 2.3). The pinhole
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(a) thin lens imaging

Figure 2.3. A basic optical system: the working of a lens under paraxial approximation (a) and the
geometry of the circle of confusion for out of focus imaging (b).

camera, a lens-less optical device described in Figure 2.8 and Intermezzo 2.4, is the simplest
optical system and it is often used to model the imaging process in computer graphics and
computer vision.

The image produced by a point source is called the point spread function (PSF), and we can
represent it as a function of the coordinates on the image plane PSF(x, y). If the only effect
of translating a point in the object plane is a proportional translation of the PSF in the image
plane, the system is said to be isoplanatic. When image light is incoherent, without a fixed
phase relationship, optical systems are linear in intensity. An important consequence is that
the image obtained from a linear isoplanatic system is the convolution (see Intermezzo 2.1)
of its PSF with the object plane image:

Iimage(x, y)=
∫ ∫

Iobject(x
′, y ′)PSF(x − x ′, y − y ′) dx ′ dy ′ = (Iobject ∗ PSF)(x, y).

(2.23)
If we consider an off-axis point source P with θ the angle between the optical axis and the
principal ray from the point through the center of the aperture, the rays emanating from P

will see a foreshortened aperture due to the angular displacement. As a consequence, the
light-gathering area is reduced for them, resulting in a falling off of the irradiance I on the
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sensor with respect to the radiance L on the surface in the direction of the lens:

I = L
π

4

cos4 θ

N2
e

. (2.24)

This effect is responsible for the radial intensity falloff (vignetting) exhibited by wide-angle
lenses.

The simple optical systems considered so far produce perspective images. The image
dimensions of equally sized objects are inversely proportional to the corresponding object
distances (see Figure 2.3). This variability adversely affects the capability of a computer
vision system to recognize objects as it must account for their varying size: the appearance
of an object depends on its position within the imaged field and on its distance from the
lens. Coupling of simple optical systems and judicious insertion of apertures allow us to
build a telecentric system that can produce orthographic images: the appearance of the object
does not depend on its distance from the lens or on its position within the field of view (see
Figure 2.4). The telecentric design exploits the fact that rays passing through the focal point
must emerge (enter) parallel to the optical axis. Let us consider the optical system obtained by
removing lens L2 substituting it with the image screen. The aperture stop limits the bundle of
rays and the central ray, the one passing through the focal point, is parallel to the optical axis
(on the object side). If we move the object towards the camera, the central ray will remain the
same and it will reach the screen at the same position: the size of the object does not change.
However, if we move the object it goes out of focus as can be easily seen by considering a
point on the optical axis. In a telecentric system, in fact, the aperture, besides controlling the
ray bundle to obtain an orthographic projection, continues to control the circle of confusion.
If we want to focus the new position we must move the screen, but this would change the
size of the object. The introduction of the second lens makes the size invariant also to the
changes in screen position necessary to focus objects at different distances as the central ray
exits from L2 parallel to the optical axis. There is an additional, important advantage in using
an image side telecentric design: the irradiance of the sensor plane does not change when we
change the focusing distance. The reason is that the angular size of the aperture seen by a
point on the image plane is constant due to the fact that rays passing through the same point
on the focal plane (where the stop is placed) emerge parallel to each other on the image side
of the lens. As a consequence, the effective f -number does not change and the intensity on
the image plane according to Equation 2.24 does not change. A major limitation of telecentric
lenses is that they must be as large as the largest object that needs to be imaged. The effects
of focal length and projection type are illustrated in Figure 2.5.

The treatment so far was based on the paraxial approximation that in many real-
life situations is not valid. In these cases, an optical system designed using the paraxial
approximation exhibits several distortions whose correction requires an approximation up
to third order for the sin θ function appearing in Snell’s law

sin θ ≈ θ − θ3

3! +
θ5

5! . (2.25)

Distortion of first-order optics can be divided into two main groups: monochromatic (Seidel)
aberrations and chromatic aberrations, the latter related to the fact that lenses bring different
colors of light to a focus at different points as the refractive index depends on wavelength.
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Figure 2.4. A doubly telecentric system obtained by using two lenses with one focal point in common
and an aperture positioned at it. The two (synthetic) images on the right show the difference between
perspective imaging (top) and telecentric imaging (bottom).

Figure 2.5. Camera focal length and projection type have a significant impact on the appearance of
objects. From left to right: perspective projections with a field of view of 20° and 60° respectively, and
orthographic projection.

Among the monochromatic aberrations we consider only those related to geometrical
distortions, the most important in the field of computer vision. The most common cause
for distortion is the introduction of a stop, often needed to correct other aberrations (see
Figure 2.6). The position of the stop influences the path of the chief ray, the ray passing
through the center of the stop. If the stop is positioned at the lens, it will not be refracted and
it will leave the lens without changing its angle: the system is orthoscopic and exhibits no
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Figure 2.6. Geometrical lens distortions are often due to the insertion of stops in the optical system and
result in characteristics deformation patterns. The sizes of A, B, and C differ: A < B < C.

distortion. If the stop is before the lens, the chief ray will be refracted closer to the optical
axis: the magnification will be smaller and it will depend on off-axis distance. The resulting
images will exhibit a typical barrel deformation. The opposite happens when the stop is
behind the lens, resulting in pincushion distortion. Distortion is usually quantified as the
relative dimensional change of the image plane distance from the optical axis r ′ with respect
to the value r from the paraxial approximation

D(r)= (r ′ − r)

r
. (2.26)

The type of distortion is related to the slope of D(r), with barrel distortion corresponding to
a decreasing D. Complex optical systems may exhibit both types of distortions at the same
time. In computer vision applications, image distortion can be removed if we know D(r) for
the given lens. In fact, if we represent a point on the distorted image as a complex number in
polar form x′ = r ′eiθ , we can rectify the image with the following mapping:

x′ → x = r(r ′)eiθ (2.27)

where r(r ′) is obtained by inverting Equation 2.26.
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2.1.3. DIFFRACTION-LIMITED SYSTEMS

As we have already seen, light corresponds (classically) to self-propagating electromagnetic
waves that travel with a speed depending upon the traversed medium. While an accurate
description can be achieved by means of Maxwell’s equations, many optical phenomena can
be investigated with the help of simplifying concepts and principles such as the Huygens–
Fresnel principle.

Proposition 2.1.3 (The Huygens–Fresnel Principle). Every unobstructed point of a wave-
front, at a given instant of time, serves as a source of spherical secondary waves with the
same frequency as that of the primary wave. The amplitude of the optical field at any point
beyond is the superposition of all these secondary waves considering their amplitudes and
relative phases.

Let us consider what happens when light passes through a small, circular aperture of
radius a (see Figure 2.7). According to the Huygens–Fresnel principle, each small area
element dS within the aperture S can be considered as covered with secondary, coherent,
point sources. As the area element is infinitesimal, hence much smaller than the wavelength
λ of the emitted light, the contributions of the point sources interact constructively at P

independently of the angular position of P with respect to the surface normal. The optical
effect at P due to the spherical wave emitted by dS is the real (or imaginary) part of

dE =
(

EA

r

)
ei(wt−kr) dS. (2.28)

In order to find the effect at P due to the complete aperture we need to integrate the
contribution of all small elements. Fraunhofer diffraction assumes that the distance R of P

from the aperture is large in comparison to the size of the aperture. This far-field condition
allows us to simplify the expression of r as a function of of P = (X, Y, Z) and of the position
of dS, i.e. (0, y, z), so that we get an approximation of r for the exponent of Equation 2.28
that is accurate enough to model correctly phase effects:

r = [X2 + (Y − y)2 + (Z − z)2]1/2 (2.29)

≈ R[1− (Yy + Zz)/R2] (2.30)

leading to

E = EAei(wt−kR)

R

∫
S

eik(Yy+Zz)/R dS. (2.31)

The integral can be solved using spherical polar coordinates and the irradiance I = EE∗/2,
i.e. the squared module of the real part of E, at P is found to be

I (θ)= I (0)

[
2
J1(ka sin θ)

ka

]2

(2.32)

where J1(·) is the zeroth-order Bessel function of the first kind, and is known as the Airy
function, after the British astronomer who first derived the result. The resulting irradiance is
characterized by a bright disc surrounded by rings of decreasing intensity separated by dark
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rings reaching zero intensity. The radius of the first dark ring is located at

r1 = 1.22
Rλ

2a
≈ 1.22

fλ

A
(2.33)

where the approximation is valid for a lens focused on a screen with focal length f ≈ R

and aperture diameter A= 2a. An important consequence of Equation 2.33 is that when A

becomes small, the Airy disc becomes large. As the Airy pattern represents the PSF of the
optical system considered, the image produced by an object is obtained by convolving the
image resulting from geometric optics with the Airy function (see Equation 2.23). When the
inner disc gets larger, the image becomes more blurred. An important consequence is that
two objects cannot be clearly separated when their Airy discs start to overlap. The commonly
used Rayleigh criterion states that two objects are no longer separable when the maximum of
one Airy pattern is at the first minimum of the other Airy pattern: r1 is then considered the
linear diffraction resolution limit and r1/f ≈ 1.22λ/A the angular diffraction limit.

Intermezzo 2.4. Real pinhole imaging

The optical system presented in Figure 2.3 is not the simplest one. In fact, we can produce images without
any lens, using a pinhole camera, i.e. a box with a small circular hole in one of its walls (see Figure 2.8).
In spite of its simplicity, an understanding of a realistic implementation of a pinhole camera requires
an understanding of diffraction effects. This should not be surprising after the remarks on Fraunhofer
diffraction. Let us consider a plane wave incident on a circular hole and regard the latter as a sequence
of circular zones whose radii Rm are

R2
m = (r0 +mλ/2)2 − r2

0 ≈mr0λ (2.34)

where r0 
 λ is the distance of the detecting screen from the hole and m is not too large. As the distance
between the center of two adjacent zones is equal to λ/2, the light from the two zones interacts destructively.
If we remove all even (or odd) zones by masking them, we will obtain a brighter illumination than the one
obtained from letting all the light through. If we retain only the first zone, we have a real pinhole camera.
The condition reported in Equation 2.34 expresses the radius of the hole as a function of the wavelength
and the distance of the detecting screen in order to get a coherent contribution of the light passing through
the hole. This is the condition for getting the pinhole to work and r0 corresponds to the focal length of the
pinhole camera.

2.1.4. QUANTUM NOISE

We now turn to consider another intrinsic limitation of imaging systems related this time
to the corpuscular nature of light. Let us consider a stream of uncorrelated photons from a
constant light source (such as a chaotic, or thermal, light emitter, where many excited atoms
emit photons independently). While we expect an average rate of r photons per unit time, we
do not expect them to arrive at regular intervals but randomly. Given a gathering time �t , we
expect, on average, 〈n〉 = r�t photons and the probability of detecting n photons is

p(n)= e−(r�t) (r�t)n

n! (2.35)

which represents the Poisson distribution. Two remarkable features of this distribution are
that its standard deviation σp equals the square root of the mean and that it approaches the
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(b) without diffraction effect

(c) with diffraction effect
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Figure 2.7. Diffraction from a circular aperture in the far-field approximation (Fraunhofer diffraction)
with the resulting Airy pattern.

Gaussian (normal) distribution for large n:

σp =
√〈n〉 (2.36)

p(n)
n→∞−−−→ N(〈n〉, √〈n〉). (2.37)

The major consequence of this type of noise is that the signal to noise ratio (SNR) related to
an average measurement of 〈n〉 photons cannot be greater than

√〈n〉:

SNR= I

σI

= 〈n〉√〈n〉 =
√〈n〉 (2.38)

and will (usually) be lower due to the fact that in order to get the overall standard deviation,
we must add to σ 2

p the variances from all noise sources (see Figure 2.9 for a comparative
presentation of the effects of several noise distributions).
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R1

R2

r0

(a) pinhole camera (b) pinhole as a zone plate

Figure 2.8. A pinhole camera, the simplest optical system.

Semiclassical and fully quantum calculations provide the same result for the case of
coherent light (single mode laser) and for chaotic (thermal) light when the counting time
�t 
 τc, the coherence time, which is of the order of 2.3× 10−15 s for tungsten-halogen
lamps. There are cases for which the qualitative reasoning presented does not hold. A
simple example is that of single molecule fluorescence: the molecule needs some time to
re-emit and this prevents close arrival of photons resulting in a different distribution (photon
antibunching). If the quantum efficiency of our photon detector is not 1, the final result
will still be a Poisson distribution, whose average value is now given by the product of
the average number of photons and the efficiency of the detector. Natural and artificial eyes
are both affected by photon noise. Poisson noise is not the only kind of noise that can be
found in images. An interesting case is that of X-rays images, that are actually obtained
by scanning an exposed film. The statistics of the original light source are altered by a
logarithmic mapping due to a film exposure mechanism (see Intermezzo 2.5). Yet another
different noise distribution is found in magnetic resonance imaging. In this case the complex
(as opposed to real) images acquired correspond to the Fourier transform (see Intermezzo 2.7)
of the data to be processed. These images are corrupted by Gaussian noise and so are the real
and imaginary parts of the inverse Fourier transform due to the orthogonality of the process.
However, computing the magnitude of these images is a nonlinear process and the statistics
of the noise are changed: Gaussian noise is transformed into Rice distributed noise.

2.2. Biological Eyes

In the previous sections we have considered the path of light from its sources onto what we
simplistically called the image plane. The result of this analysis is the construction of an
irradiance map on the image plane. The next step is to consider how the irradiance map can
be transduced into some correlated signal that can be processed by animals or computers.
The basic ingredient in the transducing process is the interaction of photons with matter,
finally resulting in chemical transformation, as in the case of photographic emulsion, or in
electrical signals, driving brains or computer processing. In the following sections we provide
some information on the human eye and on the eyes of some other animals that have devised
interesting sensing solutions.


